/* * drivers/usb/gadget/dwc2_udc_otg_xfer_dma.c * Designware DWC2 on-chip full/high speed USB OTG 2.0 device controllers * * Copyright (C) 2009 for Samsung Electronics * * BSP Support for Samsung's UDC driver * available at: * git://git.kernel.org/pub/scm/linux/kernel/git/kki_ap/linux-2.6-samsung.git * * State machine bugfixes: * Marek Szyprowski * * Ported to u-boot: * Marek Szyprowski * Lukasz Majewski * * SPDX-License-Identifier: GPL-2.0+ */ static u8 clear_feature_num; int clear_feature_flag; /* Bulk-Only Mass Storage Reset (class-specific request) */ #define GET_MAX_LUN_REQUEST 0xFE #define BOT_RESET_REQUEST 0xFF static inline void dwc2_udc_ep0_zlp(struct dwc2_udc *dev) { u32 ep_ctrl; writel(usb_ctrl_dma_addr, ®->in_endp[EP0_CON].diepdma); writel(DIEPT_SIZ_PKT_CNT(1), ®->in_endp[EP0_CON].dieptsiz); ep_ctrl = readl(®->in_endp[EP0_CON].diepctl); writel(ep_ctrl|DEPCTL_EPENA|DEPCTL_CNAK, ®->in_endp[EP0_CON].diepctl); debug_cond(DEBUG_EP0 != 0, "%s:EP0 ZLP DIEPCTL0 = 0x%x\n", __func__, readl(®->in_endp[EP0_CON].diepctl)); dev->ep0state = WAIT_FOR_IN_COMPLETE; } static void dwc2_udc_pre_setup(void) { u32 ep_ctrl; debug_cond(DEBUG_IN_EP, "%s : Prepare Setup packets.\n", __func__); writel(DOEPT_SIZ_PKT_CNT(1) | sizeof(struct usb_ctrlrequest), ®->out_endp[EP0_CON].doeptsiz); writel(usb_ctrl_dma_addr, ®->out_endp[EP0_CON].doepdma); ep_ctrl = readl(®->out_endp[EP0_CON].doepctl); writel(ep_ctrl|DEPCTL_EPENA, ®->out_endp[EP0_CON].doepctl); debug_cond(DEBUG_EP0 != 0, "%s:EP0 ZLP DIEPCTL0 = 0x%x\n", __func__, readl(®->in_endp[EP0_CON].diepctl)); debug_cond(DEBUG_EP0 != 0, "%s:EP0 ZLP DOEPCTL0 = 0x%x\n", __func__, readl(®->out_endp[EP0_CON].doepctl)); } static inline void dwc2_ep0_complete_out(void) { u32 ep_ctrl; debug_cond(DEBUG_EP0 != 0, "%s:EP0 ZLP DIEPCTL0 = 0x%x\n", __func__, readl(®->in_endp[EP0_CON].diepctl)); debug_cond(DEBUG_EP0 != 0, "%s:EP0 ZLP DOEPCTL0 = 0x%x\n", __func__, readl(®->out_endp[EP0_CON].doepctl)); debug_cond(DEBUG_IN_EP, "%s : Prepare Complete Out packet.\n", __func__); writel(DOEPT_SIZ_PKT_CNT(1) | sizeof(struct usb_ctrlrequest), ®->out_endp[EP0_CON].doeptsiz); writel(usb_ctrl_dma_addr, ®->out_endp[EP0_CON].doepdma); ep_ctrl = readl(®->out_endp[EP0_CON].doepctl); writel(ep_ctrl|DEPCTL_EPENA|DEPCTL_CNAK, ®->out_endp[EP0_CON].doepctl); debug_cond(DEBUG_EP0 != 0, "%s:EP0 ZLP DIEPCTL0 = 0x%x\n", __func__, readl(®->in_endp[EP0_CON].diepctl)); debug_cond(DEBUG_EP0 != 0, "%s:EP0 ZLP DOEPCTL0 = 0x%x\n", __func__, readl(®->out_endp[EP0_CON].doepctl)); } static int setdma_rx(struct dwc2_ep *ep, struct dwc2_request *req) { u32 *buf, ctrl; u32 length, pktcnt; u32 ep_num = ep_index(ep); buf = req->req.buf + req->req.actual; length = min_t(u32, req->req.length - req->req.actual, ep_num ? DMA_BUFFER_SIZE : ep->ep.maxpacket); ep->len = length; ep->dma_buf = buf; if (ep_num == EP0_CON || length == 0) pktcnt = 1; else pktcnt = (length - 1)/(ep->ep.maxpacket) + 1; ctrl = readl(®->out_endp[ep_num].doepctl); writel((unsigned int) ep->dma_buf, ®->out_endp[ep_num].doepdma); writel(DOEPT_SIZ_PKT_CNT(pktcnt) | DOEPT_SIZ_XFER_SIZE(length), ®->out_endp[ep_num].doeptsiz); writel(DEPCTL_EPENA|DEPCTL_CNAK|ctrl, ®->out_endp[ep_num].doepctl); debug_cond(DEBUG_OUT_EP != 0, "%s: EP%d RX DMA start : DOEPDMA = 0x%x," "DOEPTSIZ = 0x%x, DOEPCTL = 0x%x\n" "\tbuf = 0x%p, pktcnt = %d, xfersize = %d\n", __func__, ep_num, readl(®->out_endp[ep_num].doepdma), readl(®->out_endp[ep_num].doeptsiz), readl(®->out_endp[ep_num].doepctl), buf, pktcnt, length); return 0; } static int setdma_tx(struct dwc2_ep *ep, struct dwc2_request *req) { u32 *buf, ctrl = 0; u32 length, pktcnt; u32 ep_num = ep_index(ep); buf = req->req.buf + req->req.actual; length = req->req.length - req->req.actual; if (ep_num == EP0_CON) length = min(length, (u32)ep_maxpacket(ep)); ep->len = length; ep->dma_buf = buf; flush_dcache_range((unsigned long) ep->dma_buf, (unsigned long) ep->dma_buf + ROUND(ep->len, CONFIG_SYS_CACHELINE_SIZE)); if (length == 0) pktcnt = 1; else pktcnt = (length - 1)/(ep->ep.maxpacket) + 1; /* Flush the endpoint's Tx FIFO */ writel(TX_FIFO_NUMBER(ep->fifo_num), ®->grstctl); writel(TX_FIFO_NUMBER(ep->fifo_num) | TX_FIFO_FLUSH, ®->grstctl); while (readl(®->grstctl) & TX_FIFO_FLUSH) ; writel((unsigned long) ep->dma_buf, ®->in_endp[ep_num].diepdma); writel(DIEPT_SIZ_PKT_CNT(pktcnt) | DIEPT_SIZ_XFER_SIZE(length), ®->in_endp[ep_num].dieptsiz); ctrl = readl(®->in_endp[ep_num].diepctl); /* Write the FIFO number to be used for this endpoint */ ctrl &= DIEPCTL_TX_FIFO_NUM_MASK; ctrl |= DIEPCTL_TX_FIFO_NUM(ep->fifo_num); /* Clear reserved (Next EP) bits */ ctrl = (ctrl&~(EP_MASK<in_endp[ep_num].diepctl); debug_cond(DEBUG_IN_EP, "%s:EP%d TX DMA start : DIEPDMA0 = 0x%x," "DIEPTSIZ0 = 0x%x, DIEPCTL0 = 0x%x\n" "\tbuf = 0x%p, pktcnt = %d, xfersize = %d\n", __func__, ep_num, readl(®->in_endp[ep_num].diepdma), readl(®->in_endp[ep_num].dieptsiz), readl(®->in_endp[ep_num].diepctl), buf, pktcnt, length); return length; } static void complete_rx(struct dwc2_udc *dev, u8 ep_num) { struct dwc2_ep *ep = &dev->ep[ep_num]; struct dwc2_request *req = NULL; u32 ep_tsr = 0, xfer_size = 0, is_short = 0; if (list_empty(&ep->queue)) { debug_cond(DEBUG_OUT_EP != 0, "%s: RX DMA done : NULL REQ on OUT EP-%d\n", __func__, ep_num); return; } req = list_entry(ep->queue.next, struct dwc2_request, queue); ep_tsr = readl(®->out_endp[ep_num].doeptsiz); if (ep_num == EP0_CON) xfer_size = (ep_tsr & DOEPT_SIZ_XFER_SIZE_MAX_EP0); else xfer_size = (ep_tsr & DOEPT_SIZ_XFER_SIZE_MAX_EP); xfer_size = ep->len - xfer_size; /* * NOTE: * * Please be careful with proper buffer allocation for USB request, * which needs to be aligned to CONFIG_SYS_CACHELINE_SIZE, not only * with starting address, but also its size shall be a cache line * multiplication. * * This will prevent from corruption of data allocated immediatelly * before or after the buffer. * * For armv7, the cache_v7.c provides proper code to emit "ERROR" * message to warn users. */ invalidate_dcache_range((unsigned long) ep->dma_buf, (unsigned long) ep->dma_buf + ROUND(xfer_size, CONFIG_SYS_CACHELINE_SIZE)); req->req.actual += min(xfer_size, req->req.length - req->req.actual); is_short = !!(xfer_size % ep->ep.maxpacket); debug_cond(DEBUG_OUT_EP != 0, "%s: RX DMA done : ep = %d, rx bytes = %d/%d, " "is_short = %d, DOEPTSIZ = 0x%x, remained bytes = %d\n", __func__, ep_num, req->req.actual, req->req.length, is_short, ep_tsr, req->req.length - req->req.actual); if (is_short || req->req.actual == req->req.length) { if (ep_num == EP0_CON && dev->ep0state == DATA_STATE_RECV) { debug_cond(DEBUG_OUT_EP != 0, " => Send ZLP\n"); dwc2_udc_ep0_zlp(dev); /* packet will be completed in complete_tx() */ dev->ep0state = WAIT_FOR_IN_COMPLETE; } else { done(ep, req, 0); if (!list_empty(&ep->queue)) { req = list_entry(ep->queue.next, struct dwc2_request, queue); debug_cond(DEBUG_OUT_EP != 0, "%s: Next Rx request start...\n", __func__); setdma_rx(ep, req); } } } else setdma_rx(ep, req); } static void complete_tx(struct dwc2_udc *dev, u8 ep_num) { struct dwc2_ep *ep = &dev->ep[ep_num]; struct dwc2_request *req; u32 ep_tsr = 0, xfer_size = 0, is_short = 0; u32 last; if (dev->ep0state == WAIT_FOR_NULL_COMPLETE) { dev->ep0state = WAIT_FOR_OUT_COMPLETE; dwc2_ep0_complete_out(); return; } if (list_empty(&ep->queue)) { debug_cond(DEBUG_IN_EP, "%s: TX DMA done : NULL REQ on IN EP-%d\n", __func__, ep_num); return; } req = list_entry(ep->queue.next, struct dwc2_request, queue); ep_tsr = readl(®->in_endp[ep_num].dieptsiz); xfer_size = ep->len; is_short = (xfer_size < ep->ep.maxpacket); req->req.actual += min(xfer_size, req->req.length - req->req.actual); debug_cond(DEBUG_IN_EP, "%s: TX DMA done : ep = %d, tx bytes = %d/%d, " "is_short = %d, DIEPTSIZ = 0x%x, remained bytes = %d\n", __func__, ep_num, req->req.actual, req->req.length, is_short, ep_tsr, req->req.length - req->req.actual); if (ep_num == 0) { if (dev->ep0state == DATA_STATE_XMIT) { debug_cond(DEBUG_IN_EP, "%s: ep_num = %d, ep0stat ==" "DATA_STATE_XMIT\n", __func__, ep_num); last = write_fifo_ep0(ep, req); if (last) dev->ep0state = WAIT_FOR_COMPLETE; } else if (dev->ep0state == WAIT_FOR_IN_COMPLETE) { debug_cond(DEBUG_IN_EP, "%s: ep_num = %d, completing request\n", __func__, ep_num); done(ep, req, 0); dev->ep0state = WAIT_FOR_SETUP; } else if (dev->ep0state == WAIT_FOR_COMPLETE) { debug_cond(DEBUG_IN_EP, "%s: ep_num = %d, completing request\n", __func__, ep_num); done(ep, req, 0); dev->ep0state = WAIT_FOR_OUT_COMPLETE; dwc2_ep0_complete_out(); } else { debug_cond(DEBUG_IN_EP, "%s: ep_num = %d, invalid ep state\n", __func__, ep_num); } return; } if (req->req.actual == req->req.length) done(ep, req, 0); if (!list_empty(&ep->queue)) { req = list_entry(ep->queue.next, struct dwc2_request, queue); debug_cond(DEBUG_IN_EP, "%s: Next Tx request start...