/* * Copyright 2008-2014 Freescale Semiconductor, Inc. * * SPDX-License-Identifier: GPL-2.0+ * * Based on CAAM driver in drivers/crypto/caam in Linux */ #include #include #include "fsl_sec.h" #include "jr.h" #include "jobdesc.h" #include "desc_constr.h" #ifdef CONFIG_FSL_CORENET #include #endif #define CIRC_CNT(head, tail, size) (((head) - (tail)) & (size - 1)) #define CIRC_SPACE(head, tail, size) CIRC_CNT((tail), (head) + 1, (size)) struct jobring jr; static inline void start_jr0(void) { ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; u32 ctpr_ms = sec_in32(&sec->ctpr_ms); u32 scfgr = sec_in32(&sec->scfgr); if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_INCL) { /* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or * VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SEC_SCFGR_VIRT_EN = 1 */ if ((ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) || (!(ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) && (scfgr & SEC_SCFGR_VIRT_EN))) sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0); } else { /* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */ if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0); } } static inline void jr_reset_liodn(void) { ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; sec_out32(&sec->jrliodnr[0].ls, 0); } static inline void jr_disable_irq(void) { struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR; uint32_t jrcfg = sec_in32(®s->jrcfg1); jrcfg = jrcfg | JR_INTMASK; sec_out32(®s->jrcfg1, jrcfg); } static void jr_initregs(void) { struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR; phys_addr_t ip_base = virt_to_phys((void *)jr.input_ring); phys_addr_t op_base = virt_to_phys((void *)jr.output_ring); #ifdef CONFIG_PHYS_64BIT sec_out32(®s->irba_h, ip_base >> 32); #else sec_out32(®s->irba_h, 0x0); #endif sec_out32(®s->irba_l, (uint32_t)ip_base); #ifdef CONFIG_PHYS_64BIT sec_out32(®s->orba_h, op_base >> 32); #else sec_out32(®s->orba_h, 0x0); #endif sec_out32(®s->orba_l, (uint32_t)op_base); sec_out32(®s->ors, JR_SIZE); sec_out32(®s->irs, JR_SIZE); if (!jr.irq) jr_disable_irq(); } static int jr_init(void) { memset(&jr, 0, sizeof(struct jobring)); jr.jq_id = DEFAULT_JR_ID; jr.irq = DEFAULT_IRQ; #ifdef CONFIG_FSL_CORENET jr.liodn = DEFAULT_JR_LIODN; #endif jr.size = JR_SIZE; jr.input_ring = (dma_addr_t *)memalign(ARCH_DMA_MINALIGN, JR_SIZE * sizeof(dma_addr_t)); if (!jr.input_ring) return -1; jr.op_size = roundup(JR_SIZE * sizeof(struct op_ring), ARCH_DMA_MINALIGN); jr.output_ring = (struct op_ring *)memalign(ARCH_DMA_MINALIGN, jr.op_size); if (!jr.output_ring) return -1; memset(jr.input_ring, 0, JR_SIZE * sizeof(dma_addr_t)); memset(jr.output_ring, 0, jr.op_size); start_jr0(); jr_initregs(); return 0; } static int jr_sw_cleanup(void) { jr.head = 0; jr.tail = 0; jr.read_idx = 0; jr.write_idx = 0; memset(jr.info, 0, sizeof(jr.info)); memset(jr.input_ring, 0, jr.size * sizeof(dma_addr_t)); memset(jr.output_ring, 0, jr.size * sizeof(struct op_ring)); return 0; } static int jr_hw_reset(void) { struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR; uint32_t timeout = 100000; uint32_t jrint, jrcr; sec_out32(®s->jrcr, JRCR_RESET); do { jrint = sec_in32(®s->jrint); } while (((jrint & JRINT_ERR_HALT_MASK) == JRINT_ERR_HALT_INPROGRESS) && --timeout); jrint = sec_in32(®s->jrint); if (((jrint & JRINT_ERR_HALT_MASK) != JRINT_ERR_HALT_INPROGRESS) && timeout == 0) return -1; timeout = 100000; sec_out32(®s->jrcr, JRCR_RESET); do { jrcr = sec_in32(®s->jrcr); } while ((jrcr & JRCR_RESET) && --timeout); if (timeout == 0) return -1; return 0; } /* -1 --- error, can't enqueue -- no space available */ static int jr_enqueue(uint32_t *desc_addr, void (*callback)(uint32_t status, void *arg), void *arg) { struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR; int head = jr.head; uint32_t desc_word; int length = desc_len(desc_addr); int i; #ifdef CONFIG_PHYS_64BIT uint32_t *addr_hi, *addr_lo; #endif /* The descriptor must be submitted to SEC block as per endianness * of the SEC Block. * So, if the endianness of Core and SEC block is different, each word * of the descriptor will be byte-swapped. */ for (i = 0; i < length; i++) { desc_word = desc_addr[i]; sec_out32((uint32_t *)&desc_addr[i], desc_word); } phys_addr_t desc_phys_addr = virt_to_phys(desc_addr); if (sec_in32(®s->irsa) == 0 || CIRC_SPACE(jr.head, jr.tail, jr.size) <= 0) return -1; jr.info[head].desc_phys_addr = desc_phys_addr; jr.info[head].callback = (void *)callback; jr.info[head].arg = arg; jr.info[head].op_done = 0; unsigned long start = (unsigned long)&jr.info[head] & ~(ARCH_DMA_MINALIGN - 1); unsigned long end = ALIGN((unsigned long)&jr.info[head] + sizeof(struct jr_info), ARCH_DMA_MINALIGN); flush_dcache_range(start, end); #ifdef CONFIG_PHYS_64BIT /* Write the 64 bit Descriptor address on Input Ring. * The 32 bit hign and low part of the address will * depend on endianness of SEC block. */ #ifdef CONFIG_SYS_FSL_SEC_LE addr_lo = (uint32_t *)(&jr.input_ring[head]); addr_hi = (uint32_t *)(&jr.input_ring[head]) + 1; #elif defined(CONFIG_SYS_FSL_SEC_BE) addr_hi = (uint32_t *)(&jr.input_ring[head]); addr_lo = (uint32_t *)(&jr.input_ring[head]) + 1; #endif /* ifdef CONFIG_SYS_FSL_SEC_LE */ sec_out32(addr_hi, (uint32_t)(desc_phys_addr >> 32)); sec_out32(addr_lo, (uint32_t)(desc_phys_addr)); #else /* Write the 32 bit Descriptor address on Input Ring. */ sec_out32(&jr.input_ring[head], desc_phys_addr); #endif /* ifdef CONFIG_PHYS_64BIT */ start = (unsigned long)&jr.input_ring[head] & ~(ARCH_DMA_MINALIGN - 1); end = ALIGN((unsigned long)&jr.input_ring[head] + sizeof(dma_addr_t), ARCH_DMA_MINALIGN); flush_dcache_range(start, end); jr.head = (head + 1) & (jr.size - 1); /* Invalidate output ring */ start = (unsigned long)jr.output_ring & ~(ARCH_DMA_MINALIGN - 1); end = ALIGN((unsigned long)jr.output_ring + jr.op_size, ARCH_DMA_MINALIGN); invalidate_dcache_range(start, end); sec_out32(®s->irja, 1); return 0; } static int jr_dequeue(void) { struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR; int head = jr.head; int tail = jr.tail; int idx, i, found; void (*callback)(uint32_t status, void *arg); void *arg = NULL; #ifdef CONFIG_PHYS_64BIT uint32_t *addr_hi, *addr_lo; #else uint32_t *addr; #endif while (sec_in32(®s->orsf) && CIRC_CNT(jr.head, jr.tail, jr.size)) { found = 0; phys_addr_t op_desc; #ifdef CONFIG_PHYS_64BIT /* Read the 64 bit Descriptor address from Output Ring. * The 32 bit hign and low part of the address will * depend on endianness of SEC block. */ #ifdef CONFIG_SYS_FSL_SEC_LE addr_lo = (uint32_t *)(&jr.output_ring[jr.tail].desc); addr_hi = (uint32_t *)(&jr.output_ring[jr.tail].desc) + 1; #elif defined(CONFIG_SYS_FSL_SEC_BE) addr_hi = (uint32_t *)(&jr.output_ring[jr.tail].desc); addr_lo = (uint32_t *)(&jr.output_ring[jr.tail].desc) + 1; #endif /* ifdef CONFIG_SYS_FSL_SEC_LE */ op_desc = ((u64)sec_in32(addr_hi) << 32) | ((u64)sec_in32(addr_lo)); #else /* Read the 32 bit Descriptor address from