/* * Copyright 2007, 2010-2011 Freescale Semiconductor, Inc * Andy Fleming * * Based vaguely on the pxa mmc code: * (C) Copyright 2003 * Kyle Harris, Nexus Technologies, Inc. kharris@nexus-tech.net * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #define SDHCI_IRQ_EN_BITS (IRQSTATEN_CC | IRQSTATEN_TC | \ IRQSTATEN_CINT | \ IRQSTATEN_CTOE | IRQSTATEN_CCE | IRQSTATEN_CEBE | \ IRQSTATEN_CIE | IRQSTATEN_DTOE | IRQSTATEN_DCE | \ IRQSTATEN_DEBE | IRQSTATEN_BRR | IRQSTATEN_BWR | \ IRQSTATEN_DINT) struct fsl_esdhc { uint dsaddr; /* SDMA system address register */ uint blkattr; /* Block attributes register */ uint cmdarg; /* Command argument register */ uint xfertyp; /* Transfer type register */ uint cmdrsp0; /* Command response 0 register */ uint cmdrsp1; /* Command response 1 register */ uint cmdrsp2; /* Command response 2 register */ uint cmdrsp3; /* Command response 3 register */ uint datport; /* Buffer data port register */ uint prsstat; /* Present state register */ uint proctl; /* Protocol control register */ uint sysctl; /* System Control Register */ uint irqstat; /* Interrupt status register */ uint irqstaten; /* Interrupt status enable register */ uint irqsigen; /* Interrupt signal enable register */ uint autoc12err; /* Auto CMD error status register */ uint hostcapblt; /* Host controller capabilities register */ uint wml; /* Watermark level register */ uint mixctrl; /* For USDHC */ char reserved1[4]; /* reserved */ uint fevt; /* Force event register */ uint admaes; /* ADMA error status register */ uint adsaddr; /* ADMA system address register */ char reserved2[160]; /* reserved */ uint hostver; /* Host controller version register */ char reserved3[4]; /* reserved */ uint dmaerraddr; /* DMA error address register */ char reserved4[4]; /* reserved */ uint dmaerrattr; /* DMA error attribute register */ char reserved5[4]; /* reserved */ uint hostcapblt2; /* Host controller capabilities register 2 */ char reserved6[8]; /* reserved */ uint tcr; /* Tuning control register */ char reserved7[28]; /* reserved */ uint sddirctl; /* SD direction control register */ char reserved8[712]; /* reserved */ uint scr; /* eSDHC control register */ }; /* Return the XFERTYP flags for a given command and data packet */ static uint esdhc_xfertyp(struct mmc_cmd *cmd, struct mmc_data *data) { uint xfertyp = 0; if (data) { xfertyp |= XFERTYP_DPSEL; #ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO xfertyp |= XFERTYP_DMAEN; #endif if (data->blocks > 1) { xfertyp |= XFERTYP_MSBSEL; xfertyp |= XFERTYP_BCEN; #ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC111 xfertyp |= XFERTYP_AC12EN; #endif } if (data->flags & MMC_DATA_READ) xfertyp |= XFERTYP_DTDSEL; } if (cmd->resp_type & MMC_RSP_CRC) xfertyp |= XFERTYP_CCCEN; if (cmd->resp_type & MMC_RSP_OPCODE) xfertyp |= XFERTYP_CICEN; if (cmd->resp_type & MMC_RSP_136) xfertyp |= XFERTYP_RSPTYP_136; else if (cmd->resp_type & MMC_RSP_BUSY) xfertyp |= XFERTYP_RSPTYP_48_BUSY; else if (cmd->resp_type & MMC_RSP_PRESENT) xfertyp |= XFERTYP_RSPTYP_48; #if defined(CONFIG_MX53) || defined(CONFIG_PPC_T4240) || defined(CONFIG_LS102XA) if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION) xfertyp |= XFERTYP_CMDTYP_ABORT; #endif return