/** * @file IxQMgrDispatcher.c * * @author Intel Corporation * @date 20-Dec-2001 * * @brief This file contains the implementation of the Dispatcher sub component * * * @par * IXP400 SW Release version 2.0 * * -- Copyright Notice -- * * @par * Copyright 2001-2005, Intel Corporation. * All rights reserved. * * @par * SPDX-License-Identifier: BSD-3-Clause * @par * -- End of Copyright Notice -- */ /* * User defined include files. */ #include "IxQMgr.h" #include "IxQMgrAqmIf_p.h" #include "IxQMgrQCfg_p.h" #include "IxQMgrDispatcher_p.h" #include "IxQMgrLog_p.h" #include "IxQMgrDefines_p.h" #include "IxFeatureCtrl.h" #include "IxOsal.h" /* * #defines and macros used in this file. */ /* * This constant is used to indicate the number of priority levels supported */ #define IX_QMGR_NUM_PRIORITY_LEVELS 3 /* * This constant is used to set the size of the array of status words */ #define MAX_Q_STATUS_WORDS 4 /* * This macro is used to check if a given priority is valid */ #define IX_QMGR_DISPATCHER_PRIORITY_CHECK(priority) \ (((priority) >= IX_QMGR_Q_PRIORITY_0) && ((priority) <= IX_QMGR_Q_PRIORITY_2)) /* * This macto is used to check that a given interrupt source is valid */ #define IX_QMGR_DISPATCHER_SOURCE_ID_CHECK(srcSel) \ (((srcSel) >= IX_QMGR_Q_SOURCE_ID_E) && ((srcSel) <= IX_QMGR_Q_SOURCE_ID_NOT_F)) /* * Number of times a dummy callback is called before logging a trace * message */ #define LOG_THROTTLE_COUNT 1000000 /* Priority tables limits */ #define IX_QMGR_MIN_LOW_QUE_PRIORITY_TABLE_INDEX (0) #define IX_QMGR_MID_LOW_QUE_PRIORITY_TABLE_INDEX (16) #define IX_QMGR_MAX_LOW_QUE_PRIORITY_TABLE_INDEX (31) #define IX_QMGR_MIN_UPP_QUE_PRIORITY_TABLE_INDEX (32) #define IX_QMGR_MID_UPP_QUE_PRIORITY_TABLE_INDEX (48) #define IX_QMGR_MAX_UPP_QUE_PRIORITY_TABLE_INDEX (63) /* * This macro is used to check if a given callback type is valid */ #define IX_QMGR_DISPATCHER_CALLBACK_TYPE_CHECK(type) \ (((type) >= IX_QMGR_TYPE_REALTIME_OTHER) && \ ((type) <= IX_QMGR_TYPE_REALTIME_SPORADIC)) /* * define max index in lower queue to use in loops */ #define IX_QMGR_MAX_LOW_QUE_TABLE_INDEX (31) /* * Typedefs whose scope is limited to this file. */ /* * Information on a queue needed by the Dispatcher */ typedef struct { IxQMgrCallback callback; /* Notification callback */ IxQMgrCallbackId callbackId; /* Notification callback identifier */ unsigned dummyCallbackCount; /* Number of times runs of dummy callback */ IxQMgrPriority priority; /* Dispatch priority */ unsigned int statusWordOffset; /* Offset to the status word to check */ UINT32 statusMask; /* Status mask */ UINT32 statusCheckValue; /* Status check value */ UINT32 intRegCheckMask; /* Interrupt register check mask */ } IxQMgrQInfo; /* * Variable declarations global to this file. Externs are followed by * statics. */ /* * Flag to keep record of what dispatcher set in featureCtrl when ixQMgrInit() * is called. This is needed because it is possible that a client might * change whether the live lock prevention dispatcher is used between * calls to ixQMgrInit() and ixQMgrDispatcherLoopGet(). */ PRIVATE IX_STATUS ixQMgrOrigB0Dispatcher = IX_FEATURE_CTRL_COMPONENT_ENABLED; /* * keep record of Q types - not in IxQMgrQInfo for performance as * it is only used with ixQMgrDispatcherLoopRunB0LLP() */ PRIVATE IxQMgrType ixQMgrQTypes[IX_QMGR_MAX_NUM_QUEUES]; /* * This array contains a list of queue identifiers ordered by priority. The table * is split logically between queue identifiers 0-31 and 32-63. */ static IxQMgrQId priorityTable[IX_QMGR_MAX_NUM_QUEUES]; /* * This flag indicates to the dispatcher that the priority table needs to be rebuilt. */ static BOOL rebuildTable = false; /* Dispatcher statistics */ static IxQMgrDispatcherStats dispatcherStats; /* Table of