/* * (C) Copyright 2008 * Texas Instruments, * Sukumar Ghorai * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation's version 2 of * the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include /* common definitions for all OMAPs */ #define SYSCTL_SRC (1 << 25) #define SYSCTL_SRD (1 << 26) struct omap_hsmmc_data { struct hsmmc *base_addr; int cd_gpio; int wp_gpio; }; /* If we fail after 1 second wait, something is really bad */ #define MAX_RETRY_MS 1000 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size); static int mmc_write_data(struct hsmmc *mmc_base, const char *buf, unsigned int siz); static struct mmc hsmmc_dev[3]; static struct omap_hsmmc_data hsmmc_dev_data[3]; #if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \ (defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT)) static int omap_mmc_setup_gpio_in(int gpio, const char *label) { if (!gpio_is_valid(gpio)) return -1; if (gpio_request(gpio, label) < 0) return -1; if (gpio_direction_input(gpio) < 0) return -1; return gpio; } static int omap_mmc_getcd(struct mmc *mmc) { int cd_gpio = ((struct omap_hsmmc_data *)mmc->priv)->cd_gpio; return gpio_get_value(cd_gpio); } static int omap_mmc_getwp(struct mmc *mmc) { int wp_gpio = ((struct omap_hsmmc_data *)mmc->priv)->wp_gpio; return gpio_get_value(wp_gpio); } #else static inline int omap_mmc_setup_gpio_in(int gpio, const char *label) { return -1; } #define omap_mmc_getcd NULL #define omap_mmc_getwp NULL #endif #if defined(CONFIG_OMAP44XX) && defined(CONFIG_TWL6030_POWER) static void omap4_vmmc_pbias_config(struct mmc *mmc) { u32 value = 0; value = readl((*ctrl)->control_pbiaslite); value &= ~(MMC1_PBIASLITE_PWRDNZ | MMC1_PWRDNZ); writel(value, (*ctrl)->control_pbiaslite); /* set VMMC to 3V */ twl6030_power_mmc_init(); value = readl((*ctrl)->control_pbiaslite); value |= MMC1_PBIASLITE_VMODE | MMC1_PBIASLITE_PWRDNZ | MMC1_PWRDNZ; writel(value, (*ctrl)->control_pbiaslite); } #endif #if defined(CONFIG_OMAP54XX) && defined(CONFIG_PALMAS_POWER) static void omap5_pbias_config(struct mmc *mmc) { u32 value = 0; value = readl((*ctrl)->control_pbias); value &= ~SDCARD_PWRDNZ; writel(value, (*ctrl)->control_pbias); udelay(10); /* wait 10 us */ value &= ~SDCARD_BIAS_PWRDNZ; writel(value, (*ctrl)->control_pbias); palmas_mmc1_poweron_ldo(); value = readl((*ctrl)->control_pbias); value |= SDCARD_BIAS_PWRDNZ; writel(value, (*ctrl)->control_pbias); udelay(150); /* wait 150 us */ value |= SDCARD_PWRDNZ; writel(value, (*ctrl)->control_pbias); udelay(150); /* wait 150 us */ } #endif unsigned char mmc_board_init(struct mmc *mmc) { #if defined(CONFIG_OMAP34XX) t2_t *t2_base = (t2_t *)T2_BASE; struct prcm *prcm_base = (struct prcm *)PRCM_BASE; u32 pbias_lite; pbias_lite = readl(&t2_base->pbias_lite); pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0); writel(pbias_lite, &t2_base->pbias_lite); #endif #if defined(CONFIG_TWL4030_POWER) twl4030_power_mmc_init(); mdelay(100); /* ramp-up delay from Linux code */ #endif #if defined(CONFIG_OMAP34XX) writel(pbias_lite | PBIASLITEPWRDNZ1 | PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0, &t2_base->pbias_lite); writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL, &t2_base->devconf0); writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL, &t2_base->devconf1); /* Change from default of 52MHz to 26MHz if necessary */ if (!(mmc->host_caps & MMC_MODE_HS_52MHz)) writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL, &t2_base->ctl_prog_io1); writel(readl(&prcm_base->fclken1_core) | EN_MMC1 | EN_MMC2 | EN_MMC3, &prcm_base->fclken1_core); writel(readl(&prcm_base->iclken1_core) | EN_MMC1 | EN_MMC2 | EN_MMC3, &prcm_base->iclken1_core); #endif #if defined(CONFIG_OMAP44XX) && defined(CONFIG_TWL6030_POWER) /* PBIAS config needed for MMC1 only */ if (mmc->block_dev.dev == 0) omap4_vmmc_pbias_config(mmc); #endif #if defined(CONFIG_OMAP54XX) && defined(CONFIG_PALMAS_POWER) if (mmc->block_dev.dev == 0) omap5_pbias_config(mmc); #endif return 0; } void mmc_init_stream(struct hsmmc *mmc_base) { ulong start; writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con); writel(MMC_CMD0, &mmc_base->cmd); start = get_timer(0); while (!