/* * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd * (C) Copyright 2008,2009 Eric Jarrige * (C) Copyright 2008 Armadeus Systems nc * (C) Copyright 2007 Pengutronix, Sascha Hauer * (C) Copyright 2007 Pengutronix, Juergen Beisert * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include "fec_mxc.h" #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #ifndef CONFIG_MII #error "CONFIG_MII has to be defined!" #endif #ifndef CONFIG_FEC_XCV_TYPE #define CONFIG_FEC_XCV_TYPE MII100 #endif /* * The i.MX28 operates with packets in big endian. We need to swap them before * sending and after receiving. */ #ifdef CONFIG_MX28 #define CONFIG_FEC_MXC_SWAP_PACKET #endif #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd)) /* Check various alignment issues at compile time */ #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0)) #error "ARCH_DMA_MINALIGN must be multiple of 16!" #endif #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \ (PKTALIGN % ARCH_DMA_MINALIGN != 0)) #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!" #endif #undef DEBUG struct nbuf { uint8_t data[1500]; /**< actual data */ int length; /**< actual length */ int used; /**< buffer in use or not */ uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */ }; #ifdef CONFIG_FEC_MXC_SWAP_PACKET static void swap_packet(uint32_t *packet, int length) { int i; for (i = 0; i < DIV_ROUND_UP(length, 4); i++) packet[i] = __swab32(packet[i]); } #endif /* * MII-interface related functions */ static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr, uint8_t regAddr) { uint32_t reg; /* convenient holder for the PHY register */ uint32_t phy; /* convenient holder for the PHY */ uint32_t start; int val; /* * reading from any PHY's register is done by properly * programming the FEC's MII data register. */ writel(FEC_IEVENT_MII, ð->ievent); reg = regAddr << FEC_MII_DATA_RA_SHIFT; phy = phyAddr << FEC_MII_DATA_PA_SHIFT; writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | phy | reg, ð->mii_data); /* * wait for the related interrupt */ start = get_timer(0); while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { printf("Read MDIO failed...\n"); return -1; } } /* * clear mii interrupt bit */ writel(FEC_IEVENT_MII, ð->ievent); /* * it's now safe to read the PHY's register */ val = (unsigned short)readl(ð->mii_data); debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr, regAddr, val); return val; } static void fec_mii_setspeed(struct fec_priv *fec) { /* * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock * and do not drop the Preamble. */ writel((((imx_get_fecclk() / 1000000) + 2) / 5) << 1, &fec->eth->mii_speed); debug("%s: mii_speed %08x\n", __func__, readl(&fec->eth->mii_speed)); } static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr, uint8_t regAddr, uint16_t data) { uint32_t reg; /* convenient holder for the PHY register */ uint32_t phy; /* convenient holder for the PHY */ uint32_t start; reg = regAddr << FEC_MII_DATA_RA_SHIFT; phy = phyAddr << FEC_MII_DATA_PA_SHIFT; writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR | FEC_MII_DATA_TA | phy | reg | data, ð->mii_data); /* * wait for the MII interrupt */ start = get_timer(0); while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { printf("Write MDIO failed...\n"); return -1; } } /* * clear MII interrupt bit */ writel(FEC_IEVENT_MII, ð->ievent); debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr, regAddr, data); return 0; } int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr) { return fec_mdio_read(bus->priv, phyAddr, regAddr); } int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, int regAddr, u16 data) { return fec_mdio_write(bus->priv, phyAddr, regAddr, data); } #ifndef CONFIG_PHYLIB static int miiphy_restart_aneg(struct eth_device *dev) { struct fec_priv *fec = (struct fec_priv *)dev->priv; struct ethernet_regs *eth = fec->bus->priv; int ret = 0; /* * Wake up from sleep if necessary * Reset PHY, then delay 