queue information */ static IxQMgrQInfo dispatchQInfo[IX_QMGR_MAX_NUM_QUEUES]; /* Masks use to identify the first queues in the priority tables * when comparing with the interrupt register */ static unsigned int lowPriorityTableFirstHalfMask; static unsigned int uppPriorityTableFirstHalfMask; /* * Static function prototypes */ /* * This function is the default callback for all queues */ PRIVATE void dummyCallback (IxQMgrQId qId, IxQMgrCallbackId cbId); PRIVATE void ixQMgrDispatcherReBuildPriorityTable (void); /* * Function definitions. */ void ixQMgrDispatcherInit (void) { int i; IxFeatureCtrlProductId productId = 0; IxFeatureCtrlDeviceId deviceId = 0; BOOL stickyIntSilicon = true; /* Set default priorities */ for (i=0; i< IX_QMGR_MAX_NUM_QUEUES; i++) { dispatchQInfo[i].callback = dummyCallback; dispatchQInfo[i].callbackId = 0; dispatchQInfo[i].dummyCallbackCount = 0; dispatchQInfo[i].priority = IX_QMGR_Q_PRIORITY_2; dispatchQInfo[i].statusWordOffset = 0; dispatchQInfo[i].statusCheckValue = 0; dispatchQInfo[i].statusMask = 0; /* * There are two interrupt registers, 32 bits each. One for the lower * queues(0-31) and one for the upper queues(32-63). Therefore need to * mod by 32 i.e the min upper queue identifier. */ dispatchQInfo[i].intRegCheckMask = (1<<(i%(IX_QMGR_MIN_QUEUPP_QID))); /* * Set the Q types - will only be used with livelock */ ixQMgrQTypes[i] = IX_QMGR_TYPE_REALTIME_OTHER; /* Reset queue statistics */ dispatcherStats.queueStats[i].callbackCnt = 0; dispatcherStats.queueStats[i].priorityChangeCnt = 0; dispatcherStats.queueStats[i].intNoCallbackCnt = 0; dispatcherStats.queueStats[i].intLostCallbackCnt = 0; dispatcherStats.queueStats[i].notificationEnabled = false; dispatcherStats.queueStats[i].srcSel = 0; } /* Priority table. Order the table from queue 0 to 63 */ ixQMgrDispatcherReBuildPriorityTable(); /* Reset statistics */ dispatcherStats.loopRunCnt = 0; /* Get the device ID for the underlying silicon */ deviceId = ixFeatureCtrlDeviceRead(); /* Get the product ID for the underlying silicon */ productId = ixFeatureCtrlProductIdRead(); /* * Check featureCtrl to see if Livelock prevention is required */ ixQMgrOrigB0Dispatcher = ixFeatureCtrlSwConfigurationCheck( IX_FEATURECTRL_ORIGB0_DISPATCHER); /* * Check if the silicon supports the sticky interrupt feature. * IF (IXP42X AND A0) -> No sticky interrupt feature supported */ if ((IX_FEATURE_CTRL_DEVICE_TYPE_IXP42X == (IX_FEATURE_CTRL_DEVICE_TYPE_MASK & deviceId)) && (IX_FEATURE_CTRL_SILICON_TYPE_A0 == (IX_FEATURE_CTRL_SILICON_STEPPING_MASK & productId))) { stickyIntSilicon = false; } /* * IF user wants livelock prev option AND silicon supports sticky interrupt * feature -> enable the sticky interrupt bit */ if ((IX_FEATURE_CTRL_SWCONFIG_DISABLED == ixQMgrOrigB0Dispatcher) && stickyIntSilicon) { ixQMgrStickyInterruptRegEnable(); } } IX_STATUS ixQMgrDispatcherPrioritySet (IxQMgrQId qId, IxQMgrPriority priority) { int ixQMgrLockKey; if (!ixQMgrQIsConfigured(qId)) { return IX_QMGR_Q_NOT_CONFIGURED; } if (!IX_QMGR_DISPATCHER_PRIORITY_CHECK(priority)) { return IX_QMGR_Q_INVALID_PRIORITY; } ixQMgrLockKey = ixOsalIrqLock(); /* Change priority */ dispatchQInfo[qId].priority = priority; /* Set flag */ rebuildTable = true; ixOsalIrqUnlock(ixQMgrLockKey); #ifndef NDEBUG /* Update statistics */ dispatcherStats.queueStats[qId].priorityChangeCnt++; #endif return IX_SUCCESS; } IX_STATUS ixQMgrNotificationCallbackSet (IxQMgrQId qId, IxQMgrCallback callback, IxQMgrCallbackId callbackId) { if (!ixQMgrQIsConfigured(qId)) { return IX_QMGR_Q_NOT_CONFIGURED; } if (NULL == callback) { /* Reset to dummy callback */ dispatchQInfo[qId].callback = dummyCallback; dispatchQInfo[qId].dummyCallbackCount = 0; dispatchQInfo[qId].callbackId = 0; } else { dispatchQInfo[qId].callback = callback; dispatchQInfo[qId].callbackId = callbackId; } return IX_SUCCESS; } IX_STATUS ixQMgrNotificationEnable (IxQMgrQId qId, IxQMgrSourceId srcSel) { IxQMgrQStatus qStatusOnEntry;/* The queue status on entry/exit */ IxQMgrQStatus qStatusOnExit; /* to this function */ int ixQMgrLockKey; #ifndef NDEBUG if (!ixQMgrQIsConfigured (qId)) { return IX_QMGR_Q_NOT_CONFIGURED; } if ((qId < IX_QMGR_MIN_QUEUPP_QID) && !IX_QMGR_DISPATCHER_SOURCE_ID_CHECK(srcSel)) { /* QId 0-31 source id invalid */ return IX_QMGR_INVALID_INT_SOURCE_ID; } if ((IX_QMGR_Q_SOURCE_ID_NE != srcSel) && (qId >= IX_QMGR_MIN_QUEUPP_QID)) { /* * For queues 32-63 the interrupt source is fixed to the Nearly * Empty status flag and therefore should have a srcSel of NE. */ return IX_QMGR_INVALID_INT_SOURCE_ID; } #endif #ifndef NDEBUG dispatcherStats.queueStats[qId].notificationEnabled = true; dispatcherStats.queueStats[qId].srcSel = srcSel; #endif /* Get the current queue status */ ixQMgrAqmIfQueStatRead (qId, &qStatusOnEntry); /* * Enabling interrupts results in Read-Modify-Write * so need critical section */ ixQMgrLockKey = ixOsalIrqLock(); /* Calculate the checkMask and checkValue for this q */ ixQMgrAqmIfQStatusCheckValsCalc (qId, srcSel, &dispatchQInfo[qId].statusWordOffset, &dispatchQInfo[qId].statusCheckValue, &dispatchQInfo[qId].statusMask); /* Set the interrupt source is this queue is in the range 0-31 */ if (qId < IX_QMGR_MIN_QUEUPP_QID) { ixQMgrAqmIfIntSrcSelWrite (qId, srcSel); } /* Enable the interrupt */ ixQMgrAqmIfQInterruptEnable (qId); ixOsalIrqUnlock(ixQMgrLockKey); /* Get the current queue status */ ixQMgrAqmIfQueStatRead (qId, &qStatusOnExit); /* If the status has changed return a warning */ if (qStatusOnEntry != qStatusOnExit) { return IX_QMGR_WARNING; } return IX_SUCCESS; } IX_STATUS ixQMgrNotificationDisable (IxQMgrQId qId) { int ixQMgrLockKey; #ifndef NDEBUG /* Validate parameters */ if (!ixQMgrQIsConfigured (qId)) { return IX_QMGR_Q_NOT_CONFIGURED; } #endif /* * Enabling interrupts results in Read-Modify-Write * so need critical section */ #ifndef NDEBUG dispatcherStats.queueStats[qId].notificationEnabled = false; #endif ixQMgrLockKey = ixOsalIrqLock(); ixQMgrAqmIfQInterruptDisable (qId); ixOsalIrqUnlock(ixQMgrLockKey); return IX_SUCCESS; } void ixQMgrStickyInterruptRegEnable(void) { /* Use Aqm If function to set Interrupt Register0 Bit-3 */ ixQMgrAqmIfIntSrcSelReg0Bit3Set (); } #if !defined __XSCALE__ || defined __linux /* Count the number of leading zero bits in a word, * and return the same value than the CLZ instruction. * * word (in) return value (out) * 0x80000000 0 * 0x40000000 1 * ,,, ,,, * 0x00000002 30 * 0x00000001 31 * 0x00000000 32 * * The C version of this function is used as a replacement * for system not providing the equivalent of the CLZ * assembly language instruction. * * Note that this version is big-endian */ unsigned int ixQMgrCountLeadingZeros(UINT32 word) { unsigned int leadingZerosCount = 0; if (word == 0) { return 32; } /* search the first bit set by testing the MSB and shifting the input word */ while ((word & 0x80000000) == 0) { word <<= 1; leadingZerosCount++; } return leadingZerosCount; } #endif /* not __XSCALE__ or __linux */ void ixQMgrDispatcherLoopGet (IxQMgrDispatcherFuncPtr *qDispatcherFuncPtr) { IxFeatureCtrlProductId productId = 0; IxFeatureCtrlDeviceId deviceId = 0; /* Get the device ID for the underlying silicon */ deviceId = ixFeatureCtrlDeviceRead(); /* Get the product ID for the underlying silicon */ productId = ixFeatureCtrlProductIdRead (); /* IF (IXP42X AND A0 silicon) -> use ixQMgrDispatcherLoopRunA0 */ if ((IX_FEATURE_CTRL_DEVICE_TYPE_IXP42X == (IX_FEATURE_CTRL_DEVICE_TYPE_MASK & deviceId)) && (IX_FEATURE_CTRL_SILICON_TYPE_A0 == (IX_FEATURE_CTRL_SILICON_STEPPING_MASK & productId))) { /*For IXP42X A0 silicon */ *qDispatcherFuncPtr = &ixQMgrDispatcherLoopRunA0 ; } else /*For IXP42X B0 or IXP46X silicon*/ { if (IX_FEATURE_CTRL_SWCONFIG_ENABLED == ixQMgrOrigB0Dispatcher) { /* Default for IXP42X B0 and IXP46X silicon */ *qDispatcherFuncPtr = &ixQMgrDispatcherLoopRunB0; } else { /* FeatureCtrl indicated that livelock dispatcher be used */ *qDispatcherFuncPtr = &ixQMgrDispatcherLoopRunB0LLP; } } } void ixQMgrDispatcherLoopRunA0 (IxQMgrDispatchGroup group) { UINT32 intRegVal; /* Interrupt reg val */ UINT32 intRegValAfterWrite; /* Interrupt reg val after writing back */ UINT32 intRegCheckMask; /* Mask for checking interrupt bits */ UINT32 qStatusWordsB4Write[MAX_Q_STATUS_WORDS]; /* Status b4 interrupt write */ UINT32 qStatusWordsAfterWrite[MAX_Q_STATUS_WORDS]; /* Status after interrupt write */ IxQMgrQInfo *currDispatchQInfo; BOOL statusChangeFlag; int priorityTableIndex;/* Priority table index */ int qIndex; /* Current queue being processed */ int endIndex; /* Index of last queue to process */ #ifndef NDEBUG IX_OSAL_ASSERT((group == IX_QMGR_QUEUPP_GROUP) || (group == IX_QMGR_QUELOW_GROUP)); #endif /* Read Q status registers before interrupt status read/write */ ixQMgrAqmIfQStatusRegsRead (group, qStatusWordsB4Write); /* Read the interrupt register */ ixQMgrAqmIfQInterruptRegRead (group, &intRegVal); /* No bit set : nothing to process (the reaminder of the algorithm is * based on the fact that the interrupt register value contains at * least one bit set */ if (intRegVal == 0) { #ifndef NDEBUG /* Update statistics */ dispatcherStats.loopRunCnt++; #endif /* Rebuild the priority table if needed */ if (rebuildTable) { ixQMgrDispatcherReBuildPriorityTable (); } return; } /* Write it back to clear the interrupt */ ixQMgrAqmIfQInterruptRegWrite (group, intRegVal); /* Read Q status registers after interrupt status read/write */ ixQMgrAqmIfQStatusRegsRead (group, qStatusWordsAfterWrite); /* get the first queue Id from the interrupt register value */ qIndex = (BITS_PER_WORD - 1) - ixQMgrCountLeadingZeros(intRegVal); /* check if any change occured during hw register modifications */ if (IX_QMGR_QUELOW_GROUP == group) { statusChangeFlag = (qStatusWordsB4Write[0] != qStatusWordsAfterWrite[0]) || (qStatusWordsB4Write[1] != qStatusWordsAfterWrite[1]) || (qStatusWordsB4Write[2] != qStatusWordsAfterWrite[2]) || (qStatusWordsB4Write[3] != qStatusWordsAfterWrite[3]); } else { statusChangeFlag = (qStatusWordsB4Write[0] != qStatusWordsAfterWrite[0]); /* Set the queue range based on the queue group to proccess */ qIndex += IX_QMGR_MIN_QUEUPP_QID; } if (statusChangeFlag == false) { /* check if the interrupt register contains * only 1 bit set (happy day scenario) */ currDispatchQInfo = &dispatchQInfo[qIndex]; if (intRegVal == currDispatchQInfo->intRegCheckMask) { /* only 1 queue event triggered a notification * * Call the callback function for this queue */ currDispatchQInfo->callback (qIndex, currDispatchQInfo->callbackId); #ifndef NDEBUG /* Update statistics */ dispatcherStats.queueStats[qIndex].callbackCnt++; #endif } else { /* the event is triggered by more than 1 queue, * the queue search will be starting from the beginning * or the middle of the priority table * * the serach will end when all the bits of the interrupt * register are cleared. There is no need to maintain * a seperate value and test it at each iteration. */ if (IX_QMGR_QUELOW_GROUP == group) { /* check if any bit related to queues in the first * half of the priority table is set */ if (intRegVal & lowPriorityTableFirstHalfMask) { priorityTableIndex = IX_QMGR_MIN_LOW_QUE_PRIORITY_TABLE_INDEX; } else { priorityTableIndex = IX_QMGR_MID_LOW_QUE_PRIORITY_TABLE_INDEX; } } else { /* check if any bit related to queues in the first * half of the priority table is set */ if (intRegVal & uppPriorityTableFirstHalfMask) { priorityTableIndex = IX_QMGR_MIN_UPP_QUE_PRIORITY_TABLE_INDEX; } else { priorityTableIndex = IX_QMGR_MID_UPP_QUE_PRIORITY_TABLE_INDEX; } } /* iterate following the priority table until all the bits * of the interrupt register are cleared. */ do { qIndex = priorityTable[priorityTableIndex++]; currDispatchQInfo = &dispatchQInfo[qIndex]; intRegCheckMask = currDispatchQInfo->intRegCheckMask; /* If this queue caused this interrupt to be raised */ if (intRegVal & intRegCheckMask) { /* Call the callback function for this queue */ currDispatchQInfo->callback (qIndex, currDispatchQInfo->callbackId); #ifndef NDEBUG /* Update statistics */ dispatcherStats.queueStats[qIndex].callbackCnt++; #endif /* Clear the interrupt register bit */ intRegVal &= ~intRegCheckMask; } } while(intRegVal); } } else { /* A change in queue status occured during the hw interrupt * register update. To maintain the interrupt consistency, it * is necessary to iterate through all queues of the queue group. */ /* Read interrupt status again */ ixQMgrAqmIfQInterruptRegRead (group, &intRegValAfterWrite); if (IX_QMGR_QUELOW_GROUP == group) { priorityTableIndex = IX_QMGR_MIN_LOW_QUE_PRIORITY_TABLE_INDEX; endIndex = IX_QMGR_MAX_LOW_QUE_PRIORITY_TABLE_INDEX; } else { priorityTableIndex = IX_QMGR_MIN_UPP_QUE_PRIORITY_TABLE_INDEX; endIndex = IX_QMGR_MAX_UPP_QUE_PRIORITY_TABLE_INDEX; } for ( ; priorityTableIndex<=endIndex; priorityTableIndex++) { qIndex = priorityTable[priorityTableIndex]; currDispatchQInfo = &dispatchQInfo[qIndex]; intRegCheckMask = currDispatchQInfo->intRegCheckMask; /* If this queue caused this interrupt to be raised */ if (intRegVal & intRegCheckMask) { /* Call the callback function for this queue */ currDispatchQInfo->callback (qIndex, currDispatchQInfo->callbackId); #ifndef NDEBUG /* Update statistics */ dispatcherStats.queueStats[qIndex].callbackCnt++; #endif } /* if (intRegVal .. */ /* * If interrupt bit is set in intRegValAfterWrite don't * proceed as this will be caught in next interrupt */ else if ((intRegValAfterWrite & intRegCheckMask) == 0) { /* Check if an interrupt was lost for this Q */ if (ixQMgrAqmIfQStatusCheck(qStatusWordsB4Write, qStatusWordsAfterWrite, currDispatchQInfo->statusWordOffset, currDispatchQInfo->statusCheckValue, currDispatchQInfo->statusMask)) { /* Call the callback function for this queue */ currDispatchQInfo->callback (qIndex, dispatchQInfo[qIndex].callbackId); #ifndef NDEBUG /* Update statistics */ dispatcherStats.queueStats[qIndex].callbackCnt++; dispatcherStats.queueStats[qIndex].intLostCallbackCnt++; #endif } /* if ixQMgrAqmIfQStatusCheck(.. */ } /* else if ((intRegValAfterWrite ... */ } /* for (priorityTableIndex=0 ... */ } /* Rebuild the priority table if needed */ if (rebuildTable) { ixQMgrDispatcherReBuildPriorityTable (); } #ifndef NDEBUG /* Update statistics */ dispatcherStats.loopRunCnt++; #endif } void ixQMgrDispatcherLoopRunB0 (IxQMgrDispatchGroup group) { UINT32 intRegVal; /* Interrupt reg val */ UINT32 intRegCheckMask; /* Mask for checking interrupt bits */ IxQMgrQInfo *currDispatchQInfo; int priorityTableIndex; /* Priority table index */ int qIndex; /* Current queue being processed */ #ifndef NDEBUG IX_OSAL_ASSERT((group == IX_QMGR_QUEUPP_GROUP) || (group == IX_QMGR_QUELOW_GROUP)); IX_OSAL_ASSERT((group == IX_QMGR_QUEUPP_GROUP) || (group == IX_QMGR_QUELOW_GROUP)); #endif /* Read the interrupt register */ ixQMgrAqmIfQInterruptRegRead (group, &intRegVal); /* No queue has interrupt register set */ if (intRegVal != 0) { /* Write it back to clear the interrupt */ ixQMgrAqmIfQInterruptRegWrite (group, intRegVal); /* get