/* * Copyright 2006,2009 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * Version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #ifdef CONFIG_HARD_I2C #include #include /* Functional interface */ #include #include /* HW definitions */ /* The maximum number of microseconds we will wait until another master has * released the bus. If not defined in the board header file, then use a * generic value. */ #ifndef CONFIG_I2C_MBB_TIMEOUT #define CONFIG_I2C_MBB_TIMEOUT 100000 #endif /* The maximum number of microseconds we will wait for a read or write * operation to complete. If not defined in the board header file, then use a * generic value. */ #ifndef CONFIG_I2C_TIMEOUT #define CONFIG_I2C_TIMEOUT 10000 #endif #define I2C_READ_BIT 1 #define I2C_WRITE_BIT 0 DECLARE_GLOBAL_DATA_PTR; /* Initialize the bus pointer to whatever one the SPD EEPROM is on. * Default is bus 0. This is necessary because the DDR initialization * runs from ROM, and we can't switch buses because we can't modify * the global variables. */ #ifndef CONFIG_SYS_SPD_BUS_NUM #define CONFIG_SYS_SPD_BUS_NUM 0 #endif static unsigned int i2c_bus_num __attribute__ ((section (".data"))) = CONFIG_SYS_SPD_BUS_NUM; #if defined(CONFIG_I2C_MUX) static unsigned int i2c_bus_num_mux __attribute__ ((section ("data"))) = 0; #endif static unsigned int i2c_bus_speed[2] = {CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SPEED}; static const struct fsl_i2c *i2c_dev[2] = { (struct fsl_i2c *) (CONFIG_SYS_IMMR + CONFIG_SYS_I2C_OFFSET), #ifdef CONFIG_SYS_I2C2_OFFSET (struct fsl_i2c *) (CONFIG_SYS_IMMR + CONFIG_SYS_I2C2_OFFSET) #endif }; /* I2C speed map for a DFSR value of 1 */ /* * Map I2C frequency dividers to FDR and DFSR values * * This structure is used to define the elements of a table that maps I2C * frequency divider (I2C clock rate divided by I2C bus speed) to a value to be * programmed into the Frequency Divider Ratio (FDR) and Digital Filter * Sampling Rate (DFSR) registers. * * The actual table should be defined in the board file, and it must be called * fsl_i2c_speed_map[]. * * The last entry of the table must have a value of {-1, X}, where X is same * FDR/DFSR values as the second-to-last entry. This guarantees that any * search through the array will always find a match. * * The values of the divider must be in increasing numerical order, i.e. * fsl_i2c_speed_map[x+1].divider > fsl_i2c_speed_map[x].divider. * * For this table, the values are based on a value of 1 for the DFSR * register. See the application note AN2919 "Determining the I2C Frequency * Divider Ratio for SCL" * * ColdFire I2C frequency dividers for FDR values are different from * PowerPC. The protocol to use the I2C module is still the same. * A different table is defined and are based on MCF5xxx user manual. * */ static const struct { unsigned short divider; u8 fdr; } fsl_i2c_speed_map[] = { #ifdef __M68K__ {20, 32}, {22, 33}, {24, 34}, {26, 35}, {28, 0}, {28, 36}, {30, 1}, {32, 37}, {34, 2}, {36, 38}, {40, 3}, {40, 39}, {44, 4}, {48, 5}, {48, 40}, {56, 6}, {56, 41}, {64, 42}, {68, 7}, {72, 43}, {80, 8}, {80, 44}, {88, 9}, {96, 41}, {104, 10}, {112, 42}, {128, 11}, {128, 43}, {144, 12}, {160, 13}, {160, 48}, {192, 14}, {192, 49}, {224, 50}, {240, 15}, {256, 51}, {288, 16}, {320, 17}, {320, 52}, {384, 18}, {384, 53}, {448, 54}, {480, 19}, {512, 55}, {576, 20}, {640, 21}, {640, 56}, {768, 22}, {768, 57}, {960, 23}, {896, 58}, {1024, 59}, {1152, 24}, {1280, 25}, {1280, 60}, {1536, 26}, {1536, 61}, {1792, 62}, {1920, 27}, {2048, 63}, {2304, 28}, {2560, 29}, {3072, 30}, {3840, 31}, {-1, 31} #endif }; /** * Set the I2C bus speed for a given I2C device * * @param dev: the I2C device * @i2c_clk: I2C bus clock frequency * @speed: the desired speed of the bus * * The I2C device must be stopped before calling this function. * * The return