XFERTYP_CMD(cmd->cmdidx) | xfertyp; } #ifdef CONFIG_SYS_FSL_ESDHC_USE_PIO /* * PIO Read/Write Mode reduce the performace as DMA is not used in this mode. */ static void esdhc_pio_read_write(struct mmc *mmc, struct mmc_data *data) { struct fsl_esdhc_cfg *cfg = mmc->priv; struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base; uint blocks; char *buffer; uint databuf; uint size; uint irqstat; uint timeout; if (data->flags & MMC_DATA_READ) { blocks = data->blocks; buffer = data->dest; while (blocks) { timeout = PIO_TIMEOUT; size = data->blocksize; irqstat = esdhc_read32(®s->irqstat); while (!(esdhc_read32(®s->prsstat) & PRSSTAT_BREN) && --timeout); if (timeout <= 0) { printf("\nData Read Failed in PIO Mode."); return; } while (size && (!(irqstat & IRQSTAT_TC))) { udelay(100); /* Wait before last byte transfer complete */ irqstat = esdhc_read32(®s->irqstat); databuf = in_le32(®s->datport); *((uint *)buffer) = databuf; buffer += 4; size -= 4; } blocks--; } } else { blocks = data->blocks; buffer = (char *)data->src; while (blocks) { timeout = PIO_TIMEOUT; size = data->blocksize; irqstat = esdhc_read32(®s->irqstat); while (!(esdhc_read32(®s->prsstat) & PRSSTAT_BWEN) && --timeout); if (timeout <= 0) { printf("\nData Write Failed in PIO Mode."); return; } while (size && (!(irqstat & IRQSTAT_TC))) { udelay(100); /* Wait before last byte transfer complete */ databuf = *((uint *)buffer); buffer += 4; size -= 4; irqstat = esdhc_read32(®s->irqstat); out_le32(®s->datport, databuf); } blocks--; } } } #endif static int esdhc_setup_data(struct mmc *mmc, struct mmc_data *data) { int timeout; struct fsl_esdhc_cfg *cfg = mmc->priv; struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base; uint wml_value; wml_value = data->blocksize/4; if (data->flags & MMC_DATA_READ) { if (wml_value > WML_RD_WML_MAX) wml_value = WML_RD_WML_MAX_VAL; esdhc_clrsetbits32(®s->wml, WML_RD_WML_MASK, wml_value); #ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO esdhc_write32(®s->dsaddr, (u32)data->dest); #endif } else { #ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO flush_dcache_range((ulong)data->src, (ulong)data->src+data->blocks *data->blocksize); #endif if (wml_value > WML_WR_WML_MAX) wml_value = WML_WR_WML_MAX_VAL; if ((esdhc_read32(®s->prsstat) & PRSSTAT_WPSPL) == 0) { printf("\nThe SD card is locked. Can not write to a locked card.\n\n"); return TIMEOUT; } esdhc_clrsetbits32(®s->wml, WML_WR_WML_MASK, wml_value << 16); #ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO esdhc_write32(®s->dsaddr, (u32)data->src); #endif } esdhc_write32(®s->blkattr, data->blocks << 16 | data->blocksize); /* Calculate the timeout period for data transactions */ /* * 1)Timeout period = (2^(timeout+13)) SD Clock cycles * 2)Timeout period should be minimum 0.250sec as per SD Card spec * So, Number of SD Clock cycles for 0.25sec should be minimum * (SD Clock/sec * 0.25 sec) SD Clock cycles * = (mmc->clock * 1/4) SD Clock cycles * As 1) >= 2) * => (2^(timeout+13)) >= mmc->clock * 1/4 * Taking log2 both the sides * => timeout + 13 >= log2(mmc->clock/4) * Rounding up to next power of 2 * => timeout + 13 = log2(mmc->clock/4) + 1 * => timeout + 13 = fls(mmc->clock/4) */ timeout = fls(mmc->clock/4); timeout -= 