the first queue Id from the interrupt register value */ qIndex = (BITS_PER_WORD - 1) - ixQMgrCountLeadingZeros(intRegVal); if (IX_QMGR_QUEUPP_GROUP == group) { /* Set the queue range based on the queue group to proccess */ qIndex += IX_QMGR_MIN_QUEUPP_QID; } /* check if the interrupt register contains * only 1 bit set * For example: * intRegVal = 0x0010 * currDispatchQInfo->intRegCheckMask = 0x0010 * intRegVal == currDispatchQInfo->intRegCheckMask is true. */ currDispatchQInfo = &dispatchQInfo[qIndex]; if (intRegVal == currDispatchQInfo->intRegCheckMask) { /* only 1 queue event triggered a notification * * Call the callback function for this queue */ currDispatchQInfo->callback (qIndex, currDispatchQInfo->callbackId); #ifndef NDEBUG /* Update statistics */ dispatcherStats.queueStats[qIndex].callbackCnt++; #endif } else { /* the event is triggered by more than 1 queue, * the queue search will be starting from the beginning * or the middle of the priority table * * the serach will end when all the bits of the interrupt * register are cleared. There is no need to maintain * a seperate value and test it at each iteration. */ if (IX_QMGR_QUELOW_GROUP == group) { /* check if any bit related to queues in the first * half of the priority table is set */ if (intRegVal & lowPriorityTableFirstHalfMask) { priorityTableIndex = IX_QMGR_MIN_LOW_QUE_PRIORITY_TABLE_INDEX; } else { priorityTableIndex = IX_QMGR_MID_LOW_QUE_PRIORITY_TABLE_INDEX; } } else { /* check if any bit related to queues in the first * half of the priority table is set */ if (intRegVal & uppPriorityTableFirstHalfMask) { priorityTableIndex = IX_QMGR_MIN_UPP_QUE_PRIORITY_TABLE_INDEX; } else { priorityTableIndex = IX_QMGR_MID_UPP_QUE_PRIORITY_TABLE_INDEX; } } /* iterate following the priority table until all the bits * of the interrupt register are cleared. */ do { qIndex = priorityTable[priorityTableIndex++]; currDispatchQInfo = &dispatchQInfo[qIndex]; intRegCheckMask = currDispatchQInfo->intRegCheckMask; /* If this queue caused this interrupt to be raised */ if (intRegVal & intRegCheckMask) { /* Call the callback function for this queue */ currDispatchQInfo->callback (qIndex, currDispatchQInfo->callbackId); #ifndef NDEBUG /* Update statistics */ dispatcherStats.queueStats[qIndex].callbackCnt++; #endif /* Clear the interrupt register bit */ intRegVal &= ~intRegCheckMask; } } while(intRegVal); } /*End of intRegVal == currDispatchQInfo->intRegCheckMask */ } /* End of intRegVal != 0 */ #ifndef NDEBUG /* Update statistics */ dispatcherStats.loopRunCnt++; #endif /* Rebuild the priority table if needed */ if (rebuildTable) { ixQMgrDispatcherReBuildPriorityTable (); } } void ixQMgrDispatcherLoopRunB0LLP (IxQMgrDispatchGroup group) { UINT32 intRegVal =0; /* Interrupt reg val */ UINT32 intRegCheckMask; /* Mask for checking interrupt bits */ IxQMgrQInfo *currDispatchQInfo; int priorityTableIndex; /* Priority table index */ int qIndex; /* Current queue being processed */ UINT32 intRegValCopy = 0; UINT32 intEnableRegVal = 0; UINT8 i = 0; #ifndef NDEBUG IX_OSAL_ASSERT((group == IX_QMGR_QUEUPP_GROUP) || (group == IX_QMGR_QUELOW_GROUP)); #endif /* Read the interrupt register */ ixQMgrAqmIfQInterruptRegRead (group, &intRegVal); /* * mask any interrupts that are not enabled */ ixQMgrAqmIfQInterruptEnableRegRead (group, &intEnableRegVal); intRegVal &= intEnableRegVal; /* No queue has interrupt register set */ if (intRegVal != 0) { if (IX_QMGR_QUELOW_GROUP == group) { /* * As the sticky bit is set, the interrupt register will * not clear if write back at this point because the condition * has not been cleared. Take a copy and write back later after * the condition has been cleared */ intRegValCopy = intRegVal; } else { /* no sticky for upper Q's, so