/* * NVIDIA Tegra SPI controller (T114 and later) * * Copyright (c) 2010-2013 NVIDIA Corporation * * See file CREDITS for list of people who contributed to this * project. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; /* COMMAND1 */ #define SPI_CMD1_GO (1 << 31) #define SPI_CMD1_M_S (1 << 30) #define SPI_CMD1_MODE_MASK 0x3 #define SPI_CMD1_MODE_SHIFT 28 #define SPI_CMD1_CS_SEL_MASK 0x3 #define SPI_CMD1_CS_SEL_SHIFT 26 #define SPI_CMD1_CS_POL_INACTIVE3 (1 << 25) #define SPI_CMD1_CS_POL_INACTIVE2 (1 << 24) #define SPI_CMD1_CS_POL_INACTIVE1 (1 << 23) #define SPI_CMD1_CS_POL_INACTIVE0 (1 << 22) #define SPI_CMD1_CS_SW_HW (1 << 21) #define SPI_CMD1_CS_SW_VAL (1 << 20) #define SPI_CMD1_IDLE_SDA_MASK 0x3 #define SPI_CMD1_IDLE_SDA_SHIFT 18 #define SPI_CMD1_BIDIR (1 << 17) #define SPI_CMD1_LSBI_FE (1 << 16) #define SPI_CMD1_LSBY_FE (1 << 15) #define SPI_CMD1_BOTH_EN_BIT (1 << 14) #define SPI_CMD1_BOTH_EN_BYTE (1 << 13) #define SPI_CMD1_RX_EN (1 << 12) #define SPI_CMD1_TX_EN (1 << 11) #define SPI_CMD1_PACKED (1 << 5) #define SPI_CMD1_BIT_LEN_MASK 0x1F #define SPI_CMD1_BIT_LEN_SHIFT 0 /* COMMAND2 */ #define SPI_CMD2_TX_CLK_TAP_DELAY (1 << 6) #define SPI_CMD2_TX_CLK_TAP_DELAY_MASK (0x3F << 6) #define SPI_CMD2_RX_CLK_TAP_DELAY (1 << 0) #define SPI_CMD2_RX_CLK_TAP_DELAY_MASK (0x3F << 0) /* TRANSFER STATUS */ #define SPI_XFER_STS_RDY (1 << 30) /* FIFO STATUS */ #define SPI_FIFO_STS_CS_INACTIVE (1 << 31) #define SPI_FIFO_STS_FRAME_END (1 << 30) #define SPI_FIFO_STS_RX_FIFO_FLUSH (1 << 15) #define SPI_FIFO_STS_TX_FIFO_FLUSH (1 << 14) #define SPI_FIFO_STS_ERR (1 << 8) #define SPI_FIFO_STS_TX_FIFO_OVF (1 << 7) #define SPI_FIFO_STS_TX_FIFO_UNR (1 << 6) #define SPI_FIFO_STS_RX_FIFO_OVF (1 << 5) #define SPI_FIFO_STS_RX_FIFO_UNR (1 << 4) #define SPI_FIFO_STS_TX_FIFO_FULL (1 << 3) #define SPI_FIFO_STS_TX_FIFO_EMPTY (1 << 2) #define SPI_FIFO_STS_RX_FIFO_FULL (1 << 1) #define SPI_FIFO_STS_RX_FIFO_EMPTY (1 << 0) #define SPI_TIMEOUT 1000 #define TEGRA_SPI_MAX_FREQ 52000000 struct spi_regs { u32 command1; /* 000:SPI_COMMAND1 register */ u32 command2; /* 004:SPI_COMMAND2 register */ u32 timing1; /* 008:SPI_CS_TIM1 register */ u32 timing2; /* 00c:SPI_CS_TIM2 register */ u32 xfer_status;/* 010:SPI_TRANS_STATUS register */ u32 fifo_status;/* 014:SPI_FIFO_STATUS register */ u32 tx_data; /* 018:SPI_TX_DATA register */ u32 rx_data; /* 01c:SPI_RX_DATA register */ u32 dma_ctl; /* 020:SPI_DMA_CTL register */ u32 dma_blk; /* 024:SPI_DMA_BLK register */ u32 rsvd[56]; /* 028-107 reserved */ u32 tx_fifo; /* 108:SPI_FIFO1 register */ u32 rsvd2[31]; /* 10c-187 reserved */ u32 rx_fifo; /* 188:SPI_FIFO2 register */ u32 spare_ctl; /* 18c:SPI_SPARE_CTRL register */ }; struct tegra_spi_ctrl { struct spi_regs *regs; unsigned int freq; unsigned int mode; int periph_id; int valid; }; struct tegra_spi_slave { struct spi_slave slave; struct tegra_spi_ctrl *ctrl; }; static struct tegra_spi_ctrl spi_ctrls[CONFIG_TEGRA114_SPI_CTRLS]; static inline struct tegra_spi_slave *to_tegra_spi(struct spi_slave *slave) { return container_of(slave, struct tegra_spi_slave, slave); } int tegra114_spi_cs_is_valid(unsigned int bus, unsigned int cs) { if (bus >= CONFIG_TEGRA114_SPI_CTRLS || cs > 3 || !spi_ctrls[bus].valid) return 