13; if (timeout > 14) timeout = 14; if (timeout < 0) timeout = 0; #ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC_A001 if ((timeout == 4) || (timeout == 8) || (timeout == 12)) timeout++; #endif #ifdef ESDHCI_QUIRK_BROKEN_TIMEOUT_VALUE timeout = 0xE; #endif esdhc_clrsetbits32(®s->sysctl, SYSCTL_TIMEOUT_MASK, timeout << 16); return 0; } #ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO static void check_and_invalidate_dcache_range (struct mmc_cmd *cmd, struct mmc_data *data) { unsigned start = (unsigned)data->dest ; unsigned size = roundup(ARCH_DMA_MINALIGN, data->blocks*data->blocksize); unsigned end = start+size ; invalidate_dcache_range(start, end); } #endif /* * Sends a command out on the bus. Takes the mmc pointer, * a command pointer, and an optional data pointer. */ static int esdhc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { int err = 0; uint xfertyp; uint irqstat; struct fsl_esdhc_cfg *cfg = mmc->priv; volatile struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base; #ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC111 if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION) return 0; #endif esdhc_write32(®s->irqstat, -1); sync(); /* Wait for the bus to be idle */ while ((esdhc_read32(®s->prsstat) & PRSSTAT_CICHB) || (esdhc_read32(®s->prsstat) & PRSSTAT_CIDHB)) ; while (esdhc_read32(®s->prsstat) & PRSSTAT_DLA) ; /* Wait at least 8 SD clock cycles before the next command */ /* * Note: This is way more than 8 cycles, but 1ms seems to * resolve timing issues with some cards */ udelay(1000); /* Set up for a data transfer if we have one */ if (data) { err = esdhc_setup_data(mmc, data); if(err) return err; } /* Figure out the transfer arguments */ xfertyp = esdhc_xfertyp(cmd, data); /* Mask all irqs */ esdhc_write32(®s->irqsigen, 0); /* Send the command */ esdhc_write32(®s->cmdarg, cmd->cmdarg); #if defined(CONFIG_FSL_USDHC) esdhc_write32(®s->mixctrl, (esdhc_read32(®s->mixctrl) & 0xFFFFFF80) | (xfertyp & 0x7F) | (mmc->ddr_mode ? XFERTYP_DDREN : 0)); esdhc_write32(®s->xfertyp, xfertyp & 0xFFFF0000); #else esdhc_write32(®s->xfertyp, xfertyp); #endif /* Wait for the command to complete */ while (!(esdhc_read32(®s->irqstat) & (IRQSTAT_CC | IRQSTAT_CTOE))) ; irqstat = esdhc_read32(®s->irqstat); if (irqstat & CMD_ERR) { err = COMM_ERR; goto out; } if (irqstat & IRQSTAT_CTOE) { err = TIMEOUT; goto out; } /* Workaround for ESDHC errata ENGcm03648 */ if (!data && (cmd->resp_type & MMC_RSP_BUSY)) { int timeout = 2500; /* Poll on DATA0 line for cmd with busy signal for 250 ms */ while (timeout > 0 && !(esdhc_read32(®s->prsstat) & PRSSTAT_DAT0)) { udelay(100); timeout--; } if (timeout <= 0) { printf("Timeout waiting for DAT0 to go high!\n"); err = TIMEOUT; goto out; } } /* Copy the response to the response buffer */ if (cmd->resp_type & MMC_RSP_136) { u32 cmdrsp3, cmdrsp2, cmdrsp1, cmdrsp0; cmdrsp3 = esdhc_read32(®s->cmdrsp3); cmdrsp2 = esdhc_read32(®s->cmdrsp2); cmdrsp1 = esdhc_read32(®s->cmdrsp1); cmdrsp0 = esdhc_read32(®s->cmdrsp0); cmd->response[0] = (cmdrsp3 << 8) | (cmdrsp2 >> 24); cmd->response[1] = (cmdrsp2 << 8) | (cmdrsp1 >> 24); cmd->response[2] = (cmdrsp1 << 8) | (cmdrsp0 >> 24); cmd->response[3] = (cmdrsp0 << 8); } else