300ns */ #ifdef CONFIG_MX27 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF); #endif fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET); udelay(1000); /* * Set the auto-negotiation advertisement register bits */ fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE, LPA_100FULL | LPA_100HALF | LPA_10FULL | LPA_10HALF | PHY_ANLPAR_PSB_802_3); fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); if (fec->mii_postcall) ret = fec->mii_postcall(fec->phy_id); return ret; } static int miiphy_wait_aneg(struct eth_device *dev) { uint32_t start; int status; struct fec_priv *fec = (struct fec_priv *)dev->priv; struct ethernet_regs *eth = fec->bus->priv; /* * Wait for AN completion */ start = get_timer(0); do { if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { printf("%s: Autonegotiation timeout\n", dev->name); return -1; } status = fec_mdio_read(eth, fec->phy_id, MII_BMSR); if (status < 0) { printf("%s: Autonegotiation failed. status: %d\n", dev->name, status); return -1; } } while (!(status & BMSR_LSTATUS)); return 0; } #endif static int fec_rx_task_enable(struct fec_priv *fec) { writel(1 << 24, &fec->eth->r_des_active); return 0; } static int fec_rx_task_disable(struct fec_priv *fec) { return 0; } static int fec_tx_task_enable(struct fec_priv *fec) { writel(1 << 24, &fec->eth->x_des_active); return 0; } static int fec_tx_task_disable(struct fec_priv *fec) { return 0; } /** * Initialize receive task's buffer descriptors * @param[in] fec all we know about the device yet * @param[in] count receive buffer count to be allocated * @param[in] dsize desired size of each receive buffer * @return 0 on success * * For this task we need additional memory for the data buffers. And each * data buffer requires some alignment. Thy must be aligned to a specific * boundary each. */ static int fec_rbd_init(struct fec_priv *fec, int count, int dsize) { uint32_t size; int i; /* * Allocate memory for the buffers. This allocation respects the * alignment */ size = roundup(dsize, ARCH_DMA_MINALIGN); for (i = 0; i < count; i++) { uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer); if (data_ptr == 0) { uint8_t *data = memalign(ARCH_DMA_MINALIGN, size); if (!data) { printf("%s: error allocating rxbuf %d\n", __func__, i); goto err; } writel((uint32_t)data, &fec->rbd_base[i].data_pointer); } /* needs allocation */ writew(FEC_RBD_EMPTY, &fec->rbd_base[i].status); writew(0, &fec->rbd_base[i].data_length); } /* Mark the last RBD to close the ring. */ writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[i - 1].status); fec->rbd_index = 0; return 0; err: for (; i >= 0; i--) { uint32_t data_ptr = readl(&fec->rbd_base[i].data_pointer); free((void *)data_ptr); } return -ENOMEM; } /** * Initialize transmit task's buffer descriptors * @param[in] fec all we know about the device yet * * Transmit buffers are created externally. We only have to init the BDs here.\n * Note: There is a race condition in the hardware. When only one BD is in * use it must be marked with the WRAP bit to use it for every transmitt. * This bit in combination with the READY bit results into double transmit * of each data buffer. It seems the state machine checks READY earlier then * resetting it after the first transfer. * Using two BDs solves this issue. */ static void fec_tbd_init(struct fec_priv *fec) { unsigned addr = (unsigned)fec->tbd_base; unsigned size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); writew(0x0000, &fec->tbd_base[0].status); writew(FEC_TBD_WRAP, &fec->tbd_base[1].status); fec->tbd_index = 0; flush_dcache_range(addr, addr+size); } /** * Mark the given read buffer descriptor as free * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0 * @param[in] pRbd buffer descriptor to mark free again */ static void fec_rbd_clean(int last, struct fec_bd *pRbd) { unsigned short flags = FEC_RBD_EMPTY; if (last) flags |= FEC_RBD_WRAP; writew(flags, &pRbd->status); writew(0, &pRbd->data_length); } static