\n", __func__); setdma_tx(ep, req); } } static inline void dwc2_udc_check_tx_queue(struct dwc2_udc *dev, u8 ep_num) { struct dwc2_ep *ep = &dev->ep[ep_num]; struct dwc2_request *req; debug_cond(DEBUG_IN_EP, "%s: Check queue, ep_num = %d\n", __func__, ep_num); if (!list_empty(&ep->queue)) { req = list_entry(ep->queue.next, struct dwc2_request, queue); debug_cond(DEBUG_IN_EP, "%s: Next Tx request(0x%p) start...\n", __func__, req); if (ep_is_in(ep)) setdma_tx(ep, req); else setdma_rx(ep, req); } else { debug_cond(DEBUG_IN_EP, "%s: NULL REQ on IN EP-%d\n", __func__, ep_num); return; } } static void process_ep_in_intr(struct dwc2_udc *dev) { u32 ep_intr, ep_intr_status; u8 ep_num = 0; ep_intr = readl(®->daint); debug_cond(DEBUG_IN_EP, "*** %s: EP In interrupt : DAINT = 0x%x\n", __func__, ep_intr); ep_intr &= DAINT_MASK; while (ep_intr) { if (ep_intr & DAINT_IN_EP_INT(1)) { ep_intr_status = readl(®->in_endp[ep_num].diepint); debug_cond(DEBUG_IN_EP, "\tEP%d-IN : DIEPINT = 0x%x\n", ep_num, ep_intr_status); /* Interrupt Clear */ writel(ep_intr_status, ®->in_endp[ep_num].diepint); if (ep_intr_status & TRANSFER_DONE) { complete_tx(dev, ep_num); if (ep_num == 0) { if (dev->ep0state == WAIT_FOR_IN_COMPLETE) dev->ep0state = WAIT_FOR_SETUP; if (dev->ep0state == WAIT_FOR_SETUP) dwc2_udc_pre_setup(); /* continue transfer after set_clear_halt for DMA mode */ if (clear_feature_flag == 1) { dwc2_udc_check_tx_queue(dev, clear_feature_num); clear_feature_flag = 0; } } } } ep_num++; ep_intr >>= 1; } } static void process_ep_out_intr(struct dwc2_udc *dev) { u32 ep_intr, ep_intr_status; u8 ep_num = 0; ep_intr = readl(®->daint); debug_cond(DEBUG_OUT_EP != 0, "*** %s: EP OUT interrupt : DAINT = 0x%x\n", __func__, ep_intr); ep_intr = (ep_intr >> DAINT_OUT_BIT) & DAINT_MASK; while (ep_intr) { if (ep_intr & 0x1) { ep_intr_status = readl(®->out_endp[ep_num].doepint); debug_cond(DEBUG_OUT_EP != 0, "\tEP%d-OUT : DOEPINT = 0x%x\n", ep_num, ep_intr_status); /* Interrupt Clear */ writel(ep_intr_status, ®->out_endp[ep_num].doepint); if (ep_num == 0) { if (ep_intr_status & TRANSFER_DONE) { if (dev->ep0state != WAIT_FOR_OUT_COMPLETE) complete_rx(dev, ep_num); else { dev->ep0state = WAIT_FOR_SETUP; dwc2_udc_pre_setup(); } } if (ep_intr_status & CTRL_OUT_EP_SETUP_PHASE_DONE) { debug_cond(DEBUG_OUT_EP != 0, "SETUP packet arrived\n"); dwc2_handle_ep0(dev); } } else { if (ep_intr_status & TRANSFER_DONE) complete_rx(dev, ep_num); } } ep_num++; ep_intr >>= 1; } } /* * usb client interrupt handler. */ static int dwc2_udc_irq(int irq, void *_dev) { struct dwc2_udc *dev = _dev; u32 intr_status; u32 usb_status, gintmsk; unsigned long flags = 0; spin_lock_irqsave(&dev->lock, flags); intr_status = readl(®->gintsts); gintmsk = readl(®->gintmsk); debug_cond(DEBUG_ISR, "\n*** %s : GINTSTS=0x%x(on state %s), GINTMSK : 0x%x," "DAINT : 0x%x, DAINTMSK : 0x%x\n", __func__, intr_status, state_names[dev->ep0state], gintmsk, readl(®->daint), readl(®->daintmsk)); if (!intr_status) { spin_unlock_irqrestore(&dev->lock, flags); return IRQ_HANDLED; } if (intr_status & INT_ENUMDONE) { debug_cond(DEBUG_ISR, "\tSpeed Detection interrupt\n"); writel(INT_ENUMDONE, ®->gintsts); usb_status = (readl(®->dsts) & 0x6); if (usb_status & (USB_FULL_30_60MHZ | USB_FULL_48MHZ)) { debug_cond(DEBUG_ISR, "\t\tFull Speed Detection\n"); set_max_pktsize(dev, USB_SPEED_FULL); } else { debug_cond(DEBUG_ISR, "\t\tHigh Speed Detection : 0x%x\n", usb_status); set_max_pktsize(dev, USB_SPEED_HIGH); } } if (intr_status & INT_EARLY_SUSPEND) { debug_cond(DEBUG_ISR, "\tEarly suspend interrupt\n"); writel(INT_EARLY_SUSPEND, ®->gintsts); } if (intr_status & INT_SUSPEND) { usb_status = readl(®->dsts); debug_cond(DEBUG_ISR, "\tSuspend interrupt :(DSTS):0x%x\n", usb_status); writel(INT_SUSPEND, ®->gintsts); if (dev->gadget.speed != USB_SPEED_UNKNOWN && dev->driver) { if (dev->driver->suspend) dev->driver->suspend(&dev->gadget); /* HACK to let gadget detect disconnected state */ if (dev->driver->disconnect) { spin_unlock_irqrestore(&dev->lock, flags); dev->driver->disconnect(&dev->gadget); spin_lock_irqsave(&dev->lock, flags); } } } if (intr_status & INT_RESUME) { debug_cond(DEBUG_ISR, "\tResume interrupt\n"); writel(INT_RESUME, ®->gintsts); if (dev->gadget.speed != USB_SPEED_UNKNOWN && dev->driver && dev->driver->resume) { dev->driver->resume(&dev->gadget); } } if (intr_status & INT_RESET) { usb_status = readl(®->gotgctl); debug_cond(DEBUG_ISR, "\tReset interrupt - (GOTGCTL):0x%x\n", usb_status); writel(INT_RESET, ®->gintsts); if ((usb_status & 0xc0000) == (0x3 << 18)) { if (reset_available) { debug_cond(DEBUG_ISR, "\t\tOTG core got reset (%d)!!\n", reset_available); reconfig_usbd(dev); dev->ep0state = WAIT_FOR_SETUP; reset_available = 0; dwc2_udc_pre_setup(); } else reset_available = 1; } else { reset_available = 1; debug_cond(DEBUG_ISR, "\t\tRESET handling skipped\n"); } } if (intr_status & INT_IN_EP) process_ep_in_intr(dev); if (intr_status & INT_OUT_EP) process_ep_out_intr(dev); spin_unlock_irqrestore(&dev->lock, flags); return IRQ_HANDLED; } /** Queue one request * Kickstart transfer if needed */ static int dwc2_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags) { struct dwc2_request *req; struct dwc2_ep *ep; struct dwc2_udc *dev; unsigned long flags = 0; u32 ep_num, gintsts; req = container_of(_req, struct dwc2_request, req); if (unlikely(!_req || !_req->complete || !_req->buf || !list_empty(&req->queue))) { debug("%s: bad params\n", __func__); return -EINVAL; } ep = container_of(_ep, struct dwc2_ep, ep); if (unlikely(!_ep || (!ep->desc && ep->ep.name != ep0name))) { debug("%s: bad ep: %s, %d, %p\n", __func__, ep->ep.name, !ep->desc, _ep); return -EINVAL; } ep_num = ep_index(ep); dev = ep->dev; if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) { debug("%s: bogus device state %p\n", __func__, dev->driver); return -ESHUTDOWN; } spin_lock_irqsave(&dev->lock, flags); _req->status = -EINPROGRESS; _req->actual = 0; /* kickstart this i/o queue? */ debug("\n*** %s: %s-%s req = %p, len = %d, buf = %p" "Q empty = %d, stopped = %d\n", __func__, _ep->name, ep_is_in(ep) ? "in" : "out", _req, _req->length, _req->buf, list_empty(&ep->queue), ep->stopped); #ifdef DEBUG { int i, len = _req->length; printf("pkt = "); if (len > 64) len = 64; for (i = 0; i < len; i++) { printf("%02x", ((u8 *)_req->buf)[i]); if ((i & 7) == 7) printf(" "); } printf("\n"); } #endif if (list_empty(&ep->queue) && !ep->stopped) { if (ep_num == 0) { /* EP0 */ list_add_tail(&req->queue, &ep->queue); dwc2_ep0_kick(dev, ep); req = 0; } else if (ep_is_in(ep)) { gintsts = readl(®->gintsts); debug_cond(DEBUG_IN_EP, "%s: ep_is_in, DWC2_UDC_OTG_GINTSTS=0x%x\n", __func__, gintsts); setdma_tx(ep, req); } else { gintsts = readl(®->gintsts); debug_cond(DEBUG_OUT_EP != 0, "%s:ep_is_out, DWC2_UDC_OTG_GINTSTS=0x%x\n", __func__, gintsts); setdma_rx(ep, req); } } /* pio or dma irq handler advances the queue. */ if (likely(req != 0)) list_add_tail(&req->queue, &ep->queue); spin_unlock_irqrestore(&dev->lock, flags); return 0; } /****************************************************************/ /* End Point 0 related functions */ /****************************************************************/ /* return: 0 = still running, 1 = completed, negative = errno */ static int write_fifo_ep0(struct dwc2_ep *ep, struct dwc2_request *req) { u32 max; unsigned count; int is_last; max = ep_maxpacket(ep); debug_cond(DEBUG_EP0 != 0, "%s: max = %d\n", __func__, max); count = setdma_tx(ep, req); /* last packet is usually short (or a zlp) */ if (likely(count != max)) is_last = 1; else { if (likely(req->req.length != req->req.actual + count) || req->req.zero) is_last = 0; else is_last = 1; } debug_cond(DEBUG_EP0 != 0, "%s: wrote %s %d bytes%s %d left %p\n", __func__, ep->ep.name, count, is_last ? "/L" : "", req->req.length - req->req.actual - count, req); /* requests complete when all IN data is in the FIFO */ if (is_last) { ep->dev->ep0state = WAIT_FOR_SETUP; return 1; } return 0; } static int dwc2_fifo_read(struct dwc2_ep *ep, u32 *cp, int max) { invalidate_dcache_range((unsigned long)cp, (unsigned long)cp + ROUND(max, CONFIG_SYS_CACHELINE_SIZE)); debug_cond(DEBUG_EP0 != 0, "%s: bytes=%d, ep_index=%d 0x%p\n", __func__, max, ep_index(ep), cp); return max; } /** * udc_set_address - set the USB address for this device * @address: * * Called from control endpoint function * after it decodes a set address setup packet. */ static void udc_set_address(struct dwc2_udc *dev, unsigned char address) { u32 ctrl = readl(®->dcfg); writel(DEVICE_ADDRESS(address) | ctrl, ®->dcfg); dwc2_udc_ep0_zlp(dev); debug_cond(DEBUG_EP0 != 0, "%s: USB OTG 2.0 Device address=%d, DCFG=0x%x\n", __func__, address, readl(®->dcfg)); dev->usb_address = address; } static inline void dwc2_udc_ep0_set_stall(struct dwc2_ep *ep) { struct dwc2_udc *dev; u32 ep_ctrl = 0; dev = ep->dev; ep_ctrl = readl(®->in_endp[EP0_CON].diepctl); /* set the disable and stall bits */ if (ep_ctrl & DEPCTL_EPENA) ep_ctrl |= DEPCTL_EPDIS; ep_ctrl |= DEPCTL_STALL; writel(ep_ctrl, ®->in_endp[EP0_CON].diepctl); debug_cond(DEBUG_EP0 != 0, "%s: set ep%d stall, DIEPCTL0 = 0x%p\n", __func__, ep_index(ep), ®->in_endp[EP0_CON].diepctl); /* * The application can only set this bit, and the core clears it, * when a SETUP token is received for this endpoint */ dev->ep0state = WAIT_FOR_SETUP; dwc2_udc_pre_setup(); } static void dwc2_ep0_read(struct dwc2_udc *dev) { struct dwc2_request *req; struct dwc2_ep *ep = &dev->ep[0]; if (!list_empty(&ep->queue)) { req = list_entry(ep->queue.next, struct dwc2_request, queue); } else { debug("%s: ---> BUG\n", __func__); BUG(); return; } debug_cond(DEBUG_EP0 != 0, "%s: req = %p, req.length = 0x%x, req.actual = 0x%x\n", __func__, req, req->req.length, req->req.actual); if (req->req.length == 0) { /* zlp for Set_configuration, Set_interface, * or Bulk-Only mass storge reset */ ep->len = 0; dwc2_udc_ep0_zlp(dev); debug_cond(DEBUG_EP0 != 0, "%s: req.length = 0, bRequest = %d\n", __func__, usb_ctrl->bRequest); return; } setdma_rx(ep, req); } /* * DATA_STATE_XMIT */ static int dwc2_ep0_write(struct dwc2_udc *dev) { struct dwc2_request *req; struct dwc2_ep *ep = &dev->ep[0]; int ret, need_zlp = 0; if (list_empty(&ep->queue)) req = 0; else req = list_entry(ep->queue.next, struct dwc2_request, queue); if (!req) { debug_cond(DEBUG_EP0 != 0, "%s: NULL REQ\n", __func__); return 0; } debug_cond(DEBUG_EP0 != 0, "%s: req = %p, req.length = 0x%x, req.actual = 0x%x\n", __func__, req, req->req.length, req->req.actual); if (req->req.length - req->req.actual == ep0_fifo_size) { /* Next write will end with the packet size, */ /* so we need Zero-length-packet */ need_zlp = 1; } ret = write_fifo_ep0(ep, req); if ((ret == 1) && !need_zlp) { /* Last packet */ dev->ep0state = WAIT_FOR_COMPLETE; debug_cond(DEBUG_EP0 != 0, "%s: finished, waiting for status\n", __func__); } else { dev->ep0state = DATA_STATE_XMIT; debug_cond(DEBUG_EP0 != 0, "%s: not finished\n", __func__); } return 1; } static int dwc2_udc_get_status(struct dwc2_udc *dev, struct usb_ctrlrequest *crq) { u8 ep_num = crq->wIndex & 0x7F; u16 g_status = 0; u32 ep_ctrl; debug_cond(DEBUG_SETUP != 0, "%s: *** USB_REQ_GET_STATUS\n", __func__); printf("crq->brequest:0x%x\n", crq->bRequestType & USB_RECIP_MASK); switch (crq->bRequestType & USB_RECIP_MASK) { case USB_RECIP_INTERFACE: g_status = 0; debug_cond(DEBUG_SETUP != 0, "\tGET_STATUS:USB_RECIP_INTERFACE, g_stauts = %d\n", g_status); break; case USB_RECIP_DEVICE: g_status = 0x1; /* Self powered */ debug_cond(DEBUG_SETUP != 0, "\tGET_STATUS: USB_RECIP_DEVICE, g_stauts = %d\n", g_status); break; case USB_RECIP_ENDPOINT: if (crq->wLength > 2) { debug_cond(DEBUG_SETUP != 0, "\tGET_STATUS:Not support EP or wLength\n"); return 1; } g_status = dev->ep[ep_num].stopped; debug_cond(DEBUG_SETUP != 0, "\tGET_STATUS: USB_RECIP_ENDPOINT, g_stauts = %d\n", g_status); break; default: return 1; } memcpy(usb_ctrl, &g_status, sizeof(g_status)); flush_dcache_range((unsigned long) usb_ctrl, (unsigned