/* * Copyright (C) 2008 RuggedCom, Inc. * Richard Retanubun * * SPDX-License-Identifier: GPL-2.0+ */ /* * Problems with CONFIG_SYS_64BIT_LBA: * * struct disk_partition.start in include/part.h is sized as ulong. * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t. * For now, it is cast back to ulong at assignment. * * This limits the maximum size of addressable storage to < 2 Terra Bytes */ #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #ifdef HAVE_BLOCK_DEVICE /** * efi_crc32() - EFI version of crc32 function * @buf: buffer to calculate crc32 of * @len - length of buf * * Description: Returns EFI-style CRC32 value for @buf */ static inline u32 efi_crc32(const void *buf, u32 len) { return crc32(0, buf, len); } /* * Private function prototypes */ static int pmbr_part_valid(struct partition *part); static int is_pmbr_valid(legacy_mbr * mbr); static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, gpt_header * pgpt_head, gpt_entry ** pgpt_pte); static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, gpt_header * pgpt_head); static int is_pte_valid(gpt_entry * pte); static char *print_efiname(gpt_entry *pte) { static char name[PARTNAME_SZ + 1]; int i; for (i = 0; i < PARTNAME_SZ; i++) { u8 c; c = pte->partition_name[i] & 0xff; c = (c && !isprint(c)) ? '.' : c; name[i] = c; } name[PARTNAME_SZ] = 0; return name; } static void uuid_string(unsigned char *uuid, char *str) { static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15}; int i; for (i = 0; i < 16; i++) { sprintf(str, "%02x", uuid[le[i]]); str += 2; switch (i) { case 3: case 5: case 7: case 9: *str++ = '-'; break; } } } static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; static inline int is_bootable(gpt_entry *p) { return p->attributes.fields.legacy_bios_bootable || !memcmp(&(p->partition_type_guid), &system_guid, sizeof(efi_guid_t)); } #ifdef CONFIG_EFI_PARTITION /* * Public Functions (include/part.h) */ void print_part_efi(block_dev_desc_t * dev_desc) { ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); gpt_entry *gpt_pte = NULL; int i = 0; char uuid[37]; if (!dev_desc) { printf("%s: Invalid Argument(s)\n", __func__); return; } /* This function validates AND fills in the GPT header and PTE */ if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, gpt_head, &gpt_pte) != 1) { printf("%s: *** ERROR: Invalid GPT ***\n", __func__); return; } debug("%s: gpt-entry at %p\n", __func__, gpt_pte); printf("Part\tStart LBA\tEnd LBA\t\tName\n"); printf("\tAttributes\n"); printf("\tType UUID\n"); printf("\tPartition UUID\n"); for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { /* Stop at the first non valid PTE */ if (!is_pte_valid(&gpt_pte[i])) break; printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), le64_to_cpu(gpt_pte[i].starting_lba), le64_to_cpu(gpt_pte[i].ending_lba), print_efiname(&gpt_pte[i])); printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); uuid_string(gpt_pte[i].partition_type_guid.b, uuid); printf("\ttype:\t%s\n", uuid); uuid_string(gpt_pte[i].unique_partition_guid.b, uuid); printf("\tuuid:\t%s\n", uuid); } /* Remember to free pte */ free(gpt_pte); return; } int get_partition_info_efi(block_dev_desc_t * dev_desc, int part, disk_partition_t * info) { ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); gpt_entry *gpt_pte = NULL; /* "part" argument must be at least 1 */ if (!dev_desc || !info || part < 1) { printf("%s: Invalid Argument(s)\n", __func__); return -1; } /* This function validates AND fills in the GPT header and PTE */ if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, gpt_head, &gpt_pte) != 1) { printf("%s: *** ERROR: Invalid GPT ***\n", __func__); return -1; } if (part > le32_to_cpu(gpt_head->num_partition_entries) || !is_pte_valid(&gpt_pte[part - 1])) { debug("%s: *** ERROR: Invalid partition number %d ***\n", __func__, part); free(gpt_pte); return -1; } /* The ulong casting limits the maximum disk size to 2 TB */ info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba); /* The ending LBA is inclusive, to calculate size, add 1 to it */ info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1) - info->start; info->blksz = dev_desc->blksz; sprintf((char *)info->name, "%s", print_efiname(&gpt_pte[part - 1])); sprintf((char *)info->type, "U-Boot"); info->bootable = is_bootable(&gpt_pte[part - 1]); #ifdef