/* * drivers/mtd/nand/diskonchip.c * * (C) 2003 Red Hat, Inc. * (C) 2004 Dan Brown * (C) 2004 Kalev Lember * * Author: David Woodhouse * Additional Diskonchip 2000 and Millennium support by Dan Brown * Diskonchip Millennium Plus support by Kalev Lember * * Error correction code lifted from the old docecc code * Author: Fabrice Bellard (fabrice.bellard@netgem.com) * Copyright (C) 2000 Netgem S.A. * converted to the generic Reed-Solomon library by Thomas Gleixner * * Interface to generic NAND code for M-Systems DiskOnChip devices */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Where to look for the devices? */ #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0 #endif static unsigned long __initdata doc_locations[] = { #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, #else /* CONFIG_MTD_DOCPROBE_HIGH */ 0xc8000, 0xca000, 0xcc000, 0xce000, 0xd0000, 0xd2000, 0xd4000, 0xd6000, 0xd8000, 0xda000, 0xdc000, 0xde000, 0xe0000, 0xe2000, 0xe4000, 0xe6000, 0xe8000, 0xea000, 0xec000, 0xee000, #endif /* CONFIG_MTD_DOCPROBE_HIGH */ #else #warning Unknown architecture for DiskOnChip. No default probe locations defined #endif 0xffffffff }; static struct mtd_info *doclist = NULL; struct doc_priv { void __iomem *virtadr; unsigned long physadr; u_char ChipID; u_char CDSNControl; int chips_per_floor; /* The number of chips detected on each floor */ int curfloor; int curchip; int mh0_page; int mh1_page; struct mtd_info *nextdoc; }; /* This is the syndrome computed by the HW ecc generator upon reading an empty page, one with all 0xff for data and stored ecc code. */ static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a }; /* This is the ecc value computed by the HW ecc generator upon writing an empty page, one with all 0xff for data. */ static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 }; #define INFTL_BBT_RESERVED_BLOCKS 4 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32) #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil) #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k) static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask); static void doc200x_select_chip(struct mtd_info *mtd, int chip); static int debug = 0; module_param(debug, int, 0); static int try_dword = 1; module_param(try_dword, int, 0); static int no_ecc_failures = 0; module_param(no_ecc_failures, int, 0); static int no_autopart = 0; module_param(no_autopart, int, 0); static int show_firmware_partition = 0; module_param(show_firmware_partition, int, 0); #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE static int inftl_bbt_write = 1; #else static int inftl_bbt_write = 0; #endif module_param(inftl_bbt_write, int, 0); static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS; module_param(doc_config_location, ulong, 0); MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); /* Sector size for HW ECC */ #define SECTOR_SIZE 512 /* The sector bytes are packed into NB_DATA 10 bit words */ #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10) /* Number of roots */ #define NROOTS 4 /* First consective root */ #define FCR 510 /* Number of symbols */ #define NN 1023 /* the Reed Solomon control structure */ static struct rs_control *rs_decoder; /* * The HW decoder in the DoC ASIC's provides us a error syndrome, * which we must convert to a standard syndrom usable by the generic * Reed-Solomon library code. * * Fabrice Bellard figured this out in the old docecc code. I added * some comments, improved a minor bit and converted it to make use * of the generic Reed-Solomon libary. tglx */ static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) { int i, j, nerr, errpos[8]; uint8_t parity; uint16_t ds[4], s[5], tmp, errval[8], syn[4]; /* Convert the ecc bytes into words */ ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4); ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); parity = ecc[1]; /* Initialize the syndrom buffer */ for (i = 0; i < NROOTS; i++) s[i] = ds[0]; /* * Evaluate * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0] * where x = alpha^(FCR + i) */ for (j = 1; j < NROOTS; j++) { if (ds[j] == 0) continue; tmp = rs->index_of[ds[j]]; for (i = 0; i < NROOTS; i++) s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)]; } /* Calc s[i] = s[i] / alpha^(v + i) */ for (i = 0; i < NROOTS; i++) { if (syn[i]) syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i)); } /* Call the decoder library */ nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval); /* Incorrectable errors ? */ if (nerr < 0) return nerr; /* * Correct the errors. The bitpositions are a bit of magic, * but they are given by the design of the de/encoder circuit * in the DoC ASIC's. */ for (i = 0; i < nerr; i++) { int index, bitpos, pos = 1015 - errpos[i]; uint8_t val; if (pos >= NB_DATA && pos < 1019) continue; if (pos < NB_DATA) { /* extract bit position (MSB first) */ pos = 10 * (NB_DATA - 1 - pos) - 6; /* now correct the following 10 bits. At most two bytes can be modified since pos is even */ index = (pos >> 3) ^ 1; bitpos = pos & 7; if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { val = (uint8_t) (errval[i] >> (2 + bitpos)); parity ^= val; if (index < SECTOR_SIZE) data[index] ^= val; } index = ((pos >> 3) + 1) ^ 1; bitpos = (bitpos + 10) & 7; if (bitpos == 0) bitpos = 8; if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { val = (uint8_t) (errval[i] << (8 - bitpos)); parity ^= val; if (index < SECTOR_SIZE) data[index] ^= val; } } } /* If the parity is wrong, no rescue possible */ return parity ? -EBADMSG : nerr; } static void DoC_Delay(struct doc_priv *doc, unsigned short cycles) { volatile char dummy; int i; for (i = 0; i < cycles; i++) { if (DoC_is_Millennium(doc)) dummy = ReadDOC(doc->virtadr, NOP); else if (DoC_is_MillenniumPlus(doc)) dummy = ReadDOC(doc->virtadr, Mplus_NOP); else dummy = ReadDOC(doc->virtadr, DOCStatus); } } #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ static int _DoC_WaitReady(struct doc_priv *doc) { void __iomem *docptr = doc->virtadr; unsigned long timeo = jiffies + (HZ * 10); if (debug) printk("_DoC_WaitReady...