long) usb_ctrl + ROUND(sizeof(g_status), CONFIG_SYS_CACHELINE_SIZE)); writel(usb_ctrl_dma_addr, ®->in_endp[EP0_CON].diepdma); writel(DIEPT_SIZ_PKT_CNT(1) | DIEPT_SIZ_XFER_SIZE(2), ®->in_endp[EP0_CON].dieptsiz); ep_ctrl = readl(®->in_endp[EP0_CON].diepctl); writel(ep_ctrl|DEPCTL_EPENA|DEPCTL_CNAK, ®->in_endp[EP0_CON].diepctl); dev->ep0state = WAIT_FOR_NULL_COMPLETE; return 0; } static void dwc2_udc_set_nak(struct dwc2_ep *ep) { u8 ep_num; u32 ep_ctrl = 0; ep_num = ep_index(ep); debug("%s: ep_num = %d, ep_type = %d\n", __func__, ep_num, ep->ep_type); if (ep_is_in(ep)) { ep_ctrl = readl(®->in_endp[ep_num].diepctl); ep_ctrl |= DEPCTL_SNAK; writel(ep_ctrl, ®->in_endp[ep_num].diepctl); debug("%s: set NAK, DIEPCTL%d = 0x%x\n", __func__, ep_num, readl(®->in_endp[ep_num].diepctl)); } else { ep_ctrl = readl(®->out_endp[ep_num].doepctl); ep_ctrl |= DEPCTL_SNAK; writel(ep_ctrl, ®->out_endp[ep_num].doepctl); debug("%s: set NAK, DOEPCTL%d = 0x%x\n", __func__, ep_num, readl(®->out_endp[ep_num].doepctl)); } return; } static void dwc2_udc_ep_set_stall(struct dwc2_ep *ep) { u8 ep_num; u32 ep_ctrl = 0; ep_num = ep_index(ep); debug("%s: ep_num = %d, ep_type = %d\n", __func__, ep_num, ep->ep_type); if (ep_is_in(ep)) { ep_ctrl = readl(®->in_endp[ep_num].diepctl); /* set the disable and stall bits */ if (ep_ctrl & DEPCTL_EPENA) ep_ctrl |= DEPCTL_EPDIS; ep_ctrl |= DEPCTL_STALL; writel(ep_ctrl, ®->in_endp[ep_num].diepctl); debug("%s: set stall, DIEPCTL%d = 0x%x\n", __func__, ep_num, readl(®->in_endp[ep_num].diepctl)); } else { ep_ctrl = readl(®->out_endp[ep_num].doepctl); /* set the stall bit */ ep_ctrl |= DEPCTL_STALL; writel(ep_ctrl, ®->out_endp[ep_num].doepctl); debug("%s: set stall, DOEPCTL%d = 0x%x\n", __func__, ep_num, readl(®->out_endp[ep_num].doepctl)); } return; } static void dwc2_udc_ep_clear_stall(struct dwc2_ep *ep) { u8 ep_num; u32 ep_ctrl = 0; ep_num = ep_index(ep); debug("%s: ep_num = %d, ep_type = %d\n", __func__, ep_num, ep->ep_type); if (ep_is_in(ep)) { ep_ctrl = readl(®->in_endp[ep_num].diepctl); /* clear stall bit */ ep_ctrl &= ~DEPCTL_STALL; /* * USB Spec 9.4.5: For endpoints using data toggle, regardless * of whether an endpoint has the Halt feature set, a * ClearFeature(ENDPOINT_HALT) request always results in the * data toggle being reinitialized to DATA0. */ if (ep->bmAttributes == USB_ENDPOINT_XFER_INT || ep->bmAttributes == USB_ENDPOINT_XFER_BULK) { ep_ctrl |= DEPCTL_SETD0PID; /* DATA0 */ } writel(ep_ctrl, ®->in_endp[ep_num].diepctl); debug("%s: cleared stall, DIEPCTL%d = 0x%x\n", __func__, ep_num, readl(®->in_endp[ep_num].diepctl)); } else { ep_ctrl = readl(®->out_endp[ep_num].doepctl); /* clear stall bit */ ep_ctrl &= ~DEPCTL_STALL; if (ep->bmAttributes == USB_ENDPOINT_XFER_INT || ep->bmAttributes == USB_ENDPOINT_XFER_BULK) { ep_ctrl |= DEPCTL_SETD0PID; /* DATA0 */ } writel(ep_ctrl, ®->out_endp[ep_num].doepctl); debug("%s: cleared stall, DOEPCTL%d = 0x%x\n", __func__, ep_num, readl(®->out_endp[ep_num].doepctl)); } return; } static int dwc2_udc_set_halt(struct usb_ep *_ep, int value) { struct dwc2_ep *ep; struct dwc2_udc *dev; unsigned long flags = 0; u8 ep_num; ep = container_of(_ep, struct dwc2_ep, ep); ep_num = ep_index(ep); if (unlikely(!_ep || !ep->desc || ep_num == EP0_CON || ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC)) { debug("%s: %s bad ep or descriptor\n", __func__, ep->ep.name); return -EINVAL; } /* Attempt to halt IN ep will fail if any transfer requests * are still queue */ if (value && ep_is_in(ep) && !list_empty(&ep->queue)) { debug("%s: %s queue not empty, req = %p\n", __func__, ep->ep.name, list_entry(ep->queue.next, struct dwc2_request, queue)); return -EAGAIN; } dev = ep->dev; debug("%s: ep_num = %d, value = %d\n", __func__, ep_num, value); spin_lock_irqsave(&dev->lock, flags); if (value == 0) { ep->stopped = 0; dwc2_udc_ep_clear_stall(ep); } else { if (ep_num == 0) dev->ep0state = WAIT_FOR_SETUP; ep->stopped = 1; dwc2_udc_ep_set_stall(ep); } spin_unlock_irqrestore(&dev->lock, flags); return 0; } static void dwc2_udc_ep_activate(struct dwc2_ep *ep) { u8 ep_num; u32 ep_ctrl = 0, daintmsk = 0; ep_num = ep_index(ep); /* Read DEPCTLn register */ if (ep_is_in(ep)) { ep_ctrl = readl(®->in_endp[ep_num].diepctl); daintmsk = 1 << ep_num; } else { ep_ctrl = readl(®->out_endp[ep_num].doepctl); daintmsk = (1 << ep_num) << DAINT_OUT_BIT; } debug("%s: EPCTRL%d = 0x%x, ep_is_in = %d\n", __func__, ep_num, ep_ctrl, ep_is_in(ep)); /* If the EP is already active don't change the EP Control * register. */ if (!