value is the actual bus speed that is set. */ static unsigned int set_i2c_bus_speed(const struct fsl_i2c *dev, unsigned int i2c_clk, unsigned int speed) { unsigned short divider = min(i2c_clk / speed, (unsigned short) -1); /* * We want to choose an FDR/DFSR that generates an I2C bus speed that * is equal to or lower than the requested speed. That means that we * want the first divider that is equal to or greater than the * calculated divider. */ #ifdef __PPC__ u8 dfsr, fdr = 0x31; /* Default if no FDR found */ /* a, b and dfsr matches identifiers A,B and C respectively in AN2919 */ unsigned short a, b, ga, gb; unsigned long c_div, est_div; #ifdef CONFIG_FSL_I2C_CUSTOM_DFSR dfsr = CONFIG_FSL_I2C_CUSTOM_DFSR; #else /* Condition 1: dfsr <= 50/T */ dfsr = (5 * (i2c_clk / 1000)) / 100000; #endif #ifdef CONFIG_FSL_I2C_CUSTOM_FDR fdr = CONFIG_FSL_I2C_CUSTOM_FDR; speed = i2c_clk / divider; /* Fake something */ #else debug("Requested speed:%d, i2c_clk:%d\n", speed, i2c_clk); if (!dfsr) dfsr = 1; est_div = ~0; for (ga = 0x4, a = 10; a <= 30; ga++, a += 2) { for (gb = 0; gb < 8; gb++) { b = 16 << gb; c_div = b * (a + ((3*dfsr)/b)*2); if ((c_div > divider) && (c_div < est_div)) { unsigned short bin_gb, bin_ga; est_div = c_div; bin_gb = gb << 2; bin_ga = (ga & 0x3) | ((ga & 0x4) << 3); fdr = bin_gb | bin_ga; speed = i2c_clk / est_div; debug("FDR:0x%.2x, div:%ld, ga:0x%x, gb:0x%x, " "a:%d, b:%d, speed:%d\n", fdr, est_div, ga, gb, a, b, speed); /* Condition 2 not accounted for */ debug("Tr <= %d ns\n", (b - 3 * dfsr) * 1000000 / (i2c_clk / 1000)); } } if (a == 20) a += 2; if (a == 24) a += 4; } debug("divider:%d, est_div:%ld, DFSR:%d\n", divider, est_div, dfsr); debug("FDR:0x%.2x, speed:%d\n", fdr, speed); #endif writeb(dfsr, &dev->dfsrr); /* set default filter */ writeb(fdr, &dev->fdr); /* set bus speed */ #else unsigned int i; for (i = 0; i < ARRAY_SIZE(fsl_i2c_speed_map); i++) if (fsl_i2c_speed_map[i].divider >= divider) { u8 fdr; fdr = fsl_i2c_speed_map[i].fdr; speed = i2c_clk / fsl_i2c_speed_map[i].divider; writeb(fdr, &dev->fdr); /* set bus speed */ break; } #endif return speed; } static unsigned int get_i2c_clock(int bus) { if (bus) return gd->arch.i2c2_clk; /* I2C2 clock */ else return gd->arch.i2c1_clk; /* I2C1 clock */ } void i2c_init(int speed, int slaveadd) { const struct fsl_i2c *dev; unsigned int temp; int bus_num, i; #ifdef CONFIG_SYS_I2C_INIT_BOARD /* Call board specific i2c bus reset routine before accessing the * environment, which might be in a chip on that bus. For details * about this problem see doc/I2C_Edge_Conditions. */ i2c_init_board(); #endif #ifdef CONFIG_SYS_I2C2_OFFSET bus_num = 2; #else bus_num = 1; #endif for (i = 0; i < bus_num; i++) { dev = i2c_dev[i]; writeb(0, &dev->cr); /* stop I2C controller */ udelay(5); /* let it shutdown in peace */ temp = set_i2c_bus_speed(dev, get_i2c_clock(i), speed); if (gd->flags & GD_FLG_RELOC) i2c_bus_speed[i] = temp; writeb(slaveadd << 1, &dev->adr);/* write slave address */ writeb(0x0, &dev->sr); /* clear status register */ writeb(I2C_CR_MEN, &dev->cr); /* start I2C controller */ } #ifdef CONFIG_SYS_I2C_BOARD_LATE_INIT /* Call board specific i2c bus reset routine AFTER the bus has been * initialized. Use either this callpoint or i2c_init_board; * which is called before i2c_init operations. * For details about this problem see doc/I2C_Edge_Conditions. */ i2c_board_late_init(); #endif } static int i2c_wait4bus(void) { unsigned long long timeval = get_ticks(); const unsigned long long timeout = usec2ticks(CONFIG_I2C_MBB_TIMEOUT); while (readb(&i2c_dev[i2c_bus_num]->sr) & I2C_SR_MBB) { if ((get_ticks() - timeval) > timeout) return -1; } return 0; } static __inline__ int i2c_wait(int write) { u32 csr; unsigned long long timeval = get_ticks(); const unsigned long long timeout = usec2ticks(CONFIG_I2C_TIMEOUT); do { csr = readb(&i2c_dev[i2c_bus_num]->sr); if (!