CONFIG_PARTITION_UUIDS uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid); #endif debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s", __func__, info->start, info->size, info->name); /* Remember to free pte */ free(gpt_pte); return 0; } int test_part_efi(block_dev_desc_t * dev_desc) { ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); /* Read legacy MBR from block 0 and validate it */ if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1) || (is_pmbr_valid(legacymbr) != 1)) { return -1; } return 0; } /** * set_protective_mbr(): Set the EFI protective MBR * @param dev_desc - block device descriptor * * @return - zero on success, otherwise error */ static int set_protective_mbr(block_dev_desc_t *dev_desc) { /* Setup the Protective MBR */ ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1); memset(p_mbr, 0, sizeof(*p_mbr)); if (p_mbr == NULL) { printf("%s: calloc failed!\n", __func__); return -1; } /* Append signature */ p_mbr->signature = MSDOS_MBR_SIGNATURE; p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; p_mbr->partition_record[0].start_sect = 1; p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba; /* Write MBR sector to the MMC device */ if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) { printf("** Can't write to device %d **\n", dev_desc->dev); return -1; } return 0; } /** * string_uuid(); Convert UUID stored as string to bytes * * @param uuid - UUID represented as string * @param dst - GUID buffer * * @return return 0 on successful conversion */ static int string_uuid(char *uuid, u8 *dst) { efi_guid_t guid; u16 b, c, d; u64 e; u32 a; u8 *p; u8 i; const u8 uuid_str_len = 36; /* The UUID is written in text: */ /* 1 9 14 19 24 */ /* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx */ debug("%s: uuid: %s\n", __func__, uuid); if (strlen(uuid) != uuid_str_len) return -1; for (i = 0; i < uuid_str_len; i++) { if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) { if (uuid[i] != '-') return -1; } else { if (!isxdigit(uuid[i])) return -1; } } a = (u32)simple_strtoul(uuid, NULL, 16); b = (u16)simple_strtoul(uuid + 9, NULL, 16); c = (u16)simple_strtoul(uuid + 14, NULL, 16); d = (u16)simple_strtoul(uuid + 19, NULL, 16); e = (u64)simple_strtoull(uuid + 24, NULL, 16); p = (u8 *) &e; guid = EFI_GUID(a, b, c, d >> 8, d & 0xFF, *(p + 5), *(p + 4), *(p + 3), *(p + 2), *(p + 1) , *p); memcpy(dst, guid.b, sizeof(efi_guid_t)); return 0; } int write_gpt_table(block_dev_desc_t *dev_desc, gpt_header *gpt_h, gpt_entry *gpt_e) { const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries * sizeof(gpt_entry)), dev_desc); u32 calc_crc32; u64 val; debug("max lba: %x\n", (u32) dev_desc->lba); /* Setup the Protective MBR */ if (set_protective_mbr(dev_desc) < 0) goto err; /* Generate CRC for the Primary GPT Header */ calc_crc32 = efi_crc32((const unsigned char *)gpt_e, le32_to_cpu(gpt_h->num_partition_entries) * le32_to_cpu(gpt_h->sizeof_partition_entry)); gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); calc_crc32 = efi_crc32((const unsigned char *)gpt_h, le32_to_cpu(gpt_h->header_size)); gpt_h->header_crc32 = cpu_to_le32(calc_crc32); /* Write the First GPT to the block right after the Legacy MBR */ if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1) goto err; if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e) != pte_blk_cnt) goto err; /* recalculate the values for the Second GPT Header */ val = le64_to_cpu(gpt_h->my_lba); gpt_h->my_lba = gpt_h->alternate_lba; gpt_h->alternate_lba = cpu_to_le64(val); gpt_h->header_crc32 = 0; calc_crc32 = efi_crc32((const unsigned char *)gpt_h, le32_to_cpu(gpt_h->header_size)); gpt_h->header_crc32 = cpu_to_le32(calc_crc32); if (dev_desc->block_write(dev_desc->dev, le32_to_cpu(gpt_h->last_usable_lba + 1), pte_blk_cnt, gpt_e) != pte_blk_cnt) goto err; if (dev_desc->block_write(dev_desc->dev, le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1) goto err; debug("GPT successfully written to block device!