(ep_ctrl & DEPCTL_USBACTEP)) { ep_ctrl = (ep_ctrl & ~DEPCTL_TYPE_MASK) | (ep->bmAttributes << DEPCTL_TYPE_BIT); ep_ctrl = (ep_ctrl & ~DEPCTL_MPS_MASK) | (ep->ep.maxpacket << DEPCTL_MPS_BIT); ep_ctrl |= (DEPCTL_SETD0PID | DEPCTL_USBACTEP | DEPCTL_SNAK); if (ep_is_in(ep)) { writel(ep_ctrl, ®->in_endp[ep_num].diepctl); debug("%s: USB Ative EP%d, DIEPCTRL%d = 0x%x\n", __func__, ep_num, ep_num, readl(®->in_endp[ep_num].diepctl)); } else { writel(ep_ctrl, ®->out_endp[ep_num].doepctl); debug("%s: USB Ative EP%d, DOEPCTRL%d = 0x%x\n", __func__, ep_num, ep_num, readl(®->out_endp[ep_num].doepctl)); } } /* Unmask EP Interrtupt */ writel(readl(®->daintmsk)|daintmsk, ®->daintmsk); debug("%s: DAINTMSK = 0x%x\n", __func__, readl(®->daintmsk)); } static int dwc2_udc_clear_feature(struct usb_ep *_ep) { struct dwc2_udc *dev; struct dwc2_ep *ep; u8 ep_num; ep = container_of(_ep, struct dwc2_ep, ep); ep_num = ep_index(ep); dev = ep->dev; debug_cond(DEBUG_SETUP != 0, "%s: ep_num = %d, is_in = %d, clear_feature_flag = %d\n", __func__, ep_num, ep_is_in(ep), clear_feature_flag); if (usb_ctrl->wLength != 0) { debug_cond(DEBUG_SETUP != 0, "\tCLEAR_FEATURE: wLength is not zero.....\n"); return 1; } switch (usb_ctrl->bRequestType & USB_RECIP_MASK) { case USB_RECIP_DEVICE: switch (usb_ctrl->wValue) { case USB_DEVICE_REMOTE_WAKEUP: debug_cond(DEBUG_SETUP != 0, "\tOFF:USB_DEVICE_REMOTE_WAKEUP\n"); break; case USB_DEVICE_TEST_MODE: debug_cond(DEBUG_SETUP != 0, "\tCLEAR_FEATURE: USB_DEVICE_TEST_MODE\n"); /** @todo Add CLEAR_FEATURE for TEST modes. */ break; } dwc2_udc_ep0_zlp(dev); break; case USB_RECIP_ENDPOINT: debug_cond(DEBUG_SETUP != 0, "\tCLEAR_FEATURE:USB_RECIP_ENDPOINT, wValue = %d\n", usb_ctrl->wValue); if (usb_ctrl->wValue == USB_ENDPOINT_HALT) { if (ep_num == 0) { dwc2_udc_ep0_set_stall(ep); return 0; } dwc2_udc_ep0_zlp(dev); dwc2_udc_ep_clear_stall(ep); dwc2_udc_ep_activate(ep); ep->stopped = 0; clear_feature_num = ep_num; clear_feature_flag = 1; } break; } return 0; } static int dwc2_udc_set_feature(struct usb_ep *_ep) { struct dwc2_udc *dev; struct dwc2_ep *ep; u8 ep_num; ep = container_of(_ep, struct dwc2_ep, ep); ep_num = ep_index(ep); dev = ep->dev; debug_cond(DEBUG_SETUP != 0, "%s: *** USB_REQ_SET_FEATURE , ep_num = %d\n", __func__, ep_num); if (usb_ctrl->wLength != 0) { debug_cond(DEBUG_SETUP != 0, "\tSET_FEATURE: wLength is not zero.....\n"); return 1; } switch (usb_ctrl->bRequestType & USB_RECIP_MASK) { case USB_RECIP_DEVICE: switch (usb_ctrl->wValue) { case USB_DEVICE_REMOTE_WAKEUP: debug_cond(DEBUG_SETUP != 0, "\tSET_FEATURE:USB_DEVICE_REMOTE_WAKEUP\n"); break; case USB_DEVICE_B_HNP_ENABLE: debug_cond(DEBUG_SETUP != 0, "\tSET_FEATURE: USB_DEVICE_B_HNP_ENABLE\n"); break; case USB_DEVICE_A_HNP_SUPPORT: /* RH port supports HNP */ debug_cond(DEBUG_SETUP != 0, "\tSET_FEATURE:USB_DEVICE_A_HNP_SUPPORT\n"); break; case USB_DEVICE_A_ALT_HNP_SUPPORT: /* other RH port does */ debug_cond(DEBUG_SETUP != 0, "\tSET: USB_DEVICE_A_ALT_HNP_SUPPORT\n"); break; } dwc2_udc_ep0_zlp(dev); return 0; case USB_RECIP_INTERFACE: debug_cond(DEBUG_SETUP != 0, "\tSET_FEATURE: USB_RECIP_INTERFACE\n"); break; case USB_RECIP_ENDPOINT: debug_cond(DEBUG_SETUP != 0, "\tSET_FEATURE: USB_RECIP_ENDPOINT\n"); if (usb_ctrl->wValue == USB_ENDPOINT_HALT) { if (ep_num == 0) { dwc2_udc_ep0_set_stall(ep); return 0; } ep->stopped = 1; dwc2_udc_ep_set_stall(ep); } dwc2_udc_ep0_zlp(dev); return 0; } return 1; } /* * WAIT_FOR_SETUP (OUT_PKT_RDY) */ static void dwc2_ep0_setup(struct dwc2_udc *dev) { struct dwc2_ep *ep = &dev->ep[0]; int i; u8 ep_num; /* Nuke all previous transfers */ nuke(ep, -EPROTO); /* read control req from fifo (8 bytes) */ dwc2_fifo_read(ep, (u32 *)usb_ctrl, 8); debug_cond(DEBUG_SETUP != 0, "%s: bRequestType = 0x%x(%s), bRequest = 0x%x" "\twLength = 0x%x, wValue = 0x%x, wIndex= 