/* * (C) Copyright 2012-2013, Xilinx, Michal Simek * * (C) Copyright 2012 * Joe Hershberger * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include #define DEVCFG_CTRL_PCFG_PROG_B 0x40000000 #define DEVCFG_ISR_FATAL_ERROR_MASK 0x00740040 #define DEVCFG_ISR_ERROR_FLAGS_MASK 0x00340840 #define DEVCFG_ISR_RX_FIFO_OV 0x00040000 #define DEVCFG_ISR_DMA_DONE 0x00002000 #define DEVCFG_ISR_PCFG_DONE 0x00000004 #define DEVCFG_STATUS_DMA_CMD_Q_F 0x80000000 #define DEVCFG_STATUS_DMA_CMD_Q_E 0x40000000 #define DEVCFG_STATUS_DMA_DONE_CNT_MASK 0x30000000 #define DEVCFG_STATUS_PCFG_INIT 0x00000010 #define DEVCFG_MCTRL_RFIFO_FLUSH 0x00000002 #define DEVCFG_MCTRL_WFIFO_FLUSH 0x00000001 #ifndef CONFIG_SYS_FPGA_WAIT #define CONFIG_SYS_FPGA_WAIT CONFIG_SYS_HZ/100 /* 10 ms */ #endif #ifndef CONFIG_SYS_FPGA_PROG_TIME #define CONFIG_SYS_FPGA_PROG_TIME CONFIG_SYS_HZ /* 1 s */ #endif int zynq_info(Xilinx_desc *desc) { return FPGA_SUCCESS; } #define DUMMY_WORD 0xffffffff /* Xilinx binary format header */ static const u32 bin_format[] = { DUMMY_WORD, /* Dummy words */ DUMMY_WORD, DUMMY_WORD, DUMMY_WORD, DUMMY_WORD, DUMMY_WORD, DUMMY_WORD, DUMMY_WORD, 0x000000bb, /* Sync word */ 0x11220044, /* Sync word */ DUMMY_WORD, DUMMY_WORD, 0xaa995566, /* Sync word */ }; #define SWAP_NO 1 #define SWAP_DONE 2 /* * Load the whole word from unaligned buffer * Keep in your mind that it is byte loading on little-endian system */ static u32 load_word(const void *buf, u32 swap) { u32 word = 0; u8 *bitc = (u8 *)buf; int p; if (swap == SWAP_NO) { for (p = 0; p < 4; p++) { word <<= 8; word |= bitc[p]; } } else { for (p = 3; p >= 0; p--) { word <<= 8; word |= bitc[p]; } } return word; } static u32 check_header(const void *buf) { u32 i, pattern; int swap = SWAP_NO; u32 *test = (u32 *)buf; debug("%s: Let's check bitstream header\n", __func__); /* Checking that passing bin is not a bitstream */ for (i = 0; i < ARRAY_SIZE(bin_format); i++) { pattern = load_word(&test[i], swap); /* * Bitstreams in binary format are swapped * compare to regular bistream. * Do not swap dummy word but if swap is done assume * that parsing buffer is binary format */ if ((__swab32(pattern) != DUMMY_WORD) && (__swab32(pattern) == bin_format[i])) { pattern = __swab32(pattern); swap = SWAP_DONE; debug("%s: data swapped - let's swap\n", __func__); } debug("%s: %d/%x: pattern %x/%x bin_format\n", __func__, i, (u32)&test[i], pattern, bin_format[i]); if (pattern != bin_format[i]) { debug("%s: Bitstream is not recognized\n", __func__); return 0; } } debug("%s: Found bitstream header at %x %s swapinng\n", __func__, (u32)buf, swap == SWAP_NO ? "without" : "with"); return swap; } static void *check_data(u8 *buf, size_t bsize, u32 *swap) { u32 word, p = 0; /* possition */ /* Because buf doesn't need to be aligned let's read it by chars */ for (p = 0; p < bsize; p++) { word = load_word(&buf[p], SWAP_NO); debug("%s: word %x %x/%x\n", __func__, word, p, (u32)&buf[p]); /* Find the first bitstream dummy word */ if (word == DUMMY_WORD) { debug("%s: Found dummy word at position %x/%x\n", __func__, p, (u32)&buf[p]); *swap = check_header(&buf[p]); if (*swap) { /* FIXME add full bitstream checking here */ return &buf[p]; } } /* Loop can be huge - support CTRL + C */ if (ctrlc()) return 0; } return 0; } int zynq_load(Xilinx_desc *desc, const void *buf, size_t bsize) { unsigned long ts; /* Timestamp */ u32 partialbit = 0; u32 i, control, isr_status, status, swap, diff; u32 *buf_start; /* Detect if we are going working with partial or full bitstream */ if (bsize != desc->size) { printf("%s: Working with partial bitstream\n", __func__); partialbit = 1; } buf_start = check_data((u8 *)buf, bsize, &swap); if (!buf_start) return FPGA_FAIL; /* Check if data is postpone from start */ diff = (u32)buf_start - (u32)buf; if (diff) { printf("%s: Bitstream is not validated yet (diff %x)\n", __func__, diff); return FPGA_FAIL; } if ((u32)buf_start & 0x3) { u32 *new_buf = (u32 *)((u32)buf & ~0x3); printf("%s: Align buffer at %x to %x(swap %d)\n", __func__, (u32)buf_start, (u32)new_buf, swap); for (i = 0; i < (bsize/4); i++) new_buf[i] = load_word(&buf_start[i], swap); swap = SWAP_DONE; buf = new_buf; } else if (swap != SWAP_DONE) { /* For bitstream which are aligned */ u32 *new_buf = (u32 *)buf; printf("%s: Bitstream is not swapped(%d) - swap it\n", __func__, swap); for (i = 0; i < (bsize/4); i++) new_buf[i] = load_word(&buf_start[i], swap); swap = SWAP_DONE; } if (!partialbit) { zynq_slcr_devcfg_disable(); /* Setting PCFG_PROG_B signal to high */ control = readl(&devcfg_base->ctrl); writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl); /* Setting PCFG_PROG_B signal to low */ writel(control & ~DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl); /* Polling the PCAP_INIT status for Reset */ ts = get_timer(0); while (readl(&devcfg_base->status) & DEVCFG_STATUS_PCFG_INIT) { if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) { printf("%s: Timeout wait for INIT to clear\n", __func__); return FPGA_FAIL; } } /* Setting PCFG_PROG_B signal to high */ writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl); /* Polling the PCAP_INIT status for Set */ ts = get_timer(0); while (!(readl(&devcfg_base->status) & DEVCFG_STATUS_PCFG_INIT)) { if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) { printf("%s: Timeout wait for INIT to set\n", __func__); return FPGA_FAIL; } } } isr_status = readl(&devcfg_base->int_sts); /* Clear it all, so if Boot ROM comes back, it can proceed */ writel(0xFFFFFFFF, &devcfg_base->int_sts); if (isr_status & DEVCFG_ISR_FATAL_ERROR_MASK) { debug("%s: Fatal errors in PCAP 0x%X\n", __func__, isr_status); /* If RX FIFO overflow, need to flush RX FIFO first */ if (isr_status & DEVCFG_ISR_RX_FIFO_OV) { writel(DEVCFG_MCTRL_RFIFO_FLUSH, &devcfg_base->mctrl); writel(0xFFFFFFFF, &devcfg_base->int_sts); } return FPGA_FAIL; } status = readl(&devcfg_base->status); debug("%s: Status = 0x%08X\n", __func__, status); if (status & DEVCFG_STATUS_DMA_CMD_Q_F) { debug("%s: Error: device busy\n", __func__); return FPGA_FAIL; } debug("%s: Device ready\n", __func__); if (!(status & DEVCFG_STATUS_DMA_CMD_Q_E)) { if (!(readl(&devcfg_base->int_sts) & DEVCFG_ISR_DMA_DONE)) { /* Error state, transfer cannot occur */ debug("%s: ISR indicates error\n", __func__); return FPGA_FAIL; } else { /* Clear out the status */ writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts); } } if (status & DEVCFG_STATUS_DMA_DONE_CNT_MASK) { /* Clear the count of completed DMA transfers */ writel(DEVCFG_STATUS_DMA_DONE_CNT_MASK, &devcfg_base->status); } debug("%s: Source = 0x%08X\n", __func__, (u32)buf); debug("%s: Size = %zu\n", __func__, bsize); /* Set up the transfer */ writel((u32)buf | 1, &devcfg_base->dma_src_addr); writel(0xFFFFFFFF, &devcfg_base->dma_dst_addr); writel(bsize >> 2, &devcfg_base->dma_src_len); writel(0, &devcfg_base->dma_dst_len); isr_status = readl(&devcfg_base->int_sts); /* Polling the PCAP_INIT status for Set */ ts = get_timer(0); while (!(isr_status & DEVCFG_ISR_DMA_DONE)) { if (isr_status & DEVCFG_ISR_ERROR_FLAGS_MASK) { debug("%s: Error: isr = 0x%08X\n", __func__, isr_status); debug("%s: Write count = 0x%08X\n", __func__, readl(&devcfg_base->write_count)); debug("%s: Read count = 0x%08X\n", __func__, readl(&devcfg_base->read_count)); return FPGA_FAIL; } if (get_timer(ts) > CONFIG_SYS_FPGA_PROG_TIME) { printf("%s: Timeout wait for DMA to complete\n", __func__); return FPGA_FAIL; } isr_status = readl(&devcfg_base->int_sts); } debug("%s: DMA transfer is done\n", __func__); /* Check FPGA configuration completion */ ts = get_timer(0); while (!(isr_status & DEVCFG_ISR_PCFG_DONE)) { if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) { printf("%s: Timeout wait for FPGA to config\n", __func__); return FPGA_FAIL; } isr_status = readl(&devcfg_base->int_sts); } debug("%s: FPGA config done\n", __func__); /* Clear out the DMA status */ writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts); if (!partialbit) zynq_slcr_devcfg_enable(); return FPGA_SUCCESS; } int zynq_dump(Xilinx_desc *desc, const void *buf, size_t bsize) { return FPGA_FAIL; }