int fec_get_hwaddr(struct eth_device *dev, int dev_id, unsigned char *mac) { imx_get_mac_from_fuse(dev_id, mac); return !is_valid_ether_addr(mac); } static int fec_set_hwaddr(struct eth_device *dev) { uchar *mac = dev->enetaddr; struct fec_priv *fec = (struct fec_priv *)dev->priv; writel(0, &fec->eth->iaddr1); writel(0, &fec->eth->iaddr2); writel(0, &fec->eth->gaddr1); writel(0, &fec->eth->gaddr2); /* * Set physical address */ writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], &fec->eth->paddr1); writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2); return 0; } static void fec_eth_phy_config(struct eth_device *dev) { #ifdef CONFIG_PHYLIB struct fec_priv *fec = (struct fec_priv *)dev->priv; struct phy_device *phydev; phydev = phy_connect(fec->bus, fec->phy_id, dev, PHY_INTERFACE_MODE_RGMII); if (phydev) { fec->phydev = phydev; phy_config(phydev); } #endif } /** * Start the FEC engine * @param[in] dev Our device to handle */ static int fec_open(struct eth_device *edev) { struct fec_priv *fec = (struct fec_priv *)edev->priv; int speed; uint32_t addr, size; int i; debug("fec_open: fec_open(dev)\n"); /* full-duplex, heartbeat disabled */ writel(1 << 2, &fec->eth->x_cntrl); fec->rbd_index = 0; /* Invalidate all descriptors */ for (i = 0; i < FEC_RBD_NUM - 1; i++) fec_rbd_clean(0, &fec->rbd_base[i]); fec_rbd_clean(1, &fec->rbd_base[i]); /* Flush the descriptors into RAM */ size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); addr = (uint32_t)fec->rbd_base; flush_dcache_range(addr, addr + size); #ifdef FEC_QUIRK_ENET_MAC /* Enable ENET HW endian SWAP */ writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP, &fec->eth->ecntrl); /* Enable ENET store and forward mode */ writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD, &fec->eth->x_wmrk); #endif /* * Enable FEC-Lite controller */ writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN, &fec->eth->ecntrl); #if defined(CONFIG_MX25) || defined(CONFIG_MX53) udelay(100); /* * setup the MII gasket for RMII mode */ /* disable the gasket */ writew(0, &fec->eth->miigsk_enr); /* wait for the gasket to be disabled */ while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) udelay(2); /* configure gasket for RMII, 50 MHz, no loopback, and no echo */ writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr); /* re-enable the gasket */ writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr); /* wait until MII gasket is ready */ int max_loops = 10; while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) { if (--max_loops <= 0) { printf("WAIT for MII Gasket ready timed out\n"); break; } } #endif #ifdef CONFIG_PHYLIB if (!fec->phydev) fec_eth_phy_config(edev); if (fec->phydev) { /* Start up the PHY */ phy_startup(fec->phydev); speed = fec->phydev->speed; } else { speed = _100BASET; } #else miiphy_wait_aneg(edev); speed = miiphy_speed(edev->name, fec->phy_id); miiphy_duplex(edev->name, fec->phy_id); #endif #ifdef FEC_QUIRK_ENET_MAC { u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED; u32 rcr = (readl(&fec->eth->r_cntrl) & ~(FEC_RCNTRL_RMII | FEC_RCNTRL_RMII_10T)) | FEC_RCNTRL_RGMII | FEC_RCNTRL_MII_MODE; if (speed == _1000BASET) ecr |= FEC_ECNTRL_SPEED; else if (speed != _100BASET) rcr |= FEC_RCNTRL_RMII_10T; writel(ecr, &fec->eth->ecntrl); writel(rcr, &fec->eth->r_cntrl); } #endif debug("%s:Speed=%i\n", __func__, speed); /* * Enable SmartDMA receive task */ fec_rx_task_enable(fec); udelay(100000); return 0; } static int fec_init(struct eth_device *dev, bd_t* bd) { struct fec_priv *fec = (struct fec_priv *)dev->priv; uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop; uint32_t rcntrl; uint32_t size; int i, ret; /* Initialize MAC address */ fec_set_hwaddr(dev); /* * Allocate transmit descriptors, there are two in total. This * allocation respects cache alignment. */ if (!fec->tbd_base) { size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size); if (!fec->tbd_base) { ret = -ENOMEM; goto