\n"); return 0; err: printf("** Can't write to device %d **\n", dev_desc->dev); return -1; } int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, disk_partition_t *partitions, int parts) { u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba); ulong start; int i, k; size_t efiname_len, dosname_len; #ifdef CONFIG_PARTITION_UUIDS char *str_uuid; #endif for (i = 0; i < parts; i++) { /* partition starting lba */ start = partitions[i].start; if (start && (start < offset)) { printf("Partition overlap\n"); return -1; } if (start) { gpt_e[i].starting_lba = cpu_to_le64(start); offset = start + partitions[i].size; } else { gpt_e[i].starting_lba = cpu_to_le64(offset); offset += partitions[i].size; } if (offset >= gpt_h->last_usable_lba) { printf("Partitions layout exceds disk size\n"); return -1; } /* partition ending lba */ if ((i == parts - 1) && (partitions[i].size == 0)) /* extend the last partition to maximuim */ gpt_e[i].ending_lba = gpt_h->last_usable_lba; else gpt_e[i].ending_lba = cpu_to_le64(offset - 1); /* partition type GUID */ memcpy(gpt_e[i].partition_type_guid.b, &PARTITION_BASIC_DATA_GUID, 16); #ifdef CONFIG_PARTITION_UUIDS str_uuid = partitions[i].uuid; if (string_uuid(str_uuid, gpt_e[i].unique_partition_guid.b)) { printf("Partition no. %d: invalid guid: %s\n", i, str_uuid); return -1; } #endif /* partition attributes */ memset(&gpt_e[i].attributes, 0, sizeof(gpt_entry_attributes)); /* partition name */ efiname_len = sizeof(gpt_e[i].partition_name) / sizeof(efi_char16_t); dosname_len = sizeof(partitions[i].name); memset(gpt_e[i].partition_name, 0, sizeof(gpt_e[i].partition_name)); for (k = 0; k < min(dosname_len, efiname_len); k++) gpt_e[i].partition_name[k] = (efi_char16_t)(partitions[i].name[k]); debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x" LBAF "\n", __func__, partitions[i].name, i, offset, i, partitions[i].size); } return 0; } int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h, char *str_guid, int parts_count) { gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); gpt_h->my_lba = cpu_to_le64(1); gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); gpt_h->first_usable_lba = cpu_to_le64(34); gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); gpt_h->partition_entry_lba = cpu_to_le64(2); gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); gpt_h->header_crc32 = 0; gpt_h->partition_entry_array_crc32 = 0; if (string_uuid(str_guid, gpt_h->disk_guid.b)) return -1; return 0; } int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid, disk_partition_t *partitions, int parts_count) { int ret; gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), dev_desc)); gpt_entry *gpt_e; if (gpt_h == NULL) { printf("%s: calloc failed!\n", __func__); return -1; } gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS * sizeof(gpt_entry), dev_desc)); if (gpt_e == NULL) { printf("%s: calloc failed!\n", __func__); free(gpt_h); return -1; } /* Generate Primary GPT header (LBA1) */ ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); if (ret) goto err; /* Generate partition entries */ ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); if (ret) goto err; /* Write GPT partition table */ ret = write_gpt_table(dev_desc, gpt_h, gpt_e); err: free(gpt_e); free(gpt_h); return ret; } #endif /* * Private functions */ /* * pmbr_part_valid(): Check for EFI partition signature * * Returns: 1 if EFI GPT partition type is found. */ static int pmbr_part_valid(struct partition *part) { if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && get_unaligned_le32(&part->start_sect) == 1UL) { return 1; } return 0; } /* * is_pmbr_valid(): test Protective MBR for validity * * Returns: 1 if PMBR is valid, 0 otherwise. * Validity depends on two things: * 1) MSDOS signature is in the last two bytes of the MBR * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() */ static int is_pmbr_valid(legacy_mbr * mbr) { int i = 0; if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) return 0; for (i = 0; i < 4; i++) { if (pmbr_part_valid(&mbr->partition_record[i])) { return 1; } } return 0; } /** * is_gpt_valid() - tests one GPT header and PTEs for validity * * lba is the logical block address of the GPT header to test * gpt is a GPT header ptr, filled on return. * ptes is a PTEs ptr, filled on return. * * Description: returns 1 if valid, 0 on error. * If valid, returns pointers to PTEs. */ static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, gpt_header * pgpt_head, gpt_entry ** pgpt_pte) { u32 crc32_backup = 0; u32 calc_crc32; unsigned long long lastlba; if (!dev_desc || !pgpt_head) { printf("%s: Invalid Argument(s)\n", __func__); return 0; } /* Read GPT Header from device */ if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) { printf("*** ERROR: Can't read GPT header ***\n"); return 0; } /* Check the GPT header signature */ if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) { printf("GUID Partition Table Header signature is wrong:" "0x%llX != 0x%llX\n", le64_to_cpu(pgpt_head->signature), GPT_HEADER_SIGNATURE); return 0; } /* Check the GUID Partition Table CRC */ memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup)); memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32)); calc_crc32 = efi_crc32((const unsigned char *)pgpt_head, le32_to_cpu(pgpt_head->header_size)); memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup)); if (calc_crc32 != le32_to_cpu(crc32_backup)) { printf("GUID Partition Table Header CRC is wrong:" "0x%x != 0x%x\n", le32_to_cpu(crc32_backup), calc_crc32); return 0; } /* Check that the my_lba entry points to the LBA that contains the GPT */ if (le64_to_cpu(pgpt_head->my_lba) != lba) { printf("GPT: my_lba incorrect: %llX != %llX\n", le64_to_cpu(pgpt_head->my_lba), lba); return 0; } /* Check the first_usable_lba and last_usable_lba are within the disk. */ lastlba = (unsigned long long)dev_desc->lba; if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) { printf("GPT: first_usable_lba incorrect: %llX > %llX\n", le64_to_cpu(pgpt_head->first_usable_lba), lastlba); return 0; } if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) { printf("GPT: last_usable_lba incorrect: %llX > %llX\n", (u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba); return 0; } debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n", le64_to_cpu(pgpt_head->first_usable_lba), le64_to_cpu(pgpt_head->last_usable_lba), lastlba); /* Read and allocate Partition Table Entries */ *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); if (*pgpt_pte == NULL) { printf("GPT: Failed to allocate memory for PTE\n"); return 0; } /* Check the GUID Partition Table Entry Array CRC */ calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte, le32_to_cpu(pgpt_head->num_partition_entries) * le32_to_cpu(pgpt_head->sizeof_partition_entry)); if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) { printf("GUID Partition Table Entry Array CRC is wrong:" "0x%x != 0x%x\n", le32_to_cpu(pgpt_head->partition_entry_array_crc32), calc_crc32); free(*pgpt_pte); return 0; } /* We're done, all's well */ return 1; } /** * alloc_read_gpt_entries(): reads partition entries from disk * @dev_desc * @gpt - GPT header * * Description: Returns ptes on success, NULL on error. * Allocates space for PTEs based on information found in @gpt. * Notes: remember to free pte when you're done! */ static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, gpt_header * pgpt_head) { size_t count = 0, blk_cnt; gpt_entry *pte = NULL; if (!dev_desc || !pgpt_head) { printf("%s: Invalid Argument(s)\n", __func__); return NULL; } count = le32_to_cpu(pgpt_head->num_partition_entries) * le32_to_cpu(pgpt_head->sizeof_partition_entry); debug("%s: count = %u * %u = %zu\n", __func__, (u32) le32_to_cpu(pgpt_head->num_partition_entries), (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count); /* Allocate memory for PTE, remember to FREE */ if (count != 0) { pte = memalign(ARCH_DMA_MINALIGN, PAD_TO_BLOCKSIZE(count, dev_desc)); } if (count == 0 || pte == NULL) { printf("%s: ERROR: Can't allocate 0x%zX " "bytes for GPT Entries\n", __func__, count); return NULL; } /* Read GPT Entries from device */ blk_cnt = BLOCK_CNT(count, dev_desc); if (dev_desc->block_read (dev_desc->dev, le64_to_cpu(pgpt_head->partition_entry_lba), (lbaint_t) (blk_cnt), pte) != blk_cnt) { printf("*** ERROR: Can't read GPT Entries ***\n"); free(pte); return NULL; } return pte; } /** * is_pte_valid(): validates a single Partition Table Entry * @gpt_entry - Pointer to a single Partition Table Entry * * Description: returns 1 if valid, 0 on error. */ static int is_pte_valid(gpt_entry * pte) { efi_guid_t unused_guid; if (!pte) { printf("%s: Invalid Argument(s)\n", __func__); return 0; } /* Only one validation for now: * The GUID Partition Type != Unused Entry (ALL-ZERO) */ memset(unused_guid.b, 0, sizeof(unused_guid.b)); if (memcmp(pte->partition_type_guid.b, unused_guid.b, sizeof(unused_guid.b)) == 0) { debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, (unsigned int)(uintptr_t)pte); return 0; } else { return 1; } } #endif