Output Ring. */ addr = (uint32_t *)&jr.output_ring[jr.tail].desc; op_desc = sec_in32(addr); #endif /* ifdef CONFIG_PHYS_64BIT */ uint32_t status = sec_in32(&jr.output_ring[jr.tail].status); for (i = 0; CIRC_CNT(head, tail + i, jr.size) >= 1; i++) { idx = (tail + i) & (jr.size - 1); if (op_desc == jr.info[idx].desc_phys_addr) { found = 1; break; } } /* Error condition if match not found */ if (!found) return -1; jr.info[idx].op_done = 1; callback = (void *)jr.info[idx].callback; arg = jr.info[idx].arg; /* When the job on tail idx gets done, increment * tail till the point where job completed out of oredr has * been taken into account */ if (idx == tail) do { tail = (tail + 1) & (jr.size - 1); } while (jr.info[tail].op_done); jr.tail = tail; jr.read_idx = (jr.read_idx + 1) & (jr.size - 1); sec_out32(®s->orjr, 1); jr.info[idx].op_done = 0; callback(status, arg); } return 0; } static void desc_done(uint32_t status, void *arg) { struct result *x = arg; x->status = status; caam_jr_strstatus(status); x->done = 1; } int run_descriptor_jr(uint32_t *desc) { unsigned long long timeval = get_ticks(); unsigned long long timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT); struct result op; int ret = 0; memset(&op, 0, sizeof(op)); ret = jr_enqueue(desc, desc_done, &op); if (ret) { debug("Error in SEC enq\n"); ret = JQ_ENQ_ERR; goto out; } timeval = get_ticks(); timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT); while (op.done != 1) { ret = jr_dequeue(); if (ret) { debug("Error in SEC deq\n"); ret = JQ_DEQ_ERR; goto out; } if ((get_ticks() - timeval) > timeout) { debug("SEC Dequeue timed out\n"); ret = JQ_DEQ_TO_ERR; goto out; } } if (op.status) { debug("Error %x\n", op.status); ret = op.status; } out: return ret; } int jr_reset(void) { if (jr_hw_reset() < 0) return -1; /* Clean up the jobring structure maintained by software */ jr_sw_cleanup(); return 0; } int sec_reset(void) { ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; uint32_t mcfgr = sec_in32(&sec->mcfgr); uint32_t timeout = 100000; mcfgr |= MCFGR_SWRST; sec_out32(&sec->mcfgr, mcfgr); mcfgr |= MCFGR_DMA_RST; sec_out32(&sec->mcfgr, mcfgr); do { mcfgr = sec_in32(&sec->mcfgr); } while ((mcfgr & MCFGR_DMA_RST) == MCFGR_DMA_RST && --timeout); if (timeout == 0) return -1; timeout = 100000; do { mcfgr = sec_in32(&sec->mcfgr); } while ((mcfgr & MCFGR_SWRST) == MCFGR_SWRST && --timeout); if (timeout == 0) return -1; return 0; } static int instantiate_rng(void) { struct result op; u32 *desc; u32 rdsta_val; int ret = 0; ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR; struct rng4tst __iomem *rng = (struct rng4tst __iomem *)&sec->rng; memset(&op, 0, sizeof(struct result)); desc = memalign(ARCH_DMA_MINALIGN, sizeof(uint32_t) * 6); if (!desc) { printf("cannot allocate RNG init descriptor memory\n"); return -1; } inline_cnstr_jobdesc_rng_instantiation(desc); int size = roundup(sizeof(uint32_t) * 6, ARCH_DMA_MINALIGN); flush_dcache_range((unsigned long)desc, (unsigned long)desc + size); ret = run_descriptor_jr(desc); if (ret) printf("RNG: Instantiation failed with error %x\n", ret); rdsta_val = sec_in32(&rng->rdsta); if (op.status || !