(readl(&mmc_base->stat) & CC_MASK)) { if (get_timer(0) - start > MAX_RETRY_MS) { printf("%s: timedout waiting for cc!\n", __func__); return; } } writel(CC_MASK, &mmc_base->stat) ; writel(MMC_CMD0, &mmc_base->cmd) ; start = get_timer(0); while (!(readl(&mmc_base->stat) & CC_MASK)) { if (get_timer(0) - start > MAX_RETRY_MS) { printf("%s: timedout waiting for cc2!\n", __func__); return; } } writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con); } static int mmc_init_setup(struct mmc *mmc) { struct hsmmc *mmc_base; unsigned int reg_val; unsigned int dsor; ulong start; mmc_base = ((struct omap_hsmmc_data *)mmc->priv)->base_addr; mmc_board_init(mmc); writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET, &mmc_base->sysconfig); start = get_timer(0); while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) { if (get_timer(0) - start > MAX_RETRY_MS) { printf("%s: timedout waiting for cc2!\n", __func__); return TIMEOUT; } } writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl); start = get_timer(0); while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) { if (get_timer(0) - start > MAX_RETRY_MS) { printf("%s: timedout waiting for softresetall!\n", __func__); return TIMEOUT; } } writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl); writel(readl(&mmc_base->capa) | VS30_3V0SUP | VS18_1V8SUP, &mmc_base->capa); reg_val = readl(&mmc_base->con) & RESERVED_MASK; writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH | MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK | HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con); dsor = 240; mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK), (ICE_STOP | DTO_15THDTO | CEN_DISABLE)); mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK, (dsor << CLKD_OFFSET) | ICE_OSCILLATE); start = get_timer(0); while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) { if (get_timer(0) - start > MAX_RETRY_MS) { printf("%s: timedout waiting for ics!\n", __func__); return TIMEOUT; } } writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl); writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl); writel(IE_BADA | IE_CERR | IE_DEB | IE_DCRC | IE_DTO | IE_CIE | IE_CEB | IE_CCRC | IE_CTO | IE_BRR | IE_BWR | IE_TC | IE_CC, &mmc_base->ie); mmc_init_stream(mmc_base); return 0; } /* * MMC controller internal finite state machine reset * * Used to reset command or data internal state machines, using respectively * SRC or SRD bit of SYSCTL register */ static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit) { ulong start; mmc_reg_out(&mmc_base->sysctl, bit, bit); start = get_timer(0); while ((readl(&mmc_base->sysctl) & bit) != 0) { if (get_timer(0) - start > MAX_RETRY_MS) { printf("%s: timedout waiting for sysctl %x to clear\n", __func__, bit); return; } } } static int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { struct hsmmc *mmc_base; unsigned int flags, mmc_stat; ulong start; mmc_base = ((struct omap_hsmmc_data *)mmc->priv)->base_addr; start = get_timer(0); while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) { if (get_timer(0) - start > MAX_RETRY_MS) { printf("%s: timedout waiting on cmd inhibit to clear\n", __func__); return TIMEOUT; } } writel(0xFFFFFFFF, &mmc_base->stat); start = get_timer(0); while (readl(&mmc_base->stat)) { if (get_timer(0) - start > MAX_RETRY_MS) { printf("%s: timedout waiting for STAT (%x) to clear\n", __func__, readl(&mmc_base->stat)); return TIMEOUT; } } /* * CMDREG * CMDIDX[13:8] : Command index * DATAPRNT[5] : Data Present Select * ENCMDIDX[4] : Command Index Check Enable * ENCMDCRC[3] : Command CRC Check Enable * RSPTYP[1:0] * 00 = No Response * 01 = Length 136 * 10 = Length 48 * 11 = Length 48 Check busy after response */ /* Delay added before checking the status of frq change * retry not supported by mmc.c(core file) */ if (cmd->cmdidx == SD_CMD_APP_SEND_SCR) udelay(50000); /* wait 50 ms */ if (!