0x%x\n", __func__, usb_ctrl->bRequestType, (usb_ctrl->bRequestType & USB_DIR_IN) ? "IN" : "OUT", usb_ctrl->bRequest, usb_ctrl->wLength, usb_ctrl->wValue, usb_ctrl->wIndex); #ifdef DEBUG { int i, len = sizeof(*usb_ctrl); char *p = (char *)usb_ctrl; printf("pkt = "); for (i = 0; i < len; i++) { printf("%02x", ((u8 *)p)[i]); if ((i & 7) == 7) printf(" "); } printf("\n"); } #endif if (usb_ctrl->bRequest == GET_MAX_LUN_REQUEST && usb_ctrl->wLength != 1) { debug_cond(DEBUG_SETUP != 0, "\t%s:GET_MAX_LUN_REQUEST:invalid", __func__); debug_cond(DEBUG_SETUP != 0, "wLength = %d, setup returned\n", usb_ctrl->wLength); dwc2_udc_ep0_set_stall(ep); dev->ep0state = WAIT_FOR_SETUP; return; } else if (usb_ctrl->bRequest == BOT_RESET_REQUEST && usb_ctrl->wLength != 0) { /* Bulk-Only *mass storge reset of class-specific request */ debug_cond(DEBUG_SETUP != 0, "%s:BOT Rest:invalid wLength =%d, setup returned\n", __func__, usb_ctrl->wLength); dwc2_udc_ep0_set_stall(ep); dev->ep0state = WAIT_FOR_SETUP; return; } /* Set direction of EP0 */ if (likely(usb_ctrl->bRequestType & USB_DIR_IN)) { ep->bEndpointAddress |= USB_DIR_IN; } else { ep->bEndpointAddress &= ~USB_DIR_IN; } /* cope with automagic for some standard requests. */ dev->req_std = (usb_ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD; dev->req_pending = 1; /* Handle some SETUP packets ourselves */ if (dev->req_std) { switch (usb_ctrl->bRequest) { case USB_REQ_SET_ADDRESS: debug_cond(DEBUG_SETUP != 0, "%s: *** USB_REQ_SET_ADDRESS (%d)\n", __func__, usb_ctrl->wValue); if (usb_ctrl->bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) break; udc_set_address(dev, usb_ctrl->wValue); return; case USB_REQ_SET_CONFIGURATION: debug_cond(DEBUG_SETUP != 0, "=====================================\n"); debug_cond(DEBUG_SETUP != 0, "%s: USB_REQ_SET_CONFIGURATION (%d)\n", __func__, usb_ctrl->wValue); if (usb_ctrl->bRequestType == USB_RECIP_DEVICE) reset_available = 1; break; case USB_REQ_GET_DESCRIPTOR: debug_cond(DEBUG_SETUP != 0, "%s: *** USB_REQ_GET_DESCRIPTOR\n", __func__); break; case USB_REQ_SET_INTERFACE: debug_cond(DEBUG_SETUP != 0, "%s: *** USB_REQ_SET_INTERFACE (%d)\n", __func__, usb_ctrl->wValue); if (usb_ctrl->bRequestType == USB_RECIP_INTERFACE) reset_available = 1; break; case USB_REQ_GET_CONFIGURATION: debug_cond(DEBUG_SETUP != 0, "%s: *** USB_REQ_GET_CONFIGURATION\n", __func__); break; case USB_REQ_GET_STATUS: if (!dwc2_udc_get_status(dev, usb_ctrl)) return; break; case USB_REQ_CLEAR_FEATURE: ep_num = usb_ctrl->wIndex & 0x7f; if (!dwc2_udc_clear_feature(&dev->ep[ep_num].ep)) return; break; case USB_REQ_SET_FEATURE: ep_num = usb_ctrl->wIndex & 0x7f; if (!dwc2_udc_set_feature(&dev->ep[ep_num].ep)) return; break; default: debug_cond(DEBUG_SETUP != 0, "%s: *** Default of usb_ctrl->bRequest=0x%x" "happened.\n", __func__, usb_ctrl->bRequest); break; } } if (likely(dev->driver)) { /* device-2-host (IN) or no data setup command, * process immediately */ debug_cond(DEBUG_SETUP != 0, "%s:usb_ctrlreq will be passed to fsg_setup()\n", __func__); spin_unlock(&dev->lock); i = dev->driver->setup(&dev->gadget, usb_ctrl); spin_lock(&dev->lock); if (i < 0) { /* setup processing failed, force stall */ dwc2_udc_ep0_set_stall(ep); dev->ep0state = WAIT_FOR_SETUP; debug_cond(DEBUG_SETUP != 0, "\tdev->driver->setup failed (%d)," " bRequest = %d\n", i, usb_ctrl->bRequest); } else if (dev->req_pending) { dev->req_pending = 0; debug_cond(DEBUG_SETUP != 0, "\tdev->req_pending...\n"); } debug_cond(DEBUG_SETUP != 0, "\tep0state = %s\n", state_names[dev->ep0state]); } } /* * handle ep0 interrupt */ static void dwc2_handle_ep0(struct dwc2_udc *dev) { if (dev->ep0state == WAIT_FOR_SETUP) { debug_cond(DEBUG_OUT_EP != 0, "%s: WAIT_FOR_SETUP\n", __func__); dwc2_ep0_setup(dev); } else { debug_cond(DEBUG_OUT_EP != 0, "%s: strange state!!(state = %s)\n", __func__, state_names[dev->ep0state]); } } static void dwc2_ep0_kick(struct dwc2_udc *dev, struct dwc2_ep *ep) { debug_cond(DEBUG_EP0 != 0, "%s: ep_is_in = %d\n", __func__, ep_is_in(ep)); if (ep_is_in(ep)) { dev->ep0state = DATA_STATE_XMIT; dwc2_ep0_write(dev); } else { dev->ep0state = DATA_STATE_RECV; dwc2_ep0_read(dev); } }