/* * (C) Copyright 2001 Sysgo Real-Time Solutions, GmbH * Andreas Heppel * * (C) Copyright 2002, 2003 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * SPDX-License-Identifier: GPL-2.0+ */ /* * PCI routines */ #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #define PCI_HOSE_OP(rw, size, type) \ int pci_hose_##rw##_config_##size(struct pci_controller *hose, \ pci_dev_t dev, \ int offset, type value) \ { \ return hose->rw##_##size(hose, dev, offset, value); \ } PCI_HOSE_OP(read, byte, u8 *) PCI_HOSE_OP(read, word, u16 *) PCI_HOSE_OP(read, dword, u32 *) PCI_HOSE_OP(write, byte, u8) PCI_HOSE_OP(write, word, u16) PCI_HOSE_OP(write, dword, u32) #define PCI_OP(rw, size, type, error_code) \ int pci_##rw##_config_##size(pci_dev_t dev, int offset, type value) \ { \ struct pci_controller *hose = pci_bus_to_hose(PCI_BUS(dev)); \ \ if (!hose) \ { \ error_code; \ return -1; \ } \ \ return pci_hose_##rw##_config_##size(hose, dev, offset, value); \ } PCI_OP(read, byte, u8 *, *value = 0xff) PCI_OP(read, word, u16 *, *value = 0xffff) PCI_OP(read, dword, u32 *, *value = 0xffffffff) PCI_OP(write, byte, u8, ) PCI_OP(write, word, u16, ) PCI_OP(write, dword, u32, ) #define PCI_READ_VIA_DWORD_OP(size, type, off_mask) \ int pci_hose_read_config_##size##_via_dword(struct pci_controller *hose,\ pci_dev_t dev, \ int offset, type val) \ { \ u32 val32; \ \ if (pci_hose_read_config_dword(hose, dev, offset & 0xfc, &val32) < 0) { \ *val = -1; \ return -1; \ } \ \ *val = (val32 >> ((offset & (int)off_mask) * 8)); \ \ return 0; \ } #define PCI_WRITE_VIA_DWORD_OP(size, type, off_mask, val_mask) \ int pci_hose_write_config_##size##_via_dword(struct pci_controller *hose,\ pci_dev_t dev, \ int offset, type val) \ { \ u32 val32, mask, ldata, shift; \ \ if (pci_hose_read_config_dword(hose, dev, offset & 0xfc, &val32) < 0)\ return -1; \ \ shift = ((offset & (int)off_mask) * 8); \ ldata = (((unsigned long)val) & val_mask) << shift; \ mask = val_mask << shift; \ val32 = (val32 & ~mask) | ldata; \ \ if (pci_hose_write_config_dword(hose, dev, offset & 0xfc, val32) < 0)\ return -1; \ \ return 0; \ } PCI_READ_VIA_DWORD_OP(byte, u8 *, 0x03) PCI_READ_VIA_DWORD_OP(word, u16 *, 0x02) PCI_WRITE_VIA_DWORD_OP(byte, u8, 0x03, 0x000000ff) PCI_WRITE_VIA_DWORD_OP(word, u16, 0x02, 0x0000ffff) /* Get a virtual address associated with a BAR region */ void *pci_map_bar(pci_dev_t pdev, int bar, int flags) { pci_addr_t pci_bus_addr; u32 bar_response; /* read BAR address */ pci_read_config_dword(pdev, bar, &bar_response); pci_bus_addr = (pci_addr_t)(bar_response & ~0xf); /* * Pass "0" as the length argument to pci_bus_to_virt. The arg * isn't actualy used on any platform because u-boot assumes a static * linear mapping. In the future, this could read the BAR size * and pass that as the size if needed. */ return pci_bus_to_virt(pdev, pci_bus_addr, flags, 0, MAP_NOCACHE); } /* * */ static struct pci_controller* hose_head; struct pci_controller *pci_get_hose_head(void) { if (gd->hose) return gd->hose; return hose_head; } void pci_register_hose(struct