cmd->response[0] = esdhc_read32(®s->cmdrsp0); /* Wait until all of the blocks are transferred */ if (data) { #ifdef CONFIG_SYS_FSL_ESDHC_USE_PIO esdhc_pio_read_write(mmc, data); #else do { irqstat = esdhc_read32(®s->irqstat); if (irqstat & IRQSTAT_DTOE) { err = TIMEOUT; goto out; } if (irqstat & DATA_ERR) { err = COMM_ERR; goto out; } } while ((irqstat & DATA_COMPLETE) != DATA_COMPLETE); if (data->flags & MMC_DATA_READ) check_and_invalidate_dcache_range(cmd, data); #endif } out: /* Reset CMD and DATA portions on error */ if (err) { esdhc_write32(®s->sysctl, esdhc_read32(®s->sysctl) | SYSCTL_RSTC); while (esdhc_read32(®s->sysctl) & SYSCTL_RSTC) ; if (data) { esdhc_write32(®s->sysctl, esdhc_read32(®s->sysctl) | SYSCTL_RSTD); while ((esdhc_read32(®s->sysctl) & SYSCTL_RSTD)) ; } } esdhc_write32(®s->irqstat, -1); return err; } static void set_sysctl(struct mmc *mmc, uint clock) { int div, pre_div; struct fsl_esdhc_cfg *cfg = mmc->priv; volatile struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base; int sdhc_clk = cfg->sdhc_clk; uint clk; if (clock < mmc->cfg->f_min) clock = mmc->cfg->f_min; if (sdhc_clk / 16 > clock) { for (pre_div = 2; pre_div < 256; pre_div *= 2) if ((sdhc_clk / pre_div) <= (clock * 16)) break; } else pre_div = 2; for (div = 1; div <= 16; div++) if ((sdhc_clk / (div * pre_div)) <= clock) break; pre_div >>= mmc->ddr_mode ? 2 : 1; div -= 1; clk = (pre_div << 8) | (div << 4); esdhc_clrbits32(®s->sysctl, SYSCTL_CKEN); esdhc_clrsetbits32(®s->sysctl, SYSCTL_CLOCK_MASK, clk); udelay(10000); clk = SYSCTL_PEREN | SYSCTL_CKEN; esdhc_setbits32(®s->sysctl, clk); } static void esdhc_set_ios(struct mmc *mmc) { struct fsl_esdhc_cfg *cfg = mmc->priv; struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base; /* Set the clock speed */ set_sysctl(mmc, mmc->clock); /* Set the bus width */ esdhc_clrbits32(®s->proctl, PROCTL_DTW_4 | PROCTL_DTW_8); if (mmc->bus_width == 4) esdhc_setbits32(®s->proctl, PROCTL_DTW_4); else if (mmc->bus_width == 8) esdhc_setbits32(®s->proctl, PROCTL_DTW_8); } static int esdhc_init(struct mmc *mmc) { struct fsl_esdhc_cfg *cfg = mmc->priv; struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base; int timeout = 1000; /* Reset the entire host controller */ esdhc_setbits32(®s->sysctl, SYSCTL_RSTA); /* Wait until the controller is available */ while ((esdhc_read32(®s->sysctl) & SYSCTL_RSTA) && --timeout) udelay(1000); #ifndef ARCH_MXC /* Enable cache snooping */ esdhc_write32(®s->scr, 0x00000040); #endif esdhc_setbits32(®s->sysctl, SYSCTL_HCKEN | SYSCTL_IPGEN); /* Set the initial clock speed */ mmc_set_clock(mmc, 400000); /* Disable the BRR and BWR bits in IRQSTAT */ esdhc_clrbits32(®s->irqstaten, IRQSTATEN_BRR | IRQSTATEN_BWR); /* Put the PROCTL reg back to the default */ esdhc_write32(®s->proctl, PROCTL_INIT); /* Set timout to the maximum value */ esdhc_clrsetbits32(®s->sysctl, SYSCTL_TIMEOUT_MASK, 14 << 16); return 0; } static int esdhc_getcd(struct mmc *mmc) { struct fsl_esdhc_cfg *cfg = mmc->priv; struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base; int timeout = 1000; #ifdef CONFIG_ESDHC_DETECT_QUIRK if (CONFIG_ESDHC_DETECT_QUIRK) return 1; #endif while (!