err1; } memset(fec->tbd_base, 0, size); fec_tbd_init(fec); flush_dcache_range((unsigned)fec->tbd_base, size); } /* * Allocate receive descriptors. This allocation respects cache * alignment. */ if (!fec->rbd_base) { size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size); if (!fec->rbd_base) { ret = -ENOMEM; goto err2; } memset(fec->rbd_base, 0, size); /* * Initialize RxBD ring */ if (fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE) < 0) { ret = -ENOMEM; goto err3; } flush_dcache_range((unsigned)fec->rbd_base, (unsigned)fec->rbd_base + size); } /* * Set interrupt mask register */ writel(0x00000000, &fec->eth->imask); /* * Clear FEC-Lite interrupt event register(IEVENT) */ writel(0xffffffff, &fec->eth->ievent); /* * Set FEC-Lite receive control register(R_CNTRL): */ /* Start with frame length = 1518, common for all modes. */ rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT; if (fec->xcv_type == SEVENWIRE) rcntrl |= FEC_RCNTRL_FCE; else if (fec->xcv_type == RGMII) rcntrl |= FEC_RCNTRL_RGMII; else if (fec->xcv_type == RMII) rcntrl |= FEC_RCNTRL_RMII; else /* MII mode */ rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE; writel(rcntrl, &fec->eth->r_cntrl); if (fec->xcv_type == MII10 || fec->xcv_type == MII100) fec_mii_setspeed(fec); /* * Set Opcode/Pause Duration Register */ writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */ writel(0x2, &fec->eth->x_wmrk); /* * Set multicast address filter */ writel(0x00000000, &fec->eth->gaddr1); writel(0x00000000, &fec->eth->gaddr2); /* clear MIB RAM */ for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4) writel(0, i); /* FIFO receive start register */ writel(0x520, &fec->eth->r_fstart); /* size and address of each buffer */ writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr); writel((uint32_t)fec->tbd_base, &fec->eth->etdsr); writel((uint32_t)fec->rbd_base, &fec->eth->erdsr); #ifndef CONFIG_PHYLIB if (fec->xcv_type != SEVENWIRE) miiphy_restart_aneg(dev); #endif fec_open(dev); return 0; err3: free(fec->rbd_base); err2: free(fec->tbd_base); err1: return ret; } /** * Halt the FEC engine * @param[in] dev Our device to handle */ static void fec_halt(struct eth_device *dev) { struct fec_priv *fec = (struct fec_priv *)dev->priv; int counter = 0xffff; /* * issue graceful stop command to the FEC transmitter if necessary */ writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl); debug("eth_halt: wait for stop regs\n"); /* * wait for graceful stop to register */ while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA))) udelay(1); /* * Disable SmartDMA tasks */ fec_tx_task_disable(fec); fec_rx_task_disable(fec); /* * Disable the Ethernet Controller * Note: this will also reset the BD index counter! */ writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN, &fec->eth->ecntrl); fec->rbd_index = 0; fec->tbd_index = 0; debug("eth_halt: done\n"); } /** * Transmit one frame * @param[in] dev Our ethernet device to handle * @param[in] packet Pointer to the data to be transmitted * @param[in] length Data count in bytes * @return 0 on success */ static int fec_send(struct eth_device *dev, volatile void *packet, int length) { unsigned int status; uint32_t size; uint32_t addr; /* * This routine transmits one frame. This routine only accepts * 6-byte Ethernet addresses. */ struct fec_priv *fec = (struct fec_priv *)dev->priv; /* * Check for valid length of data. */ if ((length > 1500) || (length <= 0)) { printf("Payload (%d) too large\n", length); return -1; } /* * Setup the transmit buffer. We are always using the first buffer for * transmission, the second will be empty and only used to stop the DMA * engine. We also flush the packet to RAM here to avoid cache trouble. */ #ifdef CONFIG_FEC_MXC_SWAP_PACKET swap_packet((uint32_t *)packet, length); #endif addr = (uint32_t)packet; size = roundup(length, ARCH_DMA_MINALIGN); flush_dcache_range(addr, addr + size); writew(length, &fec->tbd_base[fec->tbd_index].data_length); writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer); /* * update BD's status now * This block: * - is always the last in a chain (means no chain) * - should transmitt the CRC * - might be the last BD in the list, so the address counter should * wrap (-> keep the WRAP flag) */ status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP; status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY; writew(status, &fec->tbd_base[fec->tbd_index].status); /* * Flush data cache. This code flushes both TX descriptors to RAM. * After this code, the descriptors will be safely in RAM and we * can start DMA. */ size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); addr = (uint32_t)fec->tbd_base; flush_dcache_range(addr, addr + size); /* * Enable SmartDMA transmit task */ fec_tx_task_enable(fec); /* * Wait until frame is sent. On each turn of the wait cycle, we must * invalidate data cache to see what's really in RAM. Also, we need * barrier here. */ invalidate_dcache_range(addr, addr + size); while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) { udelay(1); invalidate_dcache_range(addr, addr + size); } debug("fec_send: status 0x%x index %d\n", readw(&fec->tbd_base[fec->tbd_index].status), fec->tbd_index); /* for next transmission use the other buffer */ if (fec->tbd_index) fec->tbd_index = 0; else fec->tbd_index = 1; return 0; } /** * Pull one frame from the card * @param[in] dev Our ethernet device to handle * @return Length of packet read */ static int fec_recv(struct eth_device *dev) { struct fec_priv *fec = (struct fec_priv *)dev->priv; struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index]; unsigned long ievent; int frame_length, len = 0; struct nbuf *frame; uint16_t bd_status; uint32_t addr, size; int i; uchar buff[FEC_MAX_PKT_SIZE]; /* * Check if any critical events have happened */ ievent = readl(&fec->eth->ievent); writel(ievent, &fec->eth->ievent); debug("fec_recv: ievent 0x%lx\n", ievent); if (ievent & FEC_IEVENT_BABR) { fec_halt(dev); fec_init(dev, fec->bd); printf("some error: 0x%08lx\n", ievent); return 0; } if (ievent & FEC_IEVENT_HBERR) { /* Heartbeat error */ writel(0x00000001 | readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl); } if (ievent & FEC_IEVENT_GRA) { /* Graceful stop complete */ if (readl(&fec->eth->x_cntrl) & 0x00000001) { fec_halt(dev); writel(~0x00000001 & readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl); fec_init(dev, fec->bd); } } /* * Read the buffer status. Before the status can be read, the data cache * must be invalidated, because the data in RAM might have been changed * by DMA. The descriptors are properly aligned to cachelines so there's * no need to worry they'd overlap. * * WARNING: By invalidating the descriptor here, we also invalidate * the descriptors surrounding this one. Therefore we can NOT change the * contents of this descriptor nor the surrounding ones. The problem is * that in order to mark the descriptor as processed, we need to change * the descriptor. The solution is to mark the whole cache line when all * descriptors in the cache line are processed. */ addr = (uint32_t)rbd; addr &= ~(ARCH_DMA_MINALIGN - 1); size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN); invalidate_dcache_range(addr, addr + size); bd_status = readw(&rbd->status); debug("fec_recv: status 0x%x\n", bd_status); if (!