pci_controller* hose) { struct pci_controller **phose = &hose_head; while(*phose) phose = &(*phose)->next; hose->next = NULL; *phose = hose; } struct pci_controller *pci_bus_to_hose(int bus) { struct pci_controller *hose; for (hose = pci_get_hose_head(); hose; hose = hose->next) { if (bus >= hose->first_busno && bus <= hose->last_busno) return hose; } printf("pci_bus_to_hose() failed\n"); return NULL; } struct pci_controller *find_hose_by_cfg_addr(void *cfg_addr) { struct pci_controller *hose; for (hose = pci_get_hose_head(); hose; hose = hose->next) { if (hose->cfg_addr == cfg_addr) return hose; } return NULL; } int pci_last_busno(void) { struct pci_controller *hose = pci_get_hose_head(); if (!hose) return -1; while (hose->next) hose = hose->next; return hose->last_busno; } pci_dev_t pci_find_devices(struct pci_device_id *ids, int index) { struct pci_controller * hose; u16 vendor, device; u8 header_type; pci_dev_t bdf; int i, bus, found_multi = 0; for (hose = pci_get_hose_head(); hose; hose = hose->next) { #ifdef CONFIG_SYS_SCSI_SCAN_BUS_REVERSE for (bus = hose->last_busno; bus >= hose->first_busno; bus--) #else for (bus = hose->first_busno; bus <= hose->last_busno; bus++) #endif for (bdf = PCI_BDF(bus, 0, 0); bdf < PCI_BDF(bus + 1, 0, 0); bdf += PCI_BDF(0, 0, 1)) { if (pci_skip_dev(hose, bdf)) continue; if (!PCI_FUNC(bdf)) { pci_read_config_byte(bdf, PCI_HEADER_TYPE, &header_type); found_multi = header_type & 0x80; } else { if (!found_multi) continue; } pci_read_config_word(bdf, PCI_VENDOR_ID, &vendor); pci_read_config_word(bdf, PCI_DEVICE_ID, &device); for (i = 0; ids[i].vendor != 0; i++) { if (vendor == ids[i].vendor && device == ids[i].device) { if (index <= 0) return bdf; index--; } } } } return -1; } pci_dev_t pci_find_class(uint find_class, int index) { int bus; int devnum; pci_dev_t bdf; uint32_t class; for (bus = 0; bus <= pci_last_busno(); bus++) { for (devnum = 0; devnum < PCI_MAX_PCI_DEVICES - 1; devnum++) { pci_read_config_dword(PCI_BDF(bus, devnum, 0), PCI_CLASS_REVISION, &class); if (class >> 16 == 0xffff) continue; for (bdf = PCI_BDF(bus, devnum, 0); bdf <= PCI_BDF(bus, devnum, PCI_MAX_PCI_FUNCTIONS - 1); bdf += PCI_BDF(0, 0, 1)) { pci_read_config_dword(bdf, PCI_CLASS_REVISION, &class); class >>= 8; if (class != find_class) continue; /* * Decrement the index. We want to return the * correct device, so index is 0 for the first * matching device, 1 for the second, etc. */ if (index) { index--; continue; } /* Return index'th controller. */ return bdf; } } } return -ENODEV; } pci_dev_t pci_find_device(unsigned int vendor, unsigned int device, int index) { struct pci_device_id ids[2] = { {}, {0, 0} }; ids[0].vendor = vendor; ids[0].device = device; return pci_find_devices(ids, index); } /* * */ int __pci_hose_phys_to_bus(struct pci_controller *hose, phys_addr_t phys_addr, unsigned long flags, unsigned long skip_mask, pci_addr_t *ba) { struct pci_region *res; pci_addr_t bus_addr; int i; for (i = 0; i < hose->region_count; i++) { res = &hose->regions[i]; if (((res->flags ^ flags) & PCI_REGION_TYPE) != 0) continue; if (res->flags & skip_mask) continue; bus_addr = phys_addr - res->phys_start + res->bus_start; if (bus_addr >= res->bus_start && bus_addr < res->bus_start + res->size) { *ba = bus_addr; return 0; } } return 1; } pci_addr_t pci_hose_phys_to_bus (struct pci_controller *hose, phys_addr_t phys_addr, unsigned long flags) { pci_addr_t bus_addr = 0; int ret; if (!hose) { puts("pci_hose_phys_to_bus: invalid hose\n"); return bus_addr; } /* * if PCI_REGION_MEM is set we do a two pass search with preference * on matches that don't have PCI_REGION_SYS_MEMORY set */ if ((flags & PCI_REGION_MEM) == PCI_REGION_MEM) { ret = __pci_hose_phys_to_bus(hose, phys_addr, flags, PCI_REGION_SYS_MEMORY, &bus_addr); if (!ret) return bus_addr; } ret = __pci_hose_phys_to_bus(hose, phys_addr, flags, 0, &bus_addr); if (ret) puts("pci_hose_phys_to_bus: invalid physical address\n"); return bus_addr; } int __pci_hose_bus_to_phys(struct pci_controller *hose, pci_addr_t bus_addr, unsigned long flags, unsigned long skip_mask, phys_addr_t *pa) { struct pci_region *res; int i; for (i = 0; i < hose->region_count; i++) { res = &hose->regions[i]; if (((res->flags ^ flags) & PCI_REGION_TYPE) != 0) continue; if (res->flags & skip_mask) continue; if (bus_addr >= res->bus_start && (bus_addr - res->bus_start) < res->size) { *pa = (bus_addr - res->bus_start + res->phys_start); return 0; } } return 1; } phys_addr_t pci_hose_bus_to_phys(struct pci_controller* hose, pci_addr_t bus_addr, unsigned long flags) { phys_addr_t phys_addr = 0; int ret; if (!hose) { puts("pci_hose_bus_to_phys: invalid hose\n"); return phys_addr; } /* * if PCI_REGION_MEM is set we do a two pass search with preference * on matches that don't have PCI_REGION_SYS_MEMORY set */ if ((flags & PCI_REGION_MEM) == PCI_REGION_MEM) { ret = __pci_hose_bus_to_phys(hose, bus_addr, flags, PCI_REGION_SYS_MEMORY, &phys_addr); if (!ret) return phys_addr; } ret = __pci_hose_bus_to_phys(hose, bus_addr, flags, 0, &phys_addr); if (ret) puts("pci_hose_bus_to_phys: invalid physical address\n"); return phys_addr; } void pci_write_bar32(struct pci_controller *hose, pci_dev_t dev, int barnum, u32 addr_and_ctrl) { int bar; bar = PCI_BASE_ADDRESS_0 + barnum * 4; pci_hose_write_config_dword(hose, dev, bar, addr_and_ctrl); } u32 pci_read_bar32(struct pci_controller *hose, pci_dev_t dev, int barnum) { u32 addr; int bar; bar = PCI_BASE_ADDRESS_0 + barnum * 4; pci_hose_read_config_dword(hose, dev, bar, &addr); if (addr & PCI_BASE_ADDRESS_SPACE_IO) return addr & PCI_BASE_ADDRESS_IO_MASK; else return addr & PCI_BASE_ADDRESS_MEM_MASK; } int pci_hose_config_device(struct pci_controller *hose, pci_dev_t dev, unsigned long io, pci_addr_t mem, unsigned long command) { u32 bar_response; unsigned int old_command; pci_addr_t bar_value; pci_size_t bar_size; unsigned char pin; int bar, found_mem64; debug("PCI Config: I/O=0x%lx, Memory=0x%llx, Command=0x%lx\n", io, (u64)mem, command); pci_hose_write_config_dword(hose, dev, PCI_COMMAND, 0); for (bar = PCI_BASE_ADDRESS_0; bar <= PCI_BASE_ADDRESS_5; bar += 4) { pci_hose_write_config_dword(hose, dev, bar, 0xffffffff); pci_hose_read_config_dword(hose, dev, bar, &bar_response); if (!bar_response) continue; found_mem64 = 0; /* Check the BAR type and set our address mask */ if (bar_response & PCI_BASE_ADDRESS_SPACE) { bar_size = ~(bar_response & PCI_BASE_ADDRESS_IO_MASK) + 1; /* round up region base address to a multiple of size */ io = ((io - 1) | (bar_size - 1)) + 1; bar_value = io; /* compute new region base address */ io = io + bar_size; } else { if ((bar_response & PCI_BASE_ADDRESS_MEM_TYPE_MASK) == PCI_BASE_ADDRESS_MEM_TYPE_64) { u32 bar_response_upper; u64 bar64; pci_hose_write_config_dword(hose, dev, bar + 4, 0xffffffff); pci_hose_read_config_dword(hose, dev, bar + 4, &bar_response_upper); bar64 = ((u64)bar_response_upper << 32) | bar_response; bar_size = ~(bar64 & PCI_BASE_ADDRESS_MEM_MASK) + 1; found_mem64 = 1; } else { bar_size = (u32)(~(bar_response & PCI_BASE_ADDRESS_MEM_MASK) + 1); } /* round up region base address to multiple of size */ mem = ((mem - 1) | (bar_size - 1)) + 1; bar_value = mem; /* compute new region base address */ mem = mem + bar_size; } /* Write it out and update our limit */ pci_hose_write_config_dword (hose, dev, bar, (u32)bar_value); if (found_mem64) { bar += 4; #ifdef CONFIG_SYS_PCI_64BIT pci_hose_write_config_dword(hose, dev, bar, (u32)(bar_value >> 32)); #else pci_hose_write_config_dword(hose, dev, bar, 0x00000000); #endif } } /* Configure Cache Line Size Register */ pci_hose_write_config_byte(hose, dev, PCI_CACHE_LINE_SIZE, 0x08); /* Configure Latency Timer */ pci_hose_write_config_byte(hose, dev, PCI_LATENCY_TIMER, 0x80); /* Disable interrupt line, if device says it wants to use interrupts */ pci_hose_read_config_byte(hose, dev, PCI_INTERRUPT_PIN, &pin); if (pin != 0) { pci_hose_write_config_byte(hose, dev, PCI_INTERRUPT_LINE, 0xff); } pci_hose_read_config_dword(hose, dev, PCI_COMMAND, &old_command); pci_hose_write_config_dword(hose, dev, PCI_COMMAND, (old_command & 0xffff0000) | command); return 0; } /* * */ struct pci_config_table *pci_find_config(struct pci_controller *hose, unsigned short class, unsigned int vendor, unsigned int device, unsigned int bus, unsigned int dev, unsigned int func) { struct pci_config_table *table; for (table = hose->config_table; table && table->vendor; table++) { if ((table->vendor == PCI_ANY_ID || table->vendor == vendor) && (table->device == PCI_ANY_ID || table->device == device) && (table->class == PCI_ANY_ID || table->class == class) && (table->bus == PCI_ANY_ID || table->bus == bus) && (table->dev == PCI_ANY_ID || table->dev == dev) && (table->func == PCI_ANY_ID || table->func == func)) { return table; } } return NULL; } void pci_cfgfunc_config_device(struct pci_controller *hose, pci_dev_t dev, struct pci_config_table *entry) { pci_hose_config_device(hose, dev, entry->priv[0], entry->priv[1], entry->priv[2]); } void pci_cfgfunc_do_nothing(struct pci_controller *hose, pci_dev_t dev, struct pci_config_table *entry) { } /* * HJF: Changed this to return int. I think this is required * to get the correct result when scanning bridges */ extern int pciauto_config_device(struct pci_controller *hose, pci_dev_t dev); #if defined(CONFIG_CMD_PCI) || defined(CONFIG_PCI_SCAN_SHOW) const char * pci_class_str(u8 class) { switch (class) { case PCI_CLASS_NOT_DEFINED: return "Build before PCI Rev2.0"; break; case PCI_BASE_CLASS_STORAGE: return "Mass storage controller"; break; case PCI_BASE_CLASS_NETWORK: return "Network controller"; break; case PCI_BASE_CLASS_DISPLAY: return "Display controller"; break; case PCI_BASE_CLASS_MULTIMEDIA: return "Multimedia device"; break; case PCI_BASE_CLASS_MEMORY: return "Memory controller"; break; case PCI_BASE_CLASS_BRIDGE: return "Bridge device"; break; case PCI_BASE_CLASS_COMMUNICATION: return "Simple comm. controller"; break; case PCI_BASE_CLASS_SYSTEM: return "Base system peripheral"; break; case PCI_BASE_CLASS_INPUT: return "Input device"; break; case PCI_BASE_CLASS_DOCKING: return "Docking station"; break; case PCI_BASE_CLASS_PROCESSOR: return "Processor"; break; case PCI_BASE_CLASS_SERIAL: return "Serial bus controller"; break; case PCI_BASE_CLASS_INTELLIGENT: return "Intelligent controller"; break; case PCI_BASE_CLASS_SATELLITE: return "Satellite controller"; break; case PCI_BASE_CLASS_CRYPT: return "Cryptographic device"; break; case PCI_BASE_CLASS_SIGNAL_PROCESSING: return "DSP"; break; case PCI_CLASS_OTHERS: return "Does not fit any class"; break; default: return "???"; break; }; } #endif /* CONFIG_CMD_PCI || CONFIG_PCI_SCAN_SHOW */ __weak int pci_skip_dev(struct pci_controller *hose, pci_dev_t dev) { /* * Check if pci device should be skipped in configuration */ if (dev == PCI_BDF(hose->first_busno, 0, 0)) { #if defined(CONFIG_PCI_CONFIG_HOST_BRIDGE) /* don't skip host bridge */ /* * Only skip configuration if "pciconfighost" is not set */ if (getenv("pciconfighost") == NULL) return 1; #else return 1; #endif } return 0; } #ifdef CONFIG_PCI_SCAN_SHOW __weak int pci_print_dev(struct pci_controller *hose, pci_dev_t dev) { if (dev == PCI_BDF(hose->first_busno, 0, 0)) return 0; return 1; } #endif /* CONFIG_PCI_SCAN_SHOW */ int pci_hose_scan_bus(struct pci_controller *hose, int bus) { unsigned int sub_bus, found_multi = 0; unsigned short vendor, device, class; unsigned char header_type; #ifndef CONFIG_PCI_PNP struct pci_config_table *cfg; #endif pci_dev_t dev; #ifdef CONFIG_PCI_SCAN_SHOW static int indent = 0; #endif sub_bus = bus; for (dev = PCI_BDF(bus,0,0); dev < PCI_BDF(bus, PCI_MAX_PCI_DEVICES - 1, PCI_MAX_PCI_FUNCTIONS - 1); dev += PCI_BDF(0, 0, 1)) { if (pci_skip_dev(hose, dev)) continue; if (PCI_FUNC(dev) && !found_multi) continue; pci_hose_read_config_byte(hose, dev, PCI_HEADER_TYPE, &header_type); pci_hose_read_config_word(hose, dev, PCI_VENDOR_ID, &vendor); if (vendor == 0xffff || vendor == 0x0000) continue; if (!PCI_FUNC(dev)) found_multi = header_type & 0x80; debug("PCI Scan: Found Bus %d, Device %d, Function %d\n", PCI_BUS(dev), PCI_DEV(dev), PCI_FUNC(dev)); pci_hose_read_config_word(hose, dev, PCI_DEVICE_ID, &device); pci_hose_read_config_word(hose, dev, PCI_CLASS_DEVICE, &class); #ifdef CONFIG_PCI_FIXUP_DEV board_pci_fixup_dev(hose, dev, vendor, device, class); #endif #ifdef CONFIG_PCI_SCAN_SHOW indent++; /* Print leading space, including bus indentation */ printf("%*c", indent + 1, ' '); if (pci_print_dev(hose, dev)) { printf("%02x:%02x.