/* * Simulate an I2C real time clock * * Copyright (c) 2015 Google, Inc * Written by Simon Glass * * SPDX-License-Identifier: GPL-2.0+ */ /* * This is a test driver. It starts off with the current time of the machine, * but also supports setting the time, using an offset from the current * clock. This driver is only intended for testing, not accurate * time-keeping. It does not change the system time. */ #include #include #include #include #include #include #include #include #ifdef DEBUG #define debug_buffer print_buffer #else #define debug_buffer(x, ...) #endif DECLARE_GLOBAL_DATA_PTR; /** * struct sandbox_i2c_rtc_plat_data - platform data for the RTC * * @base_time: Base system time when RTC device was bound * @offset: RTC offset from current system time * @use_system_time: true to use system time, false to use @base_time * @reg: Register values */ struct sandbox_i2c_rtc_plat_data { long base_time; long offset; bool use_system_time; u8 reg[REG_COUNT]; }; struct sandbox_i2c_rtc { unsigned int offset_secs; }; long sandbox_i2c_rtc_set_offset(struct udevice *dev, bool use_system_time, int offset) { struct sandbox_i2c_rtc_plat_data *plat = dev_get_platdata(dev); long old_offset; old_offset = plat->offset; plat->use_system_time = use_system_time; if (offset != -1) plat->offset = offset; return old_offset; } long sandbox_i2c_rtc_get_set_base_time(struct udevice *dev, long base_time) { struct sandbox_i2c_rtc_plat_data *plat = dev_get_platdata(dev); long old_base_time; old_base_time = plat->base_time; if (base_time != -1) plat->base_time = base_time; return old_base_time; } static void reset_time(struct udevice *dev) { struct sandbox_i2c_rtc_plat_data *plat = dev_get_platdata(dev); struct rtc_time now; os_localtime(&now); plat->base_time = rtc_mktime(&now); plat->offset = 0; plat->use_system_time = true; } static int sandbox_i2c_rtc_get(struct udevice *dev, struct rtc_time *time) { struct sandbox_i2c_rtc_plat_data *plat = dev_get_platdata(dev); struct rtc_time tm_now; long now; if (plat->use_system_time) { os_localtime(&tm_now); now = rtc_mktime(&tm_now); } else { now = plat->base_time; } return rtc_to_tm(now + plat->offset, time); } static int sandbox_i2c_rtc_set(struct udevice *dev, const struct rtc_time *time) { struct sandbox_i2c_rtc_plat_data *plat = dev_get_platdata(dev); struct rtc_time tm_now; long now; if (plat->use_system_time) { os_localtime(&tm_now); now = rtc_mktime(&tm_now); } else { now = plat->base_time; } plat->offset = rtc_mktime(time) - now; return 0; } /* Update the current time in the registers */ static int sandbox_i2c_rtc_prepare_read(struct udevice *emul) { struct sandbox_i2c_rtc_plat_data *plat = dev_get_platdata(emul); struct rtc_time time; int ret; ret = sandbox_i2c_rtc_get(emul, &time); if (ret) return ret; plat->reg[REG_SEC] = time.tm_sec; plat->reg[REG_MIN] = time.tm_min; plat->reg[REG_HOUR] = time.tm_hour; plat->reg[REG_MDAY] = time.tm_mday; plat->reg[REG_MON] = time.tm_mon; plat->reg[REG_YEAR] = time.tm_year - 1900; plat->reg[REG_WDAY] = time.tm_wday; return 0; } static int sandbox_i2c_rtc_complete_write(struct udevice *emul) { struct sandbox_i2c_rtc_plat_data *plat = dev_get_platdata(emul); struct rtc_time time; int ret; time.tm_sec = plat->reg[REG_SEC]; time.tm_min = plat->reg[REG_MIN]; time.tm_hour = plat->reg[REG_HOUR]; time.tm_mday = plat->reg[REG_MDAY]; time.tm_mon = plat->reg[REG_MON]; time.tm_year = plat->reg[REG_YEAR] + 1900; time.tm_wday = plat->reg[REG_WDAY]; ret = sandbox_i2c_rtc_set(emul, &time); if (ret) return ret; return 0; } static int sandbox_i2c_rtc_xfer(struct udevice *emul, struct i2c_msg *msg, int nmsgs) { struct sandbox_i2c_rtc_plat_data *plat = dev_get_platdata(emul); uint offset = 0; int ret; debug("\n%s\n", __func__); ret = sandbox_i2c_rtc_prepare_read(emul); if (ret) return ret; for (; nmsgs > 0; nmsgs--, msg++) { int len; u8 *ptr; len = msg->len; debug(" %s: msg->len=%d", msg->flags & I2C_M_RD ? "read" : "write", msg->len); if (msg->flags & I2C_M_RD) { debug(", offset %x, len %x: ", offset, len); /* Read the register */ memcpy(msg->buf, plat->reg + offset, len); memset(msg->buf + len, '\xff', msg->len - len); debug_buffer(0, msg->buf, 1, msg->len, 0); } else if (len >= 1) { ptr = msg->buf; offset = *ptr++ & (REG_COUNT - 1); len--; debug(", set offset %x: ", offset); debug_buffer(0, msg->buf, 1, msg->len, 0); /* Write the register */ memcpy(plat->reg + offset, ptr, len); if (offset == REG_RESET) reset_time(emul); } } ret = sandbox_i2c_rtc_complete_write(emul); if (ret) return ret; return 0; } struct dm_i2c_ops sandbox_i2c_rtc_emul_ops = { .xfer = sandbox_i2c_rtc_xfer, }; static int sandbox_i2c_rtc_bind(struct udevice *dev) { reset_time(dev); return 0; } static const struct udevice_id sandbox_i2c_rtc_ids[] = { { .compatible = "sandbox,i2c-rtc" }, { } }; U_BOOT_DRIVER(sandbox_i2c_rtc_emul) = { .name = "sandbox_i2c_rtc_emul", .id = UCLASS_I2C_EMUL, .of_match = sandbox_i2c_rtc_ids, .bind = sandbox_i2c_rtc_bind, .priv_auto_alloc_size = sizeof(struct sandbox_i2c_rtc), .platdata_auto_alloc_size = sizeof(struct sandbox_i2c_rtc_plat_data), .ops = &sandbox_i2c_rtc_emul_ops, };