write back now */ ixQMgrAqmIfQInterruptRegWrite (group, intRegVal); } /* get the first queue Id from the interrupt register value */ qIndex = (BITS_PER_WORD - 1) - ixQMgrCountLeadingZeros(intRegVal); if (IX_QMGR_QUEUPP_GROUP == group) { /* Set the queue range based on the queue group to proccess */ qIndex += IX_QMGR_MIN_QUEUPP_QID; } /* check if the interrupt register contains * only 1 bit set * For example: * intRegVal = 0x0010 * currDispatchQInfo->intRegCheckMask = 0x0010 * intRegVal == currDispatchQInfo->intRegCheckMask is true. */ currDispatchQInfo = &dispatchQInfo[qIndex]; if (intRegVal == currDispatchQInfo->intRegCheckMask) { /* * check if Q type periodic - only lower queues can * have there type set to periodic */ if (IX_QMGR_TYPE_REALTIME_PERIODIC == ixQMgrQTypes[qIndex]) { /* * Disable the notifications on any sporadics */ for (i=0; i <= IX_QMGR_MAX_LOW_QUE_TABLE_INDEX; i++) { if (IX_QMGR_TYPE_REALTIME_SPORADIC == ixQMgrQTypes[i]) { ixQMgrNotificationDisable(i); #ifndef NDEBUG /* Update statistics */ dispatcherStats.queueStats[i].disableCount++; #endif } } } currDispatchQInfo->callback (qIndex, currDispatchQInfo->callbackId); #ifndef NDEBUG /* Update statistics */ dispatcherStats.queueStats[qIndex].callbackCnt++; #endif } else { /* the event is triggered by more than 1 queue, * the queue search will be starting from the beginning * or the middle of the priority table * * the serach will end when all the bits of the interrupt * register are cleared. There is no need to maintain * a seperate value and test it at each iteration. */ if (IX_QMGR_QUELOW_GROUP == group) { /* check if any bit related to queues in the first * half of the priority table is set */ if (intRegVal & lowPriorityTableFirstHalfMask) { priorityTableIndex = IX_QMGR_MIN_LOW_QUE_PRIORITY_TABLE_INDEX; } else { priorityTableIndex = IX_QMGR_MID_LOW_QUE_PRIORITY_TABLE_INDEX; } } else { /* check if any bit related to queues in the first * half of the priority table is set */ if (intRegVal & uppPriorityTableFirstHalfMask) { priorityTableIndex = IX_QMGR_MIN_UPP_QUE_PRIORITY_TABLE_INDEX; } else { priorityTableIndex = IX_QMGR_MID_UPP_QUE_PRIORITY_TABLE_INDEX; } } /* iterate following the priority table until all the bits * of the interrupt register are cleared. */ do { qIndex = priorityTable[priorityTableIndex++]; currDispatchQInfo = &dispatchQInfo[qIndex]; intRegCheckMask = currDispatchQInfo->intRegCheckMask; /* If this queue caused this interrupt to be raised */ if (intRegVal & intRegCheckMask) { /* * check if Q type periodic - only lower queues can * have there type set to periodic. There can only be one * periodic queue, so the sporadics are only disabled once. */ if (IX_QMGR_TYPE_REALTIME_PERIODIC == ixQMgrQTypes[qIndex]) { /* * Disable the notifications on any sporadics */ for (i=0; i <= IX_QMGR_MAX_LOW_QUE_TABLE_INDEX; i++) { if (IX_QMGR_TYPE_REALTIME_SPORADIC == ixQMgrQTypes[i]) { ixQMgrNotificationDisable(i); /* * remove from intRegVal as we don't want * to service any sporadics now */ intRegVal &= ~dispatchQInfo[i].intRegCheckMask; #ifndef NDEBUG /* Update statistics */ dispatcherStats.queueStats[i].disableCount++; #endif } } } currDispatchQInfo->callback (qIndex, currDispatchQInfo->callbackId); #ifndef NDEBUG /* Update statistics */ dispatcherStats.queueStats[qIndex].callbackCnt++; #endif /* Clear the interrupt register bit */ intRegVal &= ~intRegCheckMask; } } while(intRegVal); } /*End of intRegVal == currDispatchQInfo->intRegCheckMask */ } /* End of intRegVal != 0 */ #ifndef NDEBUG /* Update statistics */ dispatcherStats.loopRunCnt++; #endif if ((intRegValCopy != 0) && (IX_QMGR_QUELOW_GROUP == group)) { /* * lower groups (therefore sticky) AND at least one enabled interrupt * Write back to clear the