0; else return 1; } struct spi_slave *tegra114_spi_setup_slave(unsigned int bus, unsigned int cs, unsigned int max_hz, unsigned int mode) { struct tegra_spi_slave *spi; debug("%s: bus: %u, cs: %u, max_hz: %u, mode: %u\n", __func__, bus, cs, max_hz, mode); if (!spi_cs_is_valid(bus, cs)) { printf("SPI error: unsupported bus %d / chip select %d\n", bus, cs); return NULL; } if (max_hz > TEGRA_SPI_MAX_FREQ) { printf("SPI error: unsupported frequency %d Hz. Max frequency" " is %d Hz\n", max_hz, TEGRA_SPI_MAX_FREQ); return NULL; } spi = malloc(sizeof(struct tegra_spi_slave)); if (!spi) { printf("SPI error: malloc of SPI structure failed\n"); return NULL; } spi->slave.bus = bus; spi->slave.cs = cs; spi->ctrl = &spi_ctrls[bus]; if (!spi->ctrl) { printf("SPI error: could not find controller for bus %d\n", bus); return NULL; } if (max_hz < spi->ctrl->freq) { debug("%s: limiting frequency from %u to %u\n", __func__, spi->ctrl->freq, max_hz); spi->ctrl->freq = max_hz; } spi->ctrl->mode = mode; return &spi->slave; } void tegra114_spi_free_slave(struct spi_slave *slave) { struct tegra_spi_slave *spi = to_tegra_spi(slave); free(spi); } int tegra114_spi_init(int *node_list, int count) { struct tegra_spi_ctrl *ctrl; int i; int node = 0; int found = 0; for (i = 0; i < count; i++) { ctrl = &spi_ctrls[i]; node = node_list[i]; ctrl->regs = (struct spi_regs *)fdtdec_get_addr(gd->fdt_blob, node, "reg"); if ((fdt_addr_t)ctrl->regs == FDT_ADDR_T_NONE) { debug("%s: no spi register found\n", __func__); continue; } ctrl->freq = fdtdec_get_int(gd->fdt_blob, node, "spi-max-frequency", 0); if (!ctrl->freq) { debug("%s: no spi max frequency found\n", __func__); continue; } ctrl->periph_id = clock_decode_periph_id(gd->fdt_blob, node); if (ctrl->periph_id == PERIPH_ID_NONE) { debug("%s: could not decode periph id\n", __func__); continue; } ctrl->valid = 1; found = 1; debug("%s: found controller at %p, freq = %u, periph_id = %d\n", __func__, ctrl->regs, ctrl->freq, ctrl->periph_id); } return !found; } int tegra114_spi_claim_bus(struct spi_slave *slave) { struct tegra_spi_slave *spi = to_tegra_spi(slave); struct spi_regs *regs = spi->ctrl->regs; /* Change SPI clock to correct frequency, PLLP_OUT0 source */ clock_start_periph_pll(spi->ctrl->periph_id, CLOCK_ID_PERIPH, spi->ctrl->freq); /* Clear stale status here */ setbits_le32(®s->fifo_status, SPI_FIFO_STS_ERR | SPI_FIFO_STS_TX_FIFO_OVF | SPI_FIFO_STS_TX_FIFO_UNR | SPI_FIFO_STS_RX_FIFO_OVF | SPI_FIFO_STS_RX_FIFO_UNR | SPI_FIFO_STS_TX_FIFO_FULL | SPI_FIFO_STS_TX_FIFO_EMPTY | SPI_FIFO_STS_RX_FIFO_FULL | SPI_FIFO_STS_RX_FIFO_EMPTY); debug("%s: FIFO STATUS = %08x\n", __func__, readl(®s->fifo_status)); /* Set master mode and sw controlled CS */ setbits_le32(®s->command1, SPI_CMD1_M_S | SPI_CMD1_CS_SW_HW | (spi->ctrl->mode << SPI_CMD1_MODE_SHIFT)); debug("%s: COMMAND1 = %08x\n", __func__, readl(®s->command1)); return 0; } void tegra114_spi_cs_activate(struct spi_slave *slave) { struct tegra_spi_slave *spi = to_tegra_spi(slave); struct spi_regs *regs = spi->ctrl->regs; clrbits_le32(®s->command1, SPI_CMD1_CS_SW_VAL); } void tegra114_spi_cs_deactivate(struct spi_slave *slave) { struct tegra_spi_slave *spi = to_tegra_spi(slave); struct