\n"); /* Out-of-line routine to wait for chip response */ if (DoC_is_MillenniumPlus(doc)) { while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { if (time_after(jiffies, timeo)) { printk("_DoC_WaitReady timed out.\n"); return -EIO; } udelay(1); cond_resched(); } } else { while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { if (time_after(jiffies, timeo)) { printk("_DoC_WaitReady timed out.\n"); return -EIO; } udelay(1); cond_resched(); } } return 0; } static inline int DoC_WaitReady(struct doc_priv *doc) { void __iomem *docptr = doc->virtadr; int ret = 0; if (DoC_is_MillenniumPlus(doc)) { DoC_Delay(doc, 4); if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) /* Call the out-of-line routine to wait */ ret = _DoC_WaitReady(doc); } else { DoC_Delay(doc, 4); if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) /* Call the out-of-line routine to wait */ ret = _DoC_WaitReady(doc); DoC_Delay(doc, 2); } if (debug) printk("DoC_WaitReady OK\n"); return ret; } static void doc2000_write_byte(struct mtd_info *mtd, u_char datum) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; if (debug) printk("write_byte %02x\n", datum); WriteDOC(datum, docptr, CDSNSlowIO); WriteDOC(datum, docptr, 2k_CDSN_IO); } static u_char doc2000_read_byte(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; u_char ret; ReadDOC(docptr, CDSNSlowIO); DoC_Delay(doc, 2); ret = ReadDOC(docptr, 2k_CDSN_IO); if (debug) printk("read_byte returns %02x\n", ret); return ret; } static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; int i; if (debug) printk("writebuf of %d bytes: ", len); for (i = 0; i < len; i++) { WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i); if (debug && i < 16) printk("%02x ", buf[i]); } if (debug) printk("\n"); } static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; int i; if (debug) printk("readbuf of %d bytes: ", len); for (i = 0; i < len; i++) { buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i); } } static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; int i; if (debug) printk("readbuf_dword of %d bytes: ", len); if (unlikely((((unsigned long)buf) | len) & 3)) { for (i = 0; i < len; i++) { *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i); } } else { for (i = 0; i < len; i += 4) { *(uint32_t*) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i); } } } static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; int i; for (i = 0; i < len; i++) if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO)) return -EFAULT; return 0; } static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; uint16_t ret; doc200x_select_chip(mtd, nr); doc200x_hwcontrol(mtd, NAND_CMD_READID, NAND_CTRL_CLE | NAND_CTRL_CHANGE); doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); /* We cant' use dev_ready here, but at least we wait for the * command to complete */ udelay(50); ret = this->read_byte(mtd) << 8; ret |= this->read_byte(mtd); if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) { /* First chip probe. See if we get same results by 32-bit access */ union { uint32_t dword; uint8_t byte[4]; } ident; void __iomem *docptr = doc->virtadr; doc200x_hwcontrol(mtd, NAND_CMD_READID, NAND_CTRL_CLE | NAND_CTRL_CHANGE); doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); udelay(50); ident.dword = readl(docptr + DoC_2k_CDSN_IO); if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n"); this->read_buf = &doc2000_readbuf_dword; } } return ret; } static void __init doc2000_count_chips(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; uint16_t mfrid; int i; /* Max 4 chips per floor on DiskOnChip 2000 */ doc->chips_per_floor = 4; /* Find out what the first chip is */ mfrid = doc200x_ident_chip(mtd, 0); /* Find how many chips in each floor. */ for (i = 1; i < 4; i++) { if (doc200x_ident_chip(mtd, i) != mfrid) break; } doc->chips_per_floor = i; printk(KERN_DEBUG "Detected %d chips per floor.