(cmd->resp_type & MMC_RSP_PRESENT)) flags = 0; else if (cmd->resp_type & MMC_RSP_136) flags = RSP_TYPE_LGHT136 | CICE_NOCHECK; else if (cmd->resp_type & MMC_RSP_BUSY) flags = RSP_TYPE_LGHT48B; else flags = RSP_TYPE_LGHT48; /* enable default flags */ flags = flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK | MSBS_SGLEBLK | ACEN_DISABLE | BCE_DISABLE | DE_DISABLE); if (cmd->resp_type & MMC_RSP_CRC) flags |= CCCE_CHECK; if (cmd->resp_type & MMC_RSP_OPCODE) flags |= CICE_CHECK; if (data) { if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) || (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) { flags |= (MSBS_MULTIBLK | BCE_ENABLE); data->blocksize = 512; writel(data->blocksize | (data->blocks << 16), &mmc_base->blk); } else writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk); if (data->flags & MMC_DATA_READ) flags |= (DP_DATA | DDIR_READ); else flags |= (DP_DATA | DDIR_WRITE); } writel(cmd->cmdarg, &mmc_base->arg); writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd); start = get_timer(0); do { mmc_stat = readl(&mmc_base->stat); if (get_timer(0) - start > MAX_RETRY_MS) { printf("%s : timeout: No status update\n", __func__); return TIMEOUT; } } while (!mmc_stat); if ((mmc_stat & IE_CTO) != 0) { mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC); return TIMEOUT; } else if ((mmc_stat & ERRI_MASK) != 0) return -1; if (mmc_stat & CC_MASK) { writel(CC_MASK, &mmc_base->stat); if (cmd->resp_type & MMC_RSP_PRESENT) { if (cmd->resp_type & MMC_RSP_136) { /* response type 2 */ cmd->response[3] = readl(&mmc_base->rsp10); cmd->response[2] = readl(&mmc_base->rsp32); cmd->response[1] = readl(&mmc_base->rsp54); cmd->response[0] = readl(&mmc_base->rsp76); } else /* response types 1, 1b, 3, 4, 5, 6 */ cmd->response[0] = readl(&mmc_base->rsp10); } } if (data && (data->flags & MMC_DATA_READ)) { mmc_read_data(mmc_base, data->dest, data->blocksize * data->blocks); } else if (data && (data->flags & MMC_DATA_WRITE)) { mmc_write_data(mmc_base, data->src, data->blocksize * data->blocks); } return 0; } static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size) { unsigned int *output_buf = (unsigned int *)buf; unsigned int mmc_stat; unsigned int count; /* * Start Polled Read */ count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size; count /= 4; while (size) { ulong start = get_timer(0); do { mmc_stat = readl(&mmc_base->stat); if (get_timer(0) - start > MAX_RETRY_MS) { printf("%s: timedout waiting for status!\n", __func__); return TIMEOUT; } } while (mmc_stat == 0); if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0) mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD); if ((mmc_stat & ERRI_MASK) != 0) return 1; if (mmc_stat & BRR_MASK) { unsigned int k; writel(readl(&mmc_base->stat) | BRR_MASK, &mmc_base->stat); for (k = 0; k < count; k++) { *output_buf = readl(&mmc_base->data); output_buf++; } size -= (count*4); } if (mmc_stat & BWR_MASK) writel(readl(&mmc_base->stat) | BWR_MASK, &mmc_base->stat); if (mmc_stat & TC_MASK) { writel(readl(&mmc_base->stat) | TC_MASK, &mmc_base->stat); break; } } return 0; } static int mmc_write_data(struct hsmmc *mmc_base, const char *buf, unsigned int size) { unsigned int *input_buf = (unsigned int *)buf; unsigned int mmc_stat; unsigned int count; /* * Start Polled Read */ count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size; count /= 4; while (size) { ulong start = get_timer(0); do { mmc_stat = readl(&mmc_base->stat); if (get_timer(0) - start > MAX_RETRY_MS) { printf("%s: timedout waiting for status!