/* * Freescale Coldfire Queued SPI driver * * NOTE: * This driver is written to transfer 8 bit at-a-time and uses the dedicated * SPI slave select pins as bit-banged GPIO to work with spi_flash subsystem. * * * Copyright (C) 2011 Ruggedcom, Inc. * Richard Retanubun (richardretanubun@freescale.com) * * See file CREDITS for list of people who contributed to this project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #define clamp(x, low, high) (min(max(low, x), high)) #define to_cf_qspi_slave(s) container_of(s, struct cf_qspi_slave, s) struct cf_qspi_slave { struct spi_slave slave; /* Specific bus:cs ID for each device */ qspi_t *regs; /* Pointer to SPI controller registers */ u16 qmr; /* QMR: Queued Mode Register */ u16 qwr; /* QWR: Queued Wrap Register */ u16 qcr; /* QCR: Queued Command Ram */ }; /* Register write wrapper functions */ static void write_qmr(volatile qspi_t *qspi, u16 val) { qspi->mr = val; } static void write_qdlyr(volatile qspi_t *qspi, u16 val) { qspi->dlyr = val; } static void write_qwr(volatile qspi_t *qspi, u16 val) { qspi->wr = val; } static void write_qir(volatile qspi_t *qspi, u16 val) { qspi->ir = val; } static void write_qar(volatile qspi_t *qspi, u16 val) { qspi->ar = val; } static void write_qdr(volatile qspi_t *qspi, u16 val) { qspi->dr = val; } /* Register read wrapper functions */ static u16 read_qdlyr(volatile qspi_t *qspi) { return qspi->dlyr; } static u16 read_qwr(volatile qspi_t *qspi) { return qspi->wr; } static u16 read_qir(volatile qspi_t *qspi) { return qspi->ir; } static u16 read_qdr(volatile qspi_t *qspi) { return qspi->dr; } /* These call points may be different for each ColdFire CPU */ extern void cfspi_port_conf(void); static void cfspi_cs_activate(uint bus, uint cs, uint cs_active_high); static void cfspi_cs_deactivate(uint bus, uint cs, uint cs_active_high); int spi_claim_bus(struct spi_slave *slave) { return 0; } void spi_release_bus(struct spi_slave *slave) { } __attribute__((weak)) void spi_init(void) { cfspi_port_conf(); } __attribute__((weak)) void spi_cs_activate(struct spi_slave *slave) { struct cf_qspi_slave *dev = to_cf_qspi_slave(slave); cfspi_cs_activate(slave->bus, slave->cs, !(dev->qwr & QSPI_QWR_CSIV)); } __attribute__((weak)) void spi_cs_deactivate(struct spi_slave *slave) { struct cf_qspi_slave *dev = to_cf_qspi_slave(slave); cfspi_cs_deactivate(slave->bus, slave->cs, !(dev->qwr & QSPI_QWR_CSIV)); } __attribute__((weak)) int spi_cs_is_valid(unsigned int bus, unsigned int cs) { /* Only 1 bus and 4 chipselect per controller */ if (bus == 0 && (cs >= 0 && cs < 4)) return 1; else return 0; } void spi_free_slave(struct spi_slave *slave) { struct cf_qspi_slave *dev = to_cf_qspi_slave(slave); free(dev); } /* Translate information given by spi_setup_slave to members of cf_qspi_slave */ struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, unsigned int max_hz, unsigned int mode) { struct cf_qspi_slave *dev = NULL; if (!spi_cs_is_valid(bus, cs)) return NULL; dev = spi_alloc_slave(struct cf_qspi_slave, bus, cs); if (!dev) return