(rdsta_val & RNG_STATE0_HANDLE_INSTANTIATED)) return -1; return ret; } static u8 get_rng_vid(void) { ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; u32 cha_vid = sec_in32(&sec->chavid_ls); return (cha_vid & SEC_CHAVID_RNG_LS_MASK) >> SEC_CHAVID_LS_RNG_SHIFT; } /* * By default, the TRNG runs for 200 clocks per sample; * 1200 clocks per sample generates better entropy. */ static void kick_trng(int ent_delay) { ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR; struct rng4tst __iomem *rng = (struct rng4tst __iomem *)&sec->rng; u32 val; /* put RNG4 into program mode */ sec_setbits32(&rng->rtmctl, RTMCTL_PRGM); /* rtsdctl bits 0-15 contain "Entropy Delay, which defines the * length (in system clocks) of each Entropy sample taken * */ val = sec_in32(&rng->rtsdctl); val = (val & ~RTSDCTL_ENT_DLY_MASK) | (ent_delay << RTSDCTL_ENT_DLY_SHIFT); sec_out32(&rng->rtsdctl, val); /* min. freq. count, equal to 1/4 of the entropy sample length */ sec_out32(&rng->rtfreqmin, ent_delay >> 2); /* disable maximum frequency count */ sec_out32(&rng->rtfreqmax, RTFRQMAX_DISABLE); /* * select raw sampling in both entropy shifter * and statistical checker */ sec_setbits32(&rng->rtmctl, RTMCTL_SAMP_MODE_RAW_ES_SC); /* put RNG4 into run mode */ sec_clrbits32(&rng->rtmctl, RTMCTL_PRGM); } static int rng_init(void) { int ret, ent_delay = RTSDCTL_ENT_DLY_MIN; ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR; struct rng4tst __iomem *rng = (struct rng4tst __iomem *)&sec->rng; u32 rdsta = sec_in32(&rng->rdsta); /* Check if RNG state 0 handler is already instantiated */ if (rdsta & RNG_STATE0_HANDLE_INSTANTIATED) return 0; do { /* * If either of the SH's were instantiated by somebody else * then it is assumed that the entropy * parameters are properly set and thus the function * setting these (kick_trng(...)) is skipped. * Also, if a handle was instantiated, do not change * the TRNG parameters. */ kick_trng(ent_delay); ent_delay += 400; /* * if instantiate_rng(...) fails, the loop will rerun * and the kick_trng(...) function will modfiy the * upper and lower limits of the entropy sampling * interval, leading to a sucessful initialization of * the RNG. */ ret = instantiate_rng(); } while ((ret == -1) && (ent_delay < RTSDCTL_ENT_DLY_MAX)); if (ret) { printf("RNG: Failed to instantiate RNG\n"); return ret; } /* Enable RDB bit so that RNG works faster */ sec_setbits32(&sec->scfgr, SEC_SCFGR_RDBENABLE); return ret; } int sec_init(void) { ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; uint32_t mcr = sec_in32(&sec->mcfgr); int ret = 0; #ifdef CONFIG_FSL_CORENET uint32_t liodnr; uint32_t liodn_ns; uint32_t liodn_s; #endif /* * Modifying CAAM Read/Write Attributes * For LS2080A and LS2085A * For AXI Write - Cacheable, Write Back, Write allocate * For AXI Read - Cacheable, Read allocate * Only For LS2080a and LS2085a, to solve CAAM coherency issues */ #if defined(CONFIG_LS2080A) || defined(CONFIG_LS2085A) mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0xb << MCFGR_AWCACHE_SHIFT); mcr = (mcr & ~MCFGR_ARCACHE_MASK) | (0x6 << MCFGR_ARCACHE_SHIFT); #else mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0x2 << MCFGR_AWCACHE_SHIFT); #endif #ifdef CONFIG_PHYS_64BIT mcr |= (1 << MCFGR_PS_SHIFT); #endif sec_out32(&sec->mcfgr, mcr); #ifdef CONFIG_FSL_CORENET liodnr = sec_in32(&sec->jrliodnr[0].ls); liodn_ns = (liodnr & JRNSLIODN_MASK) >> JRNSLIODN_SHIFT; liodn_s = (liodnr & JRSLIODN_MASK) >> JRSLIODN_SHIFT; #endif ret = jr_init(); if (ret < 0) { printf("SEC initialization failed\n"); return -1; } #ifdef CONFIG_FSL_CORENET ret = sec_config_pamu_table(liodn_ns, liodn_s); if (ret < 0) return -1; pamu_enable(); #endif if (get_rng_vid() >= 4) { if (rng_init() < 0) { printf("RNG instantiation failed\n"); return -1; } printf("SEC: RNG instantiated\n"); } return ret; }