\n", i); } static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this) { struct doc_priv *doc = this->priv; int status; DoC_WaitReady(doc); this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); DoC_WaitReady(doc); status = (int)this->read_byte(mtd); return status; } static void doc2001_write_byte(struct mtd_info *mtd, u_char datum) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; WriteDOC(datum, docptr, CDSNSlowIO); WriteDOC(datum, docptr, Mil_CDSN_IO); WriteDOC(datum, docptr, WritePipeTerm); } static u_char doc2001_read_byte(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; /*ReadDOC(docptr, CDSNSlowIO); */ /* 11.4.5 -- delay twice to allow extended length cycle */ DoC_Delay(doc, 2); ReadDOC(docptr, ReadPipeInit); /*return ReadDOC(docptr, Mil_CDSN_IO); */ return ReadDOC(docptr, LastDataRead); } static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; int i; for (i = 0; i < len; i++) WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); /* Terminate write pipeline */ WriteDOC(0x00, docptr, WritePipeTerm); } static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; int i; /* Start read pipeline */ ReadDOC(docptr, ReadPipeInit); for (i = 0; i < len - 1; i++) buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); /* Terminate read pipeline */ buf[i] = ReadDOC(docptr, LastDataRead); } static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; int i; /* Start read pipeline */ ReadDOC(docptr, ReadPipeInit); for (i = 0; i < len - 1; i++) if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) { ReadDOC(docptr, LastDataRead); return i; } if (buf[i] != ReadDOC(docptr, LastDataRead)) return i; return 0; } static u_char doc2001plus_read_byte(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; u_char ret; ReadDOC(docptr, Mplus_ReadPipeInit); ReadDOC(docptr, Mplus_ReadPipeInit); ret = ReadDOC(docptr, Mplus_LastDataRead); if (debug) printk("read_byte returns %02x\n", ret); return ret; } static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; int i; if (debug) printk("writebuf of %d bytes: ", len); for (i = 0; i < len; i++) { WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); if (debug && i < 16) printk("%02x ", buf[i]); } if (debug) printk("\n"); } static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; int i; if (debug) printk("readbuf of %d bytes: ", len); /* Start read pipeline */ ReadDOC(docptr, Mplus_ReadPipeInit); ReadDOC(docptr, Mplus_ReadPipeInit); for (i = 0; i < len - 2; i++) { buf[i] = ReadDOC(docptr, Mil_CDSN_IO); if (debug && i < 16) printk("%02x ", buf[i]); } /* Terminate read pipeline */ buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead); if (debug && i < 16) printk("%02x ", buf[len - 2]); buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead); if (debug && i < 16) printk("%02x ", buf[len - 1]); if (debug) printk("\n"); } static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; int i; if (debug) printk("verifybuf of %d bytes: ", len); /* Start read pipeline */ ReadDOC(docptr, Mplus_ReadPipeInit); ReadDOC(docptr, Mplus_ReadPipeInit); for (i = 0; i < len - 2; i++) if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) { ReadDOC(docptr, Mplus_LastDataRead); ReadDOC(docptr, Mplus_LastDataRead); return i; } if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead)) return len - 2; if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead)) return len - 1; return 0; } static void doc2001plus_select_chip(struct mtd_info *mtd, int chip) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; int floor = 0; if (debug) printk("select chip (%d)\n", chip); if (chip == -1) { /* Disable flash internally */ WriteDOC(0, docptr, Mplus_FlashSelect); return; } floor = chip / doc->chips_per_floor; chip -= (floor * doc->chips_per_floor); /* Assert ChipEnable and deassert WriteProtect */ WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect); this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); doc->curchip = chip; doc->curfloor = floor; } static void doc200x_select_chip(struct mtd_info *mtd, int chip) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; int floor = 0; if (debug) printk("select chip (%d)\n", chip); if (chip == -1) return; floor = chip / doc->chips_per_floor; chip -= (floor * doc->chips_per_floor); /* 11.4.4 -- deassert CE before changing chip */ doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); WriteDOC(floor, docptr, FloorSelect); WriteDOC(chip, docptr, CDSNDeviceSelect); doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); doc->curchip = chip; doc->curfloor = floor; } #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE) static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; if (ctrl & NAND_CTRL_CHANGE) { doc->CDSNControl &= ~CDSN_CTRL_MSK; doc->CDSNControl |= ctrl & CDSN_CTRL_MSK; if (debug) printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl); WriteDOC(doc->CDSNControl, docptr, CDSNControl); /* 11.4.3 -- 4 NOPs after CSDNControl write */ DoC_Delay(doc, 4); } if (cmd != NAND_CMD_NONE) { if (DoC_is_2000(doc)) doc2000_write_byte(mtd, cmd); else doc2001_write_byte(mtd, cmd); } } static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; /* * Must terminate write pipeline before sending any commands * to the device. */ if (command == NAND_CMD_PAGEPROG) { WriteDOC(0x00, docptr, Mplus_WritePipeTerm); WriteDOC(0x00, docptr, Mplus_WritePipeTerm); } /* * Write out the command to the device. */ if (command == NAND_CMD_SEQIN) { int readcmd; if (column >= mtd->writesize) { /* OOB area */ column -= mtd->writesize; readcmd = NAND_CMD_READOOB; } else if (column < 256) { /* First 256 bytes --> READ0 */ readcmd = NAND_CMD_READ0; } else { column -= 256; readcmd = NAND_CMD_READ1; } WriteDOC(readcmd, docptr, Mplus_FlashCmd); } WriteDOC(command, docptr, Mplus_FlashCmd); WriteDOC(0, docptr, Mplus_WritePipeTerm); WriteDOC(0, docptr, Mplus_WritePipeTerm); if (column != -1 || page_addr != -1) { /* Serially input address */ if (column != -1) { /* Adjust columns for 16 bit buswidth */ if (this->options & NAND_BUSWIDTH_16) column >>= 1; WriteDOC(column, docptr, Mplus_FlashAddress); } if (page_addr != -1) { WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress); WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress); /* One more address cycle for higher density devices */ if (this->chipsize & 0x0c000000) { WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress); printk("high density\n"); } } WriteDOC(0, docptr, Mplus_WritePipeTerm); WriteDOC(0, docptr, Mplus_WritePipeTerm); /* deassert ALE */ if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID) WriteDOC(0, docptr, Mplus_FlashControl); } /* * program and erase have their own busy handlers * status and sequential in needs no delay */ switch (command) { case NAND_CMD_PAGEPROG: case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: case NAND_CMD_SEQIN: case NAND_CMD_STATUS: return; case NAND_CMD_RESET: if (this->dev_ready) break; udelay(this->chip_delay); WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd); WriteDOC(0, docptr, Mplus_WritePipeTerm); WriteDOC(0, docptr, Mplus_WritePipeTerm); while (!(this->read_byte(mtd) & 0x40)) ; return; /* This applies to read commands */ default: /* * If we don't have access to the busy pin, we apply the given * command delay */ if (!this->dev_ready) { udelay(this->chip_delay); return; } } /* Apply this short delay always to ensure that we do wait tWB in * any case on any machine. */ ndelay(100); /* wait until command is processed */ while (!this->dev_ready(mtd)) ; } static int doc200x_dev_ready(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; if (DoC_is_MillenniumPlus(doc)) { /* 11.4.2 -- must NOP four times before checking FR/B# */ DoC_Delay(doc, 4); if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { if (debug) printk("not ready\n"); return 0; } if (debug) printk("was ready\n"); return 1; } else { /* 11.4.2 -- must NOP four times before checking FR/B# */ DoC_Delay(doc, 4); if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { if (debug) printk("not ready\n"); return 0; } /* 11.4.2 -- Must NOP twice if it's ready */ DoC_Delay(doc, 2); if (debug) printk("was ready\n"); return 1; } } static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) { /* This is our last resort if we couldn't find or create a BBT. Just pretend all blocks are good. */ return 0; } static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; /* Prime the ECC engine */ switch (mode) { case NAND_ECC_READ: WriteDOC(DOC_ECC_RESET, docptr, ECCConf); WriteDOC(DOC_ECC_EN, docptr, ECCConf); break; case NAND_ECC_WRITE: WriteDOC(DOC_ECC_RESET, docptr, ECCConf); WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); break; } } static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; /* Prime the ECC engine */ switch (mode) { case NAND_ECC_READ: WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); break; case NAND_ECC_WRITE: WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); break; } } /* This code is only called on write */ static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; int i; int emptymatch = 1; /* flush the pipeline */ if (DoC_is_2000(doc)) { WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl); WriteDOC(0, docptr, 2k_CDSN_IO); WriteDOC(0, docptr, 2k_CDSN_IO); WriteDOC(0, docptr, 2k_CDSN_IO); WriteDOC(doc->CDSNControl, docptr, CDSNControl); } else if (DoC_is_MillenniumPlus(doc)) { WriteDOC(0, docptr, Mplus_NOP); WriteDOC(0, docptr, Mplus_NOP); WriteDOC(0, docptr, Mplus_NOP); } else { WriteDOC(0, docptr, NOP); WriteDOC(0, docptr, NOP); WriteDOC(0, docptr, NOP); } for (i = 0; i < 6; i++) { if (DoC_is_MillenniumPlus(doc)) ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); else ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); if (ecc_code[i] != empty_write_ecc[i]) emptymatch = 0; } if (DoC_is_MillenniumPlus(doc)) WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); else WriteDOC(DOC_ECC_DIS, docptr, ECCConf); #if 0 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */ if (emptymatch) { /* Note: this somewhat expensive test should not be triggered often. It could be optimized away by examining the data in the writebuf routine, and remembering the result. */ for (i = 0; i < 512; i++) { if (dat[i] == 0xff) continue; emptymatch = 0; break; } } /* If emptymatch still =1, we do have an all-0xff data buffer. Return all-0xff ecc value instead of the computed one, so it'll look just like a freshly-erased page. */ if (emptymatch) memset(ecc_code, 0xff, 6); #endif return 0; } static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *isnull) { int i, ret = 0; struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; void __iomem *docptr = doc->virtadr; uint8_t calc_ecc[6]; volatile u_char dummy; int emptymatch = 1; /* flush the pipeline */ if (DoC_is_2000(doc)) { dummy = ReadDOC(docptr, 2k_ECCStatus); dummy = ReadDOC(docptr, 2k_ECCStatus); dummy = ReadDOC(docptr, 2k_ECCStatus); } else if (DoC_is_MillenniumPlus(doc)) { dummy = ReadDOC(docptr, Mplus_ECCConf); dummy = ReadDOC(docptr, Mplus_ECCConf); dummy = ReadDOC(docptr, Mplus_ECCConf); } else { dummy = ReadDOC(docptr, ECCConf); dummy = ReadDOC(docptr, ECCConf); dummy = ReadDOC(docptr, ECCConf); } /* Error occured ? */ if (dummy & 0x80) { for (i = 0; i < 6; i++) { if (DoC_is_MillenniumPlus(doc)) calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); else calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); if (calc_ecc[i] != empty_read_syndrome[i]) emptymatch = 0; } /* If emptymatch=1, the read syndrome is consistent with an all-0xff data and stored ecc block. Check the stored ecc. */ if (emptymatch) { for (i = 0; i < 6; i++) { if (read_ecc[i] == 0xff) continue; emptymatch = 0; break; } } /* If emptymatch still =1, check the data block. */ if (emptymatch) { /* Note: this somewhat expensive test should not be triggered often. It could be optimized away by examining the data in the readbuf routine, and remembering the result. */ for (i = 0; i < 512; i++) { if (dat[i] == 0xff) continue; emptymatch = 0; break; } } /* If emptymatch still =1, this is almost certainly a freshly- erased block, in which case the ECC will not come out right. We'll suppress the error and tell the caller everything's OK. Because it is. */ if (!emptymatch) ret = doc_ecc_decode(rs_decoder, dat, calc_ecc); if (ret > 0) printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret); } if (DoC_is_MillenniumPlus(doc)) WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); else WriteDOC(DOC_ECC_DIS, docptr, ECCConf); if (no_ecc_failures && (ret == -EBADMSG)) { printk(KERN_ERR "suppressing ECC failure\n"); ret = 0; } return ret; } /*u_char mydatabuf[528]; */ /* The strange out-of-order .oobfree list below is a (possibly unneeded) * attempt to retain compatibility. It used to read: * .oobfree = { {8, 8} } * Since that leaves two bytes unusable, it was changed. But the following * scheme might affect existing jffs2 installs by moving the cleanmarker: * .oobfree = { {6, 10} } * jffs2 seems to handle the above gracefully, but the current scheme seems * safer. The only problem with it is that any code that parses oobfree must * be able to handle out-of-order segments. */ static struct nand_ecclayout doc200x_oobinfo = { .eccbytes = 6, .eccpos = {0, 1, 2, 3, 4, 5}, .oobfree = {{8, 8}, {6, 2}} }; /* Find the (I)NFTL Media Header, and optionally also the mirror media header. On sucessful return, buf will contain a copy of the media header for further processing. id is the string to scan for, and will presumably be either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media header. The page #s of the found media headers are placed in mh0_page and mh1_page in the DOC private structure. */ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; unsigned offs; int ret; size_t retlen; for (offs = 0; offs < mtd->size; offs += mtd->erasesize) { ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf); if (retlen != mtd->writesize) continue; if (ret) { printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs); } if (memcmp(buf, id, 6)) continue; printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs); if (doc->mh0_page == -1) { doc->mh0_page = offs >> this->page_shift; if (!findmirror) return 1; continue; } doc->mh1_page = offs >> this->page_shift; return 2; } if (doc->mh0_page == -1) { printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id); return 0; } /* Only one mediaheader was found. We want buf to contain a mediaheader on return, so we'll have to re-read the one we found. */ offs = doc->mh0_page << this->page_shift; ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf); if (retlen != mtd->writesize) { /* Insanity. Give up. */ printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n"); return 0; } return 1; } static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; int ret = 0; u_char *buf; struct NFTLMediaHeader *mh; const unsigned psize = 1 << this->page_shift; int numparts = 0; unsigned blocks, maxblocks; int offs, numheaders; buf = kmalloc(mtd->writesize, GFP_KERNEL); if (!buf) { printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n"); return 0; } if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1))) goto out; mh = (struct NFTLMediaHeader *)buf; le16_to_cpus(&mh->NumEraseUnits); le16_to_cpus(&mh->FirstPhysicalEUN); le32_to_cpus(&mh->FormattedSize); printk(KERN_INFO " DataOrgID = %s\n" " NumEraseUnits = %d\n" " FirstPhysicalEUN = %d\n" " FormattedSize = %d\n" " UnitSizeFactor = %d\n", mh->DataOrgID, mh->NumEraseUnits, mh->FirstPhysicalEUN, mh->FormattedSize, mh->UnitSizeFactor); blocks = mtd->size >> this->phys_erase_shift; maxblocks = min(32768U, mtd->erasesize - psize); if (mh->UnitSizeFactor == 0x00) { /* Auto-determine UnitSizeFactor. The constraints are: - There can be at most 32768 virtual blocks. - There can be at most (virtual block size - page size) virtual blocks (because MediaHeader+BBT must fit in 1). */ mh->UnitSizeFactor = 0xff; while (blocks > maxblocks) { blocks >>= 1; maxblocks = min(32768U, (maxblocks << 1) + psize); mh->UnitSizeFactor--; } printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); } /* NOTE: The lines below modify internal variables of the NAND and MTD layers; variables with have already been configured by nand_scan. Unfortunately, we didn't know before this point what these values should be. Thus, this code is somewhat dependant on the exact implementation of the NAND layer. */ if (mh->UnitSizeFactor != 