NULL; /* Initialize to known value */ dev->regs = (qspi_t *)MMAP_QSPI; dev->qmr = 0; dev->qwr = 0; dev->qcr = 0; /* Map max_hz to QMR[BAUD] */ if (max_hz == 0) /* Go as fast as possible */ dev->qmr = 2u; else /* Get the closest baud rate */ dev->qmr = clamp(((gd->bus_clk >> 2) + max_hz - 1)/max_hz, 2u, 255u); /* Map mode to QMR[CPOL] and QMR[CPHA] */ if (mode & SPI_CPOL) dev->qmr |= QSPI_QMR_CPOL; if (mode & SPI_CPHA) dev->qmr |= QSPI_QMR_CPHA; /* Hardcode bit length to 8 bit per transter */ dev->qmr |= QSPI_QMR_BITS_8; /* Set QMR[MSTR] to enable QSPI as master */ dev->qmr |= QSPI_QMR_MSTR; /* * Set QCR and QWR to default values for spi flash operation. * If more custom QCR and QRW are needed, overload mode variable */ dev->qcr = (QSPI_QDR_CONT | QSPI_QDR_BITSE); if (!(mode & SPI_CS_HIGH)) dev->qwr |= QSPI_QWR_CSIV; return &dev->slave; } /* Transfer 8 bit at a time */ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct cf_qspi_slave *dev = to_cf_qspi_slave(slave); volatile qspi_t *qspi = dev->regs; u8 *txbuf = (u8 *)dout; u8 *rxbuf = (u8 *)din; u32 count = ((bitlen / 8) + (bitlen % 8 ? 1 : 0)); u32 n, i = 0; /* Sanitize arguments */ if (slave == NULL) { printf("%s: NULL slave ptr\n", __func__); return -1; } if (flags & SPI_XFER_BEGIN) spi_cs_activate(slave); /* There is something to send, lets process it. spi_xfer is also called * just to toggle chip select, so bitlen of 0 is valid */ if (count > 0) { /* * NOTE: Since chip select is driven as a bit-bang-ed GPIO * using spi_cs_activate() and spi_cs_deactivate(), * the chip select settings inside the controller * (i.e. QCR[CONT] and QWR[CSIV]) are moot. The bits are set to * keep the controller settings consistent with the actual * operation of the bus. */ /* Write the slave device's settings for the controller.*/ write_qmr(qspi, dev->qmr); write_qwr(qspi, dev->qwr); /* Limit transfer to 16 at a time */ n = min(count, 16u); do { /* Setup queue end point */ write_qwr(qspi, ((read_qwr(qspi) & QSPI_QWR_ENDQP_MASK) | QSPI_QWR_ENDQP((n-1)))); /* Write Command RAM */ write_qar(qspi, QSPI_QAR_CMD); for (i = 0; i < n; ++i) write_qdr(qspi, dev->qcr); /* Write TxBuf, if none given, fill with ZEROes */ write_qar(qspi, QSPI_QAR_TRANS); if (txbuf) { for (i = 0; i < n; ++i) write_qdr(qspi, *txbuf++); } else { for (i = 0; i < n; ++i) write_qdr(qspi, 0); } /* Clear QIR[SPIF] by writing a 1 to it */ write_qir(qspi, read_qir(qspi) | QSPI_QIR_SPIF); /* Set QDLYR[SPE] to start sending */ write_qdlyr(qspi, read_qdlyr(qspi) | QSPI_QDLYR_SPE); /* Poll QIR[SPIF] for transfer completion */ while ((read_qir(qspi) & QSPI_QIR_SPIF) != 1) udelay(1); /* If given read RxBuf, load data to it */ if (rxbuf) { write_qar(qspi, QSPI_QAR_RECV); for (i = 0; i < n; ++i) *rxbuf++ = read_qdr(qspi); } /* Decrement count */ count -= n; } while (count); } if (flags & SPI_XFER_END) spi_cs_deactivate(slave); return 0; } /* Each MCF CPU may have different pin assignments for chip selects. */ #if defined(CONFIG_M5271) /* Assert chip select, val = [1|0] , dir = out, mode = GPIO */ void cfspi_cs_activate(uint bus, uint cs, uint cs_active_high) { debug("%s: bus %d cs %d cs_active_high %d\n", __func__, bus, cs, cs_active_high); switch (cs) { case 0: /* QSPI_CS[0] = PQSPI[3] */ if (cs_active_high) mbar_writeByte(MCF_GPIO_PPDSDR_QSPI, 0x08); else mbar_writeByte(MCF_GPIO_PCLRR_QSPI, 0xF7); mbar_writeByte(MCF_GPIO_PDDR_QSPI, mbar_readByte(MCF_GPIO_PDDR_QSPI) | 0x08); mbar_writeByte(MCF_GPIO_PAR_QSPI, mbar_readByte(MCF_GPIO_PAR_QSPI) & 0xDF); break; case 1: /* QSPI_CS[1] = PQSPI[4] */ if (cs_active_high) mbar_writeByte(MCF_GPIO_PPDSDR_QSPI, 0x10); else mbar_writeByte(MCF_GPIO_PCLRR_QSPI, 0xEF); mbar_writeByte(MCF_GPIO_PDDR_QSPI, mbar_readByte(MCF_GPIO_PDDR_QSPI) | 0x10); mbar_writeByte(MCF_GPIO_PAR_QSPI, mbar_readByte(MCF_GPIO_PAR_QSPI) & 0x3F); break; case 2: /* QSPI_CS[2] = PTIMER[7] */ if (cs_active_high) mbar_writeByte(MCF_GPIO_PPDSDR_TIMER, 0x80); else mbar_writeByte(MCF_GPIO_PCLRR_TIMER, 0x7F); mbar_writeByte(MCF_GPIO_PDDR_TIMER, mbar_readByte(MCF_GPIO_PDDR_TIMER) | 0x80); mbar_writeShort(MCF_GPIO_PAR_TIMER, mbar_readShort(MCF_GPIO_PAR_TIMER) & 0x3FFF); break; case 3: /* QSPI_CS[3] = PTIMER[3] */ if (cs_active_high) mbar_writeByte(MCF_GPIO_PPDSDR_TIMER, 0x08); else mbar_writeByte(MCF_GPIO_PCLRR_TIMER, 0xF7); mbar_writeByte(MCF_GPIO_PDDR_TIMER, mbar_readByte(MCF_GPIO_PDDR_TIMER) | 0x08); mbar_writeShort(MCF_GPIO_PAR_TIMER, mbar_readShort(MCF_GPIO_PAR_TIMER) & 0xFF3F); break; } } /* Deassert chip select, val = [1|0], dir = in, mode = GPIO * direction set as IN to undrive the pin, external pullup/pulldown will bring * bus to deassert state. */ void cfspi_cs_deactivate(uint bus, uint cs, uint cs_active_high) { debug("%s: bus %d cs %d cs_active_high %d\n", __func__, bus, cs, cs_active_high); switch (cs) { case 0: /* QSPI_CS[0] = PQSPI[3] */ if (cs_active_high) mbar_writeByte(MCF_GPIO_PCLRR_QSPI, 0xF7); else mbar_writeByte(MCF_GPIO_PPDSDR_QSPI, 0x08); mbar_writeByte(MCF_GPIO_PDDR_QSPI, mbar_readByte(MCF_GPIO_PDDR_QSPI) & 0xF7); mbar_writeByte(MCF_GPIO_PAR_QSPI, mbar_readByte(MCF_GPIO_PAR_QSPI) & 0xDF); break; case 1: /* QSPI_CS[1] = PQSPI[4] */ if (cs_active_high) mbar_writeByte(MCF_GPIO_PCLRR_QSPI, 0xEF); else mbar_writeByte(MCF_GPIO_PPDSDR_QSPI, 0x10); mbar_writeByte(MCF_GPIO_PDDR_QSPI, mbar_readByte(MCF_GPIO_PDDR_QSPI) & 0xEF); mbar_writeByte(MCF_GPIO_PAR_QSPI, mbar_readByte(MCF_GPIO_PAR_QSPI) & 0x3F); break; case 2: /* QSPI_CS[2] = PTIMER[7] */ if (cs_active_high) mbar_writeByte(MCF_GPIO_PCLRR_TIMER, 0x7F); else mbar_writeByte(MCF_GPIO_PPDSDR_TIMER, 0x80); mbar_writeByte(MCF_GPIO_PDDR_TIMER, mbar_readByte(MCF_GPIO_PDDR_TIMER) & 0x7F); mbar_writeShort(MCF_GPIO_PAR_TIMER, mbar_readShort(MCF_GPIO_PAR_TIMER) & 0x3FFF); break; case 3: /* QSPI_CS[3] = PTIMER[3] */ if (cs_active_high) mbar_writeByte(MCF_GPIO_PCLRR_TIMER, 0xF7); else mbar_writeByte(MCF_GPIO_PPDSDR_TIMER, 0x08); mbar_writeByte(MCF_GPIO_PDDR_TIMER, mbar_readByte(MCF_GPIO_PDDR_TIMER) & 0xF7); mbar_writeShort(MCF_GPIO_PAR_TIMER, mbar_readShort(MCF_GPIO_PAR_TIMER) & 0xFF3F); break; } } #endif /* CONFIG_M5271 */