spi_regs *regs = spi->ctrl->regs; setbits_le32(®s->command1, SPI_CMD1_CS_SW_VAL); } int tegra114_spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *data_out, void *data_in, unsigned long flags) { struct tegra_spi_slave *spi = to_tegra_spi(slave); struct spi_regs *regs = spi->ctrl->regs; u32 reg, tmpdout, tmpdin = 0; const u8 *dout = data_out; u8 *din = data_in; int num_bytes; int ret; debug("%s: slave %u:%u dout %p din %p bitlen %u\n", __func__, slave->bus, slave->cs, dout, din, bitlen); if (bitlen % 8) return -1; num_bytes = bitlen / 8; ret = 0; /* clear all error status bits */ reg = readl(®s->fifo_status); writel(reg, ®s->fifo_status); /* clear ready bit */ setbits_le32(®s->xfer_status, SPI_XFER_STS_RDY); clrsetbits_le32(®s->command1, SPI_CMD1_CS_SW_VAL, SPI_CMD1_RX_EN | SPI_CMD1_TX_EN | SPI_CMD1_LSBY_FE | (slave->cs << SPI_CMD1_CS_SEL_SHIFT)); /* set xfer size to 1 block (32 bits) */ writel(0, ®s->dma_blk); if (flags & SPI_XFER_BEGIN) spi_cs_activate(slave); /* handle data in 32-bit chunks */ while (num_bytes > 0) { int bytes; int is_read = 0; int tm, i; tmpdout = 0; bytes = (num_bytes > 4) ? 4 : num_bytes; if (dout != NULL) { for (i = 0; i < bytes; ++i) tmpdout = (tmpdout << 8) | dout[i]; dout += bytes; } num_bytes -= bytes; clrsetbits_le32(®s->command1, SPI_CMD1_BIT_LEN_MASK << SPI_CMD1_BIT_LEN_SHIFT, (bytes * 8 - 1) << SPI_CMD1_BIT_LEN_SHIFT); writel(tmpdout, ®s->tx_fifo); setbits_le32(®s->command1, SPI_CMD1_GO); /* * Wait for SPI transmit FIFO to empty, or to time out. * The RX FIFO status will be read and cleared last */ for (tm = 0, is_read = 0; tm < SPI_TIMEOUT; ++tm) { u32 fifo_status, xfer_status; fifo_status = readl(®s->fifo_status); /* We can exit when we've had both RX and TX activity */ if (is_read && (fifo_status & SPI_FIFO_STS_TX_FIFO_EMPTY)) break; xfer_status = readl(®s->xfer_status); if (!(xfer_status & SPI_XFER_STS_RDY)) continue; if (fifo_status & SPI_FIFO_STS_ERR) { debug("%s: got a fifo error: ", __func__); if (fifo_status & SPI_FIFO_STS_TX_FIFO_OVF) debug("tx FIFO overflow "); if (fifo_status & SPI_FIFO_STS_TX_FIFO_UNR) debug("tx FIFO underrun "); if (fifo_status & SPI_FIFO_STS_RX_FIFO_OVF) debug("rx FIFO overflow "); if (fifo_status & SPI_FIFO_STS_RX_FIFO_UNR) debug("rx FIFO underrun "); if (fifo_status & SPI_FIFO_STS_TX_FIFO_FULL) debug("tx FIFO full "); if (fifo_status & SPI_FIFO_STS_TX_FIFO_EMPTY) debug("tx FIFO empty "); if (fifo_status & SPI_FIFO_STS_RX_FIFO_FULL) debug("rx FIFO full "); if (fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY) debug("rx FIFO empty "); debug("\n"); break; } if (!(fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)) { tmpdin = readl(®s->rx_fifo); is_read = 1; /* swap bytes read in */ if (din != NULL) { for (i = bytes - 1; i >= 0; --i) { din[i] = tmpdin & 0xff; tmpdin >>= 8; } din += bytes; } } } if (tm >= SPI_TIMEOUT) ret = tm; /* clear ACK RDY, etc. bits */ writel(readl(®s->fifo_status), ®s->fifo_status); } if (flags & SPI_XFER_END) spi_cs_deactivate(slave); debug("%s: transfer ended. Value=%08x, fifo_status = %08x\n", __func__, tmpdin, readl(®s->fifo_status)); if (ret) { printf("%s: timeout during SPI transfer, tm %d\n", __func__, ret); return -1; } return 0; }