0xff) { this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); mtd->erasesize <<= (0xff - mh->UnitSizeFactor); printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize); blocks = mtd->size >> this->bbt_erase_shift; maxblocks = min(32768U, mtd->erasesize - psize); } if (blocks > maxblocks) { printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor); goto out; } /* Skip past the media headers. */ offs = max(doc->mh0_page, doc->mh1_page); offs <<= this->page_shift; offs += mtd->erasesize; if (show_firmware_partition == 1) { parts[0].name = " DiskOnChip Firmware / Media Header partition"; parts[0].offset = 0; parts[0].size = offs; numparts = 1; } parts[numparts].name = " DiskOnChip BDTL partition"; parts[numparts].offset = offs; parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift; offs += parts[numparts].size; numparts++; if (offs < mtd->size) { parts[numparts].name = " DiskOnChip Remainder partition"; parts[numparts].offset = offs; parts[numparts].size = mtd->size - offs; numparts++; } ret = numparts; out: kfree(buf); return ret; } /* This is a stripped-down copy of the code in inftlmount.c */ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; int ret = 0; u_char *buf; struct INFTLMediaHeader *mh; struct INFTLPartition *ip; int numparts = 0; int blocks; int vshift, lastvunit = 0; int i; int end = mtd->size; if (inftl_bbt_write) end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift); buf = kmalloc(mtd->writesize, GFP_KERNEL); if (!buf) { printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n"); return 0; } if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out; doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift); mh = (struct INFTLMediaHeader *)buf; le32_to_cpus(&mh->NoOfBootImageBlocks); le32_to_cpus(&mh->NoOfBinaryPartitions); le32_to_cpus(&mh->NoOfBDTLPartitions); le32_to_cpus(&mh->BlockMultiplierBits); le32_to_cpus(&mh->FormatFlags); le32_to_cpus(&mh->PercentUsed); printk(KERN_INFO " bootRecordID = %s\n" " NoOfBootImageBlocks = %d\n" " NoOfBinaryPartitions = %d\n" " NoOfBDTLPartitions = %d\n" " BlockMultiplerBits = %d\n" " FormatFlgs = %d\n" " OsakVersion = %d.%d.%d.%d\n" " PercentUsed = %d\n", mh->bootRecordID, mh->NoOfBootImageBlocks, mh->NoOfBinaryPartitions, mh->NoOfBDTLPartitions, mh->BlockMultiplierBits, mh->FormatFlags, ((unsigned char *) &mh->OsakVersion)[0] & 0xf, ((unsigned char *) &mh->OsakVersion)[1] & 0xf, ((unsigned char *) &mh->OsakVersion)[2] & 0xf, ((unsigned char *) &mh->OsakVersion)[3] & 0xf, mh->PercentUsed); vshift = this->phys_erase_shift + mh->BlockMultiplierBits; blocks = mtd->size >> vshift; if (blocks > 32768) { printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits); goto out; } blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); if (inftl_bbt_write && (blocks > mtd->erasesize)) { printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n"); goto out; } /* Scan the partitions */ for (i = 0; (i < 4); i++) { ip = &(mh->Partitions[i]); le32_to_cpus(&ip->virtualUnits); le32_to_cpus(&ip->firstUnit); le32_to_cpus(&ip->lastUnit); le32_to_cpus(&ip->flags); le32_to_cpus(&ip->spareUnits); le32_to_cpus(&ip->Reserved0); printk(KERN_INFO " PARTITION[%d] ->\n" " virtualUnits = %d\n" " firstUnit = %d\n" " lastUnit = %d\n" " flags = 0x%x\n" " spareUnits = %d\n", i, ip->virtualUnits, ip->firstUnit, ip->lastUnit, ip->flags, ip->spareUnits); if ((show_firmware_partition == 1) && (i == 0) && (ip->firstUnit > 0)) { parts[0].name = " DiskOnChip IPL / Media Header partition"; parts[0].offset = 0; parts[0].size = mtd->erasesize * ip->firstUnit; numparts = 1; } if (ip->flags & INFTL_BINARY) parts[numparts].name = " DiskOnChip BDK partition"; else parts[numparts].name = " DiskOnChip BDTL partition"; parts[numparts].offset = ip->firstUnit << vshift; parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift; numparts++; if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit; if (ip->flags & INFTL_LAST) break; } lastvunit++; if ((lastvunit << vshift) < end) { parts[numparts].name = " DiskOnChip Remainder partition"; parts[numparts].offset = lastvunit << vshift; parts[numparts].size = end - parts[numparts].offset; numparts++; } ret = numparts; out: kfree(buf); return ret; } static int __init nftl_scan_bbt(struct mtd_info *mtd) { int ret, numparts; struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; struct mtd_partition parts[2]; memset((char *)parts, 0, sizeof(parts)); /* On NFTL, we have to find the media headers before we can read the BBTs, since they're stored in the media header eraseblocks. */ numparts = nftl_partscan(mtd, parts); if (!numparts) return -EIO; this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | NAND_BBT_VERSION; this->bbt_td->veroffs = 7; this->bbt_td->pages[0] = doc->mh0_page + 1; if (doc->mh1_page != -1) { this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | NAND_BBT_VERSION; this->bbt_md->veroffs = 7; this->bbt_md->pages[0] = doc->mh1_page + 1; } else { this->bbt_md = NULL; } /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set. At least as nand_bbt.c is currently written. */ if ((ret = nand_scan_bbt(mtd, NULL))) return ret; add_mtd_device(mtd); #ifdef CONFIG_MTD_PARTITIONS if (!no_autopart) add_mtd_partitions(mtd, parts, numparts); #endif return 0; } static int __init inftl_scan_bbt(struct mtd_info *mtd) { int ret, numparts; struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; struct mtd_partition parts[5]; if (this->numchips > doc->chips_per_floor) { printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n"); return -EIO; } if (DoC_is_MillenniumPlus(doc)) { this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE; if (inftl_bbt_write) this->bbt_td->options |= NAND_BBT_WRITE; this->bbt_td->pages[0] = 2; this->bbt_md = NULL; } else { this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; if (inftl_bbt_write) this->bbt_td->options |= NAND_BBT_WRITE; this->bbt_td->offs = 8; this->bbt_td->len = 8; this->bbt_td->veroffs = 7; this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS; this->bbt_td->reserved_block_code = 0x01; this->bbt_td->pattern = "MSYS_BBT"; this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; if (inftl_bbt_write) this->bbt_md->options |= NAND_BBT_WRITE; this->bbt_md->offs = 8; this->bbt_md->len = 8; this->bbt_md->veroffs = 7; this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS; this->bbt_md->reserved_block_code = 0x01; this->bbt_md->pattern = "TBB_SYSM"; } /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set. At least as nand_bbt.c is currently written. */ if ((ret = nand_scan_bbt(mtd, NULL))) return ret; memset((char *)parts, 0, sizeof(parts)); numparts = inftl_partscan(mtd, parts); /* At least for now, require the INFTL Media Header. We could probably do without it for non-INFTL use, since all it gives us is autopartitioning, but I want to give it more thought. */ if (!numparts) return -EIO; add_mtd_device(mtd); #ifdef CONFIG_MTD_PARTITIONS if (!no_autopart) add_mtd_partitions(mtd, parts, numparts); #endif return 0; } static inline int __init doc2000_init(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; this->read_byte = doc2000_read_byte; this->write_buf = doc2000_writebuf; this->read_buf = doc2000_readbuf; this->verify_buf = doc2000_verifybuf; this->scan_bbt = nftl_scan_bbt; doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; doc2000_count_chips(mtd); mtd->name = "DiskOnChip 2000 (NFTL Model)"; return (4 * doc->chips_per_floor); } static inline int __init doc2001_init(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; this->read_byte = doc2001_read_byte; this->write_buf = doc2001_writebuf; this->read_buf = doc2001_readbuf; this->verify_buf = doc2001_verifybuf; ReadDOC(doc->virtadr, ChipID); ReadDOC(doc->virtadr, ChipID); ReadDOC(doc->virtadr, ChipID); if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) { /* It's not a Millennium; it's one of the newer DiskOnChip 2000 units with a similar ASIC. Treat it like a Millennium, except that it can have multiple chips. */ doc2000_count_chips(mtd); mtd->name = "DiskOnChip 2000 (INFTL Model)"; this->scan_bbt = inftl_scan_bbt; return (4 * doc->chips_per_floor); } else { /* Bog-standard Millennium */ doc->chips_per_floor = 1; mtd->name = "DiskOnChip Millennium"; this->scan_bbt = nftl_scan_bbt; return 1; } } static inline int __init doc2001plus_init(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; struct doc_priv *doc = this->priv; this->read_byte = doc2001plus_read_byte; this->write_buf = doc2001plus_writebuf; this->read_buf = doc2001plus_readbuf; this->verify_buf = doc2001plus_verifybuf; this->scan_bbt = inftl_scan_bbt; this->cmd_ctrl = NULL; this->select_chip = doc2001plus_select_chip; this->cmdfunc = doc2001plus_command; this->ecc.hwctl = doc2001plus_enable_hwecc; doc->chips_per_floor = 1; mtd->name = "DiskOnChip Millennium Plus"; return 1; } static int __init doc_probe(unsigned long physadr) { unsigned char ChipID; struct mtd_info *mtd; struct nand_chip *nand; struct doc_priv *doc; void __iomem *virtadr; unsigned char save_control; unsigned char tmp, tmpb, tmpc; int reg, len, numchips; int ret = 0; virtadr = ioremap(physadr, DOC_IOREMAP_LEN); if (!virtadr) { printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr); return -EIO; } /* It's not possible to cleanly detect the DiskOnChip - the * bootup procedure will put the device into reset mode, and * it's not possible to talk to it without actually writing * to the DOCControl register. So we store the current contents * of the DOCControl register's location, in case we later decide * that it's not a DiskOnChip, and want to put it back how we * found it. */ save_control = ReadDOC(virtadr, DOCControl); /* Reset the DiskOnChip ASIC */ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); /* Enable the DiskOnChip ASIC */ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); ChipID = ReadDOC(virtadr, ChipID); switch (ChipID) { case DOC_ChipID_Doc2k: reg = DoC_2k_ECCStatus; break; case DOC_ChipID_DocMil: reg = DoC_ECCConf; break; case DOC_ChipID_DocMilPlus16: case DOC_ChipID_DocMilPlus32: case 0: /* Possible Millennium Plus, need to do more checks */ /* Possibly release from power down mode */ for (tmp = 0; (tmp < 4); tmp++) ReadDOC(virtadr, Mplus_Power); /* Reset the Millennium Plus ASIC */ tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; WriteDOC(tmp, virtadr, Mplus_DOCControl); WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); mdelay(1); /* Enable the Millennium Plus ASIC */ tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; WriteDOC(tmp, virtadr, Mplus_DOCControl); WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); mdelay(1); ChipID = ReadDOC(virtadr, ChipID); switch (ChipID) { case DOC_ChipID_DocMilPlus16: reg = DoC_Mplus_Toggle; break; case DOC_ChipID_DocMilPlus32: printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); default: ret = -ENODEV; goto notfound; } break; default: ret = -ENODEV; goto notfound; } /* Check the TOGGLE bit in the ECC register */ tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; if ((tmp == tmpb) || (tmp != tmpc)) { printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); ret = -ENODEV; goto notfound; } for (mtd = doclist; mtd; mtd = doc->nextdoc) { unsigned char oldval; unsigned char newval; nand = mtd->priv; doc = nand->priv; /* Use the alias resolution register to determine if this is in fact the same DOC aliased to a new address. If writes to one chip's alias resolution register change the value on the other chip, they're the same chip. */ if (ChipID == DOC_ChipID_DocMilPlus16) { oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); newval = ReadDOC(virtadr, Mplus_AliasResolution); } else { oldval = ReadDOC(doc->virtadr, AliasResolution); newval = ReadDOC(virtadr, AliasResolution); } if (oldval != newval) continue; if (ChipID == DOC_ChipID_DocMilPlus16) { WriteDOC(~newval, virtadr, Mplus_AliasResolution); oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); WriteDOC(newval, virtadr, Mplus_AliasResolution); /* restore it */ } else { WriteDOC(~newval, virtadr, AliasResolution); oldval = ReadDOC(doc->virtadr, AliasResolution); WriteDOC(newval, virtadr, AliasResolution); /* restore it */ } newval = ~newval; if (oldval == newval) { printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr); goto notfound; } } printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr); len = sizeof(struct mtd_info) + sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr)); mtd = kzalloc(len, GFP_KERNEL); if (!mtd) { printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len); ret = -ENOMEM; goto fail; } nand = (struct nand_chip *) (mtd + 1); doc = (struct doc_priv *) (nand + 1); nand->bbt_td = (struct nand_bbt_descr *) (doc + 1); nand->bbt_md = nand->bbt_td + 1; mtd->priv = nand; mtd->owner = THIS_MODULE; nand->priv = doc; nand->select_chip = doc200x_select_chip; nand->cmd_ctrl = doc200x_hwcontrol; nand->dev_ready = doc200x_dev_ready; nand->waitfunc = doc200x_wait; nand->block_bad = doc200x_block_bad; nand->ecc.hwctl = doc200x_enable_hwecc; nand->ecc.calculate = doc200x_calculate_ecc; nand->ecc.correct = doc200x_correct_data; nand->ecc.layout = &doc200x_oobinfo; nand->ecc.mode = NAND_ECC_HW_SYNDROME; nand->ecc.size = 512; nand->ecc.bytes = 6; nand->options = NAND_USE_FLASH_BBT; doc->physadr = physadr; doc->virtadr = virtadr; doc->ChipID = ChipID; doc->curfloor = -1; doc->curchip = -1; doc->mh0_page = -1; doc->mh1_page = -1; doc->nextdoc = doclist; if (ChipID == DOC_ChipID_Doc2k) numchips = doc2000_init(mtd); else if (ChipID == DOC_ChipID_DocMilPlus16) numchips = doc2001plus_init(mtd); else numchips = doc2001_init(mtd); if ((ret = nand_scan(mtd, numchips))) { /* DBB note: i believe nand_release is necessary here, as buffers may have been allocated in nand_base. Check with Thomas. FIX ME! */ /* nand_release will call del_mtd_device, but we haven't yet added it. This is handled without incident by del_mtd_device, as far as I can tell. */ nand_release(mtd); kfree(mtd); goto fail; } /* Success! */ doclist = mtd; return 0; notfound: /* Put back the contents of the DOCControl register, in case it's not actually a DiskOnChip. */ WriteDOC(save_control, virtadr, DOCControl); fail: iounmap(virtadr); return ret; } static void release_nanddoc(void) { struct mtd_info *mtd, *nextmtd; struct nand_chip *nand; struct doc_priv *doc; for (mtd = doclist; mtd; mtd = nextmtd) { nand = mtd->priv; doc = nand->priv; nextmtd = doc->nextdoc; nand_release(mtd); iounmap(doc->virtadr); kfree(mtd); } } static int __init init_nanddoc(void) { int i, ret = 0; /* We could create the decoder on demand, if memory is a concern. * This way we have it handy, if an error happens * * Symbolsize is 10 (bits) * Primitve polynomial is x^10+x^3+1 * first consecutive root is 510 * primitve element to generate roots = 1 * generator polinomial degree = 4 */ rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); if (!rs_decoder) { printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n"); return -ENOMEM; } if (doc_config_location) { printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location); ret = doc_probe(doc_config_location); if (ret < 0) goto outerr; } else { for (i = 0; (doc_locations[i] != 0xffffffff); i++) { doc_probe(doc_locations[i]); } } /* No banner message any more. Print a message if no DiskOnChip found, so the user knows we at least tried. */ if (!doclist) { printk(KERN_INFO "No valid DiskOnChip devices found\n"); ret = -ENODEV; goto outerr; } return 0; outerr: free_rs(rs_decoder); return ret; } static void __exit cleanup_nanddoc(void) { /* Cleanup the nand/DoC resources */ release_nanddoc(); /* Free the reed solomon resources */ if (rs_decoder) { free_rs(rs_decoder); } } module_init(init_nanddoc); module_exit(cleanup_nanddoc); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Woodhouse "); MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");