/* * (C) Copyright 2007 STMicroelectronics, * (C) Copyright 2009 Alessandro Rubini * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include static inline int parity(int b) /* b is really a byte; returns 0 or ~0 */ { __asm__ __volatile__( "eor %0, %0, %0, lsr #4\n\t" "eor %0, %0, %0, lsr #2\n\t" "eor %0, %0, %0, lsr #1\n\t" "ands %0, %0, #1\n\t" "subne %0, %0, #2\t" : "=r" (b) : "0" (b)); return b; } /* * This is the ECC routine used in hardware, according to the manual. * HW claims to make the calculation but not the correction; so we must * recalculate the bytes for a comparison. */ static int ecc512(const unsigned char *data, unsigned char *ecc) { int gpar = 0; int i, val, par; int pbits = 0; /* P8, P16, ... P2048 */ int pprime = 0; /* P8', P16', ... P2048' */ int lowbits; /* P1, P2, P4 and primes */ for (i = 0; i < 512; i++) { par = parity((val = data[i])); gpar ^= val; pbits ^= (i & par); } /* * Ok, now gpar is global parity (xor of all bytes) * pbits are all the parity bits (non-prime ones) */ par = parity(gpar); pprime = pbits ^ par; /* Put low bits in the right position for ecc[2] (bits 7..2) */ lowbits = 0 | (parity(gpar & 0xf0) & 0x80) /* P4 */ | (parity(gpar & 0x0f) & 0x40) /* P4' */ | (parity(gpar & 0xcc) & 0x20) /* P2 */ | (parity(gpar & 0x33) & 0x10) /* P2' */ | (parity(gpar & 0xaa) & 0x08) /* P1 */ | (parity(gpar & 0x55) & 0x04); /* P1' */ ecc[2] = ~(lowbits | ((pbits & 0x100) >> 7) | ((pprime & 0x100) >> 8)); /* now intermix bits for ecc[1] (P1024..P128') and ecc[0] (P64..P8') */ ecc[1] = ~( (pbits & 0x80) >> 0 | ((pprime & 0x80) >> 1) | ((pbits & 0x40) >> 1) | ((pprime & 0x40) >> 2) | ((pbits & 0x20) >> 2) | ((pprime & 0x20) >> 3) | ((pbits & 0x10) >> 3) | ((pprime & 0x10) >> 4)); ecc[0] = ~( (pbits & 0x8) << 4 | ((pprime & 0x8) << 3) | ((pbits & 0x4) << 3) | ((pprime & 0x4) << 2) | ((pbits & 0x2) << 2) | ((pprime & 0x2) << 1) | ((pbits & 0x1) << 1) | ((pprime & 0x1) << 0)); return 0; } /* This is the method in the chip->ecc field */ static int nomadik_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat, uint8_t *ecc_code) { return ecc512(dat, ecc_code); } static int nomadik_ecc_correct(struct mtd_info *mtd, uint8_t *dat, uint8_t *r_ecc, uint8_t *c_ecc) { struct nand_chip *chip = mtd->priv; uint32_t r, c, d, diff; /*read, calculated, xor of them */ if (!memcmp(r_ecc, c_ecc, chip->ecc.bytes)) return 0; /* Reorder the bytes into ascending-order 24 bits -- see manual */ r = r_ecc[2] << 22 | r_ecc[1] << 14 | r_ecc[0] << 6 | r_ecc[2] >> 2; c = c_ecc[2] << 22 | c_ecc[1] << 14 | c_ecc[0] << 6 | c_ecc[2] >> 2; diff = (r ^ c) & ((1<<24)-1); /* use 24 bits only */ /* If 12 bits are different, one per pair, it's correctable */ if (((diff | (diff>>1)) & 0x555555) == 0x555555) { int bit = ((diff & 2) >> 1) | ((diff & 0x8) >> 2) | ((diff & 0x20) >> 3); int byte; d = diff >> 6; /* remove bit-order info */ byte = ((d & 2) >> 1) | ((d & 0x8) >> 2) | ((d & 0x20) >> 3) | ((d & 0x80) >> 4) | ((d & 0x200) >> 5) | ((d & 0x800) >> 6) | ((d & 0x2000) >> 7) | ((d & 0x8000) >> 8) | ((d & 0x20000) >> 9); /* correct the single bit */ dat[byte] ^= 1<priv; u32 pcr0 = readl(REG_FSMC_PCR0); if (ctrl & NAND_CTRL_CHANGE) { ulong IO_ADDR_W = (ulong) this->IO_ADDR_W; IO_ADDR_W &= ~(MASK_ALE | MASK_CLE); if (ctrl & NAND_CLE) IO_ADDR_W |= MASK_CLE; if (ctrl & NAND_ALE) IO_ADDR_W |= MASK_ALE; if (ctrl & NAND_NCE) writel(pcr0 | 0x4, REG_FSMC_PCR0); else writel(pcr0 & ~0x4, REG_FSMC_PCR0); this->IO_ADDR_W = (void *) IO_ADDR_W; this->IO_ADDR_R = (void *) IO_ADDR_W; } if (cmd != NAND_CMD_NONE) writeb(cmd, this->IO_ADDR_W); } /* Returns 1 when ready; upper layers timeout at 20ms with timer routines */ static int nomadik_nand_ready(struct mtd_info *mtd) { return 1; /* The ready bit is handled in hardware */ } /* Copy a buffer 32bits at a time: faster than defualt method which is 8bit */ static void nomadik_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { int i; struct nand_chip *chip = mtd->priv; u32 *p = (u32 *) buf; len >>= 2; writel(0, REG_FSMC_ECCR0); for (i = 0; i < len; i++) p[i] = readl(chip->IO_ADDR_R); } int board_nand_init(struct nand_chip *chip) { /* Set up the FSMC_PCR0 for nand access*/ writel(0x0000004a, REG_FSMC_PCR0); /* Set up FSMC_PMEM0, FSMC_PATT0 with timing data for access */ writel(0x00020401, REG_FSMC_PMEM0); writel(0x00020404, REG_FSMC_PATT0); chip->options = NAND_COPYBACK | NAND_CACHEPRG | NAND_NO_PADDING; chip->cmd_ctrl = nomadik_nand_hwcontrol; chip->dev_ready = nomadik_nand_ready; /* The chip allows 32bit reads, so avoid the default 8bit copy */ chip->read_buf = nomadik_nand_read_buf; /* ECC: follow the hardware-defined rulse, but do it in sw */ chip->ecc.mode = NAND_ECC_HW; chip->ecc.bytes = 3; chip->ecc.size = 512; chip->ecc.layout = &nomadik_ecc_layout; chip->ecc.calculate = nomadik_ecc_calculate; chip->ecc.hwctl = nomadik_ecc_hwctl; chip->ecc.correct = nomadik_ecc_correct; return 0; }