(esdhc_read32(®s->prsstat) & PRSSTAT_CINS) && --timeout) udelay(1000); return timeout > 0; } static void esdhc_reset(struct fsl_esdhc *regs) { unsigned long timeout = 100; /* wait max 100 ms */ /* reset the controller */ esdhc_setbits32(®s->sysctl, SYSCTL_RSTA); /* hardware clears the bit when it is done */ while ((esdhc_read32(®s->sysctl) & SYSCTL_RSTA) && --timeout) udelay(1000); if (!timeout) printf("MMC/SD: Reset never completed.\n"); } static const struct mmc_ops esdhc_ops = { .send_cmd = esdhc_send_cmd, .set_ios = esdhc_set_ios, .init = esdhc_init, .getcd = esdhc_getcd, }; int fsl_esdhc_initialize(bd_t *bis, struct fsl_esdhc_cfg *cfg) { struct fsl_esdhc *regs; struct mmc *mmc; u32 caps, voltage_caps; if (!cfg) return -1; regs = (struct fsl_esdhc *)cfg->esdhc_base; /* First reset the eSDHC controller */ esdhc_reset(regs); esdhc_setbits32(®s->sysctl, SYSCTL_PEREN | SYSCTL_HCKEN | SYSCTL_IPGEN | SYSCTL_CKEN); writel(SDHCI_IRQ_EN_BITS, ®s->irqstaten); memset(&cfg->cfg, 0, sizeof(cfg->cfg)); voltage_caps = 0; caps = esdhc_read32(®s->hostcapblt); #ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC135 caps = caps & ~(ESDHC_HOSTCAPBLT_SRS | ESDHC_HOSTCAPBLT_VS18 | ESDHC_HOSTCAPBLT_VS30); #endif /* T4240 host controller capabilities register should have VS33 bit */ #ifdef CONFIG_SYS_FSL_MMC_HAS_CAPBLT_VS33 caps = caps | ESDHC_HOSTCAPBLT_VS33; #endif if (caps & ESDHC_HOSTCAPBLT_VS18) voltage_caps |= MMC_VDD_165_195; if (caps & ESDHC_HOSTCAPBLT_VS30) voltage_caps |= MMC_VDD_29_30 | MMC_VDD_30_31; if (caps & ESDHC_HOSTCAPBLT_VS33) voltage_caps |= MMC_VDD_32_33 | MMC_VDD_33_34; cfg->cfg.name = "FSL_SDHC"; cfg->cfg.ops = &esdhc_ops; #ifdef CONFIG_SYS_SD_VOLTAGE cfg->cfg.voltages = CONFIG_SYS_SD_VOLTAGE; #else cfg->cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34; #endif if ((cfg->cfg.voltages & voltage_caps) == 0) { printf("voltage not supported by controller\n"); return -1; } cfg->cfg.host_caps = MMC_MODE_4BIT | MMC_MODE_8BIT | MMC_MODE_HC; #ifdef CONFIG_SYS_FSL_ESDHC_HAS_DDR_MODE cfg->cfg.host_caps |= MMC_MODE_DDR_52MHz; #endif if (cfg->max_bus_width > 0) { if (cfg->max_bus_width < 8) cfg->cfg.host_caps &= ~MMC_MODE_8BIT; if (cfg->max_bus_width < 4) cfg->cfg.host_caps &= ~MMC_MODE_4BIT; } if (caps & ESDHC_HOSTCAPBLT_HSS) cfg->cfg.host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS; #ifdef CONFIG_ESDHC_DETECT_8_BIT_QUIRK if (CONFIG_ESDHC_DETECT_8_BIT_QUIRK) cfg->cfg.host_caps &= ~MMC_MODE_8BIT; #endif cfg->cfg.f_min = 400000; cfg->cfg.f_max = min(cfg->sdhc_clk, (u32)52000000); cfg->cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT; mmc = mmc_create(&cfg->cfg, cfg); if (mmc == NULL) return -1; return 0; } int fsl_esdhc_mmc_init(bd_t *bis) { struct fsl_esdhc_cfg *cfg; cfg = calloc(sizeof(struct fsl_esdhc_cfg), 1); cfg->esdhc_base = CONFIG_SYS_FSL_ESDHC_ADDR; cfg->sdhc_clk = gd->arch.sdhc_clk; return fsl_esdhc_initialize(bis, cfg); } #ifdef CONFIG_OF_LIBFDT void fdt_fixup_esdhc(void *blob, bd_t *bd) { const char *compat = "fsl,esdhc"; #ifdef CONFIG_FSL_ESDHC_PIN_MUX if (!hwconfig("esdhc")) { do_fixup_by_compat(blob, compat, "status", "disabled", 8 + 1, 1); return; } #endif do_fixup_by_compat_u32(blob, compat, "clock-frequency", gd->arch.sdhc_clk, 1); do_fixup_by_compat(blob, compat, "status", "okay", 4 + 1, 1); } #endif