%-*x - %04x:%04x - %s\n", PCI_BUS(dev), PCI_DEV(dev), 6 - indent, PCI_FUNC(dev), vendor, device, pci_class_str(class >> 8)); } #endif #ifdef CONFIG_PCI_PNP sub_bus = max((unsigned int)pciauto_config_device(hose, dev), sub_bus); #else cfg = pci_find_config(hose, class, vendor, device, PCI_BUS(dev), PCI_DEV(dev), PCI_FUNC(dev)); if (cfg) { cfg->config_device(hose, dev, cfg); sub_bus = max(sub_bus, (unsigned int)hose->current_busno); } #endif #ifdef CONFIG_PCI_SCAN_SHOW indent--; #endif if (hose->fixup_irq) hose->fixup_irq(hose, dev); } return sub_bus; } int pci_hose_scan(struct pci_controller *hose) { #if defined(CONFIG_PCI_BOOTDELAY) char *s; int i; if (!gd->pcidelay_done) { /* wait "pcidelay" ms (if defined)... */ s = getenv("pcidelay"); if (s) { int val = simple_strtoul(s, NULL, 10); for (i = 0; i < val; i++) udelay(1000); } gd->pcidelay_done = 1; } #endif /* CONFIG_PCI_BOOTDELAY */ /* * Start scan at current_busno. * PCIe will start scan at first_busno+1. */ /* For legacy support, ensure current >= first */ if (hose->first_busno > hose->current_busno) hose->current_busno = hose->first_busno; #ifdef CONFIG_PCI_PNP pciauto_config_init(hose); #endif return pci_hose_scan_bus(hose, hose->current_busno); } void pci_init(void) { hose_head = NULL; /* now call board specific pci_init()... */ pci_init_board(); } /* Returns the address of the requested capability structure within the * device's PCI configuration space or 0 in case the device does not * support it. * */ int pci_hose_find_capability(struct pci_controller *hose, pci_dev_t dev, int cap) { int pos; u8 hdr_type; pci_hose_read_config_byte(hose, dev, PCI_HEADER_TYPE, &hdr_type); pos = pci_hose_find_cap_start(hose, dev, hdr_type & 0x7F); if (pos) pos = pci_find_cap(hose, dev, pos, cap); return pos; } /* Find the header pointer to the Capabilities*/ int pci_hose_find_cap_start(struct pci_controller *hose, pci_dev_t dev, u8 hdr_type) { u16 status; pci_hose_read_config_word(hose, dev, PCI_STATUS, &status); if (!(status & PCI_STATUS_CAP_LIST)) return 0; switch (hdr_type) { case PCI_HEADER_TYPE_NORMAL: case PCI_HEADER_TYPE_BRIDGE: return PCI_CAPABILITY_LIST; case PCI_HEADER_TYPE_CARDBUS: return PCI_CB_CAPABILITY_LIST; default: return 0; } } int pci_find_cap(struct pci_controller *hose, pci_dev_t dev, int pos, int cap) { int ttl = PCI_FIND_CAP_TTL; u8 id; u8 next_pos; while (ttl--) { pci_hose_read_config_byte(hose, dev, pos, &next_pos); if (next_pos < CAP_START_POS) break; next_pos &= ~3; pos = (int) next_pos; pci_hose_read_config_byte(hose, dev, pos + PCI_CAP_LIST_ID, &id); if (id == 0xff) break; if (id == cap) return pos; pos += PCI_CAP_LIST_NEXT; } return 0; }