\n", __func__); return TIMEOUT; } } while (mmc_stat == 0); if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0) mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD); if ((mmc_stat & ERRI_MASK) != 0) return 1; if (mmc_stat & BWR_MASK) { unsigned int k; writel(readl(&mmc_base->stat) | BWR_MASK, &mmc_base->stat); for (k = 0; k < count; k++) { writel(*input_buf, &mmc_base->data); input_buf++; } size -= (count*4); } if (mmc_stat & BRR_MASK) writel(readl(&mmc_base->stat) | BRR_MASK, &mmc_base->stat); if (mmc_stat & TC_MASK) { writel(readl(&mmc_base->stat) | TC_MASK, &mmc_base->stat); break; } } return 0; } static void mmc_set_ios(struct mmc *mmc) { struct hsmmc *mmc_base; unsigned int dsor = 0; ulong start; mmc_base = ((struct omap_hsmmc_data *)mmc->priv)->base_addr; /* configue bus width */ switch (mmc->bus_width) { case 8: writel(readl(&mmc_base->con) | DTW_8_BITMODE, &mmc_base->con); break; case 4: writel(readl(&mmc_base->con) & ~DTW_8_BITMODE, &mmc_base->con); writel(readl(&mmc_base->hctl) | DTW_4_BITMODE, &mmc_base->hctl); break; case 1: default: writel(readl(&mmc_base->con) & ~DTW_8_BITMODE, &mmc_base->con); writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE, &mmc_base->hctl); break; } /* configure clock with 96Mhz system clock. */ if (mmc->clock != 0) { dsor = (MMC_CLOCK_REFERENCE * 1000000 / mmc->clock); if ((MMC_CLOCK_REFERENCE * 1000000) / dsor > mmc->clock) dsor++; } mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK), (ICE_STOP | DTO_15THDTO | CEN_DISABLE)); mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK, (dsor << CLKD_OFFSET) | ICE_OSCILLATE); start = get_timer(0); while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) { if (get_timer(0) - start > MAX_RETRY_MS) { printf("%s: timedout waiting for ics!\n", __func__); return; } } writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl); } int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio, int wp_gpio) { struct mmc *mmc = &hsmmc_dev[dev_index]; struct omap_hsmmc_data *priv_data = &hsmmc_dev_data[dev_index]; sprintf(mmc->name, "OMAP SD/MMC"); mmc->send_cmd = mmc_send_cmd; mmc->set_ios = mmc_set_ios; mmc->init = mmc_init_setup; mmc->priv = priv_data; switch (dev_index) { case 0: priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE; break; #ifdef OMAP_HSMMC2_BASE case 1: priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE; break; #endif #ifdef OMAP_HSMMC3_BASE case 2: priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE; break; #endif default: priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE; return 1; } priv_data->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd"); if (priv_data->cd_gpio != -1) mmc->getcd = omap_mmc_getcd; priv_data->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp"); if (priv_data->wp_gpio != -1) mmc->getwp = omap_mmc_getwp; mmc->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195; mmc->host_caps = (MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS | MMC_MODE_HC) & ~host_caps_mask; mmc->f_min = 400000; if (f_max != 0) mmc->f_max = f_max; else { if (mmc->host_caps & MMC_MODE_HS) { if (mmc->host_caps & MMC_MODE_HS_52MHz) mmc->f_max = 52000000; else mmc->f_max = 26000000; } else mmc->f_max = 20000000; } mmc->b_max = 0; #if defined(CONFIG_OMAP34XX) /* * Silicon revs 2.1 and older do not support multiblock transfers. */ if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21)) mmc->b_max = 1; #endif mmc_register(mmc); return 0; }