(bd_status & FEC_RBD_EMPTY)) { if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) && ((readw(&rbd->data_length) - 4) > 14)) { /* * Get buffer address and size */ frame = (struct nbuf *)readl(&rbd->data_pointer); frame_length = readw(&rbd->data_length) - 4; /* * Invalidate data cache over the buffer */ addr = (uint32_t)frame; size = roundup(frame_length, ARCH_DMA_MINALIGN); invalidate_dcache_range(addr, addr + size); /* * Fill the buffer and pass it to upper layers */ #ifdef CONFIG_FEC_MXC_SWAP_PACKET swap_packet((uint32_t *)frame->data, frame_length); #endif memcpy(buff, frame->data, frame_length); NetReceive(buff, frame_length); len = frame_length; } else { if (bd_status & FEC_RBD_ERR) printf("error frame: 0x%08lx 0x%08x\n", (ulong)rbd->data_pointer, bd_status); } /* * Free the current buffer, restart the engine and move forward * to the next buffer. Here we check if the whole cacheline of * descriptors was already processed and if so, we mark it free * as whole. */ size = RXDESC_PER_CACHELINE - 1; if ((fec->rbd_index & size) == size) { i = fec->rbd_index - size; addr = (uint32_t)&fec->rbd_base[i]; for (; i <= fec->rbd_index ; i++) { fec_rbd_clean(i == (FEC_RBD_NUM - 1), &fec->rbd_base[i]); } flush_dcache_range(addr, addr + ARCH_DMA_MINALIGN); } fec_rx_task_enable(fec); fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM; } debug("fec_recv: stop\n"); return len; } static int fec_probe(bd_t *bd, int dev_id, int phy_id, uint32_t base_addr) { struct eth_device *edev; struct fec_priv *fec; struct mii_dev *bus; unsigned char ethaddr[6]; uint32_t start; int ret = 0; /* create and fill edev struct */ edev = (struct eth_device *)malloc(sizeof(struct eth_device)); if (!edev) { puts("fec_mxc: not enough malloc memory for eth_device\n"); ret = -ENOMEM; goto err1; } fec = (struct fec_priv *)malloc(sizeof(struct fec_priv)); if (!fec) { puts("fec_mxc: not enough malloc memory for fec_priv\n"); ret = -ENOMEM; goto err2; } memset(edev, 0, sizeof(*edev)); memset(fec, 0, sizeof(*fec)); edev->priv = fec; edev->init = fec_init; edev->send = fec_send; edev->recv = fec_recv; edev->halt = fec_halt; edev->write_hwaddr = fec_set_hwaddr; fec->eth = (struct ethernet_regs *)base_addr; fec->bd = bd; fec->xcv_type = CONFIG_FEC_XCV_TYPE; /* Reset chip. */ writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl); start = get_timer(0); while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) { if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { printf("FEC MXC: Timeout reseting chip\n"); goto err3; } udelay(10); } /* * Set interrupt mask register */ writel(0x00000000, &fec->eth->imask); /* * Clear FEC-Lite interrupt event register(IEVENT) */ writel(0xffffffff, &fec->eth->ievent); /* * Set FEC-Lite receive control register(R_CNTRL): */ /* * Frame length=1518; MII mode; */ writel((PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT) | FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE, &fec->eth->r_cntrl); fec_mii_setspeed(fec); if (dev_id == -1) { sprintf(edev->name, "FEC"); fec->dev_id = 0; } else { sprintf(edev->name, "FEC%i", dev_id); fec->dev_id = dev_id; } fec->phy_id = phy_id; bus = mdio_alloc(); if (!bus) { printf("mdio_alloc failed\n"); ret = -ENOMEM; goto err3; } bus->read = fec_phy_read; bus->write = fec_phy_write; sprintf(bus->name, edev->name); #ifdef CONFIG_MX28 /* * The i.MX28 has two ethernet interfaces, but they are not equal. * Only the first one can access the MDIO bus. */ bus->priv = (struct ethernet_regs *)MXS_ENET0_BASE; #else bus->priv = fec->eth; #endif ret = mdio_register(bus); if (ret) { printf("mdio_register failed\n"); free(bus); ret = -ENOMEM; goto err3; } fec->bus = bus; eth_register(edev); if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) { debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr); memcpy(edev->enetaddr, ethaddr, 6); } /* Configure phy */ fec_eth_phy_config(edev); return ret; err3: free(fec); err2: free(edev); err1: return ret; } #ifndef CONFIG_FEC_MXC_MULTI int fecmxc_initialize(bd_t *bd) { int lout = 1; debug("eth_init: fec_probe(bd)\n"); lout = fec_probe(bd, -1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE); return lout; } #endif int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr) { int lout = 1; debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr); lout = fec_probe(bd, dev_id, phy_id, addr); return lout; } #ifndef CONFIG_PHYLIB int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int)) { struct fec_priv *fec = (struct fec_priv *)dev->priv; fec->mii_postcall = cb; return 0; } #endif