interrupt */ ixQMgrAqmIfQInterruptRegWrite (IX_QMGR_QUELOW_GROUP, intRegValCopy); } /* Rebuild the priority table if needed */ if (rebuildTable) { ixQMgrDispatcherReBuildPriorityTable (); } } PRIVATE void ixQMgrDispatcherReBuildPriorityTable (void) { UINT32 qIndex; UINT32 priority; int lowQuePriorityTableIndex = IX_QMGR_MIN_LOW_QUE_PRIORITY_TABLE_INDEX; int uppQuePriorityTableIndex = IX_QMGR_MIN_UPP_QUE_PRIORITY_TABLE_INDEX; /* Reset the rebuild flag */ rebuildTable = false; /* initialize the mak used to identify the queues in the first half * of the priority table */ lowPriorityTableFirstHalfMask = 0; uppPriorityTableFirstHalfMask = 0; /* For each priority level */ for(priority=0; priority dummyCallback: qId (%d), callbackId (%d)\n",qId,cbId); } dispatchQInfo[qId].dummyCallbackCount++; #ifndef NDEBUG /* Update statistcs */ dispatcherStats.queueStats[qId].intNoCallbackCnt++; #endif } void ixQMgrLLPShow (int resetStats) { #ifndef NDEBUG UINT8 i = 0; UINT32 intEnableRegVal = 0; printf ("Livelock statistics are printed on the fly.\n"); printf ("qId Type EnableCnt DisableCnt IntEnableState Callbacks\n"); printf ("=== ======== ========= ========== ============== =========\n"); for (i=0; i<= IX_QMGR_MAX_LOW_QUE_TABLE_INDEX; i++) { if (ixQMgrQTypes[i] != IX_QMGR_TYPE_REALTIME_OTHER) { printf (" %2d ", i); if (ixQMgrQTypes[i] == IX_QMGR_TYPE_REALTIME_SPORADIC) { printf ("Sporadic"); } else { printf ("Periodic"); } ixQMgrAqmIfQInterruptEnableRegRead (IX_QMGR_QUELOW_GROUP, &intEnableRegVal); intEnableRegVal &= dispatchQInfo[i].intRegCheckMask; intEnableRegVal = intEnableRegVal >> i; printf (" %10d %10d %10d %10d\n", dispatcherStats.queueStats[i].enableCount, dispatcherStats.queueStats[i].disableCount, intEnableRegVal, dispatcherStats.queueStats[i].callbackCnt); if (resetStats) { dispatcherStats.queueStats[i].enableCount = dispatcherStats.queueStats[i].disableCount = dispatcherStats.queueStats[i].callbackCnt = 0; } } } #else IX_QMGR_LOG0("Livelock Prevention statistics are only collected in debug mode\n"); #endif } void ixQMgrPeriodicDone (void) { UINT32 i = 0; UINT32 ixQMgrLockKey = 0; /* * for the lower queues */ for (i=0; i <= IX_QMGR_MAX_LOW_QUE_TABLE_INDEX; i++) { /* * check for sporadics */ if (IX_QMGR_TYPE_REALTIME_SPORADIC == ixQMgrQTypes[i]) { /* * enable any sporadics */ ixQMgrLockKey = ixOsalIrqLock(); ixQMgrAqmIfQInterruptEnable(i); ixOsalIrqUnlock(ixQMgrLockKey); #ifndef NDEBUG /* * Update statistics */ dispatcherStats.queueStats[i].enableCount++; dispatcherStats.queueStats[i].notificationEnabled = true; #endif } } } IX_STATUS ixQMgrCallbackTypeSet (IxQMgrQId qId, IxQMgrType type) { UINT32 ixQMgrLockKey = 0; IxQMgrType ixQMgrOldType =0; #ifndef NDEBUG if (!ixQMgrQIsConfigured(qId)) { return IX_QMGR_Q_NOT_CONFIGURED; } if (qId >= IX_QMGR_MIN_QUEUPP_QID) { return IX_QMGR_PARAMETER_ERROR; } if(!IX_QMGR_DISPATCHER_CALLBACK_TYPE_CHECK(type)) { return IX_QMGR_PARAMETER_ERROR; } #endif ixQMgrOldType = ixQMgrQTypes[qId]; ixQMgrQTypes[qId] = type; /* * check if Q has been changed from type SPORADIC */ if (IX_QMGR_TYPE_REALTIME_SPORADIC == ixQMgrOldType) { /* * previously Q was a SPORADIC, this means that LLP * might have had it disabled. enable it now. */ ixQMgrLockKey = ixOsalIrqLock(); ixQMgrAqmIfQInterruptEnable(qId); ixOsalIrqUnlock(ixQMgrLockKey); #ifndef NDEBUG /* * Update statistics */ dispatcherStats.queueStats[qId].enableCount++; #endif } return IX_SUCCESS; } IX_STATUS ixQMgrCallbackTypeGet (IxQMgrQId qId, IxQMgrType *type) { #ifndef NDEBUG if (!ixQMgrQIsConfigured(qId)) { return IX_QMGR_Q_NOT_CONFIGURED; } if (qId >= IX_QMGR_MIN_QUEUPP_QID) { return IX_QMGR_PARAMETER_ERROR; } if(type == NULL) { return IX_QMGR_PARAMETER_ERROR; } #endif *type = ixQMgrQTypes[qId]; return IX_SUCCESS; }