(csr & I2C_SR_MIF)) continue; /* Read again to allow register to stabilise */ csr = readb(&i2c_dev[i2c_bus_num]->sr); writeb(0x0, &i2c_dev[i2c_bus_num]->sr); if (csr & I2C_SR_MAL) { debug("i2c_wait: MAL\n"); return -1; } if (!(csr & I2C_SR_MCF)) { debug("i2c_wait: unfinished\n"); return -1; } if (write == I2C_WRITE_BIT && (csr & I2C_SR_RXAK)) { debug("i2c_wait: No RXACK\n"); return -1; } return 0; } while ((get_ticks() - timeval) < timeout); debug("i2c_wait: timed out\n"); return -1; } static __inline__ int i2c_write_addr (u8 dev, u8 dir, int rsta) { writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_MTX | (rsta ? I2C_CR_RSTA : 0), &i2c_dev[i2c_bus_num]->cr); writeb((dev << 1) | dir, &i2c_dev[i2c_bus_num]->dr); if (i2c_wait(I2C_WRITE_BIT) < 0) return 0; return 1; } static __inline__ int __i2c_write(u8 *data, int length) { int i; for (i = 0; i < length; i++) { writeb(data[i], &i2c_dev[i2c_bus_num]->dr); if (i2c_wait(I2C_WRITE_BIT) < 0) break; } return i; } static __inline__ int __i2c_read(u8 *data, int length) { int i; writeb(I2C_CR_MEN | I2C_CR_MSTA | ((length == 1) ? I2C_CR_TXAK : 0), &i2c_dev[i2c_bus_num]->cr); /* dummy read */ readb(&i2c_dev[i2c_bus_num]->dr); for (i = 0; i < length; i++) { if (i2c_wait(I2C_READ_BIT) < 0) break; /* Generate ack on last next to last byte */ if (i == length - 2) writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_TXAK, &i2c_dev[i2c_bus_num]->cr); /* Do not generate stop on last byte */ if (i == length - 1) writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_MTX, &i2c_dev[i2c_bus_num]->cr); data[i] = readb(&i2c_dev[i2c_bus_num]->dr); } return i; } int i2c_read(u8 dev, uint addr, int alen, u8 *data, int length) { int i = -1; /* signal error */ u8 *a = (u8*)&addr; if (i2c_wait4bus() >= 0 && i2c_write_addr(dev, I2C_WRITE_BIT, 0) != 0 && __i2c_write(&a[4 - alen], alen) == alen) i = 0; /* No error so far */ if (length && i2c_write_addr(dev, I2C_READ_BIT, 1) != 0) i = __i2c_read(data, length); writeb(I2C_CR_MEN, &i2c_dev[i2c_bus_num]->cr); if (i2c_wait4bus()) /* Wait until STOP */ debug("i2c_read: wait4bus timed out\n"); if (i == length) return 0; return -1; } int i2c_write(u8 dev, uint addr, int alen, u8 *data, int length) { int i = -1; /* signal error */ u8 *a = (u8*)&addr; if (i2c_wait4bus() >= 0 && i2c_write_addr(dev, I2C_WRITE_BIT, 0) != 0 && __i2c_write(&a[4 - alen], alen) == alen) { i = __i2c_write(data, length); } writeb(I2C_CR_MEN, &i2c_dev[i2c_bus_num]->cr); if (i2c_wait4bus()) /* Wait until STOP */ debug("i2c_write: wait4bus timed out\n"); if (i == length) return 0; return -1; } int i2c_probe(uchar chip) { /* For unknow reason the controller will ACK when * probing for a slave with the same address, so skip * it. */ if (chip == (readb(&i2c_dev[i2c_bus_num]->adr) >> 1)) return -1; return i2c_read(chip, 0, 0, NULL, 0); } int i2c_set_bus_num(unsigned int bus) { #if defined(CONFIG_I2C_MUX) if (bus < CONFIG_SYS_MAX_I2C_BUS) { i2c_bus_num = bus; } else { int ret; ret = i2x_mux_select_mux(bus); if (ret) return ret; i2c_bus_num = 0; } i2c_bus_num_mux = bus; #else #ifdef CONFIG_SYS_I2C2_OFFSET if (bus > 1) { #else if (bus > 0) { #endif return -1; } i2c_bus_num = bus; #endif return 0; } int i2c_set_bus_speed(unsigned int speed) { unsigned int i2c_clk = (i2c_bus_num == 1) ? gd->arch.i2c2_clk : gd->arch.i2c1_clk; writeb(0, &i2c_dev[i2c_bus_num]->cr); /* stop controller */ i2c_bus_speed[i2c_bus_num] = set_i2c_bus_speed(i2c_dev[i2c_bus_num], i2c_clk, speed); writeb(I2C_CR_MEN, &i2c_dev[i2c_bus_num]->cr); /* start controller */ return 0; } unsigned int i2c_get_bus_num(void) { #if defined(CONFIG_I2C_MUX) return i2c_bus_num_mux; #else return i2c_bus_num; #endif } unsigned int i2c_get_bus_speed(void) { return i2c_bus_speed[i2c_bus_num]; } #endif /* CONFIG_HARD_I2C */