/* * Copyright (C) 2004-2007 Freescale Semiconductor, Inc. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ /* * CPU specific code for the MPC83xx family. * * Derived from the MPC8260 and MPC85xx. */ #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; int checkcpu(void) { volatile immap_t *immr; ulong clock = gd->cpu_clk; u32 pvr = get_pvr(); u32 spridr; char buf[32]; immr = (immap_t *)CFG_IMMR; puts("CPU: "); switch (pvr & 0xffff0000) { case PVR_E300C1: printf("e300c1, "); break; case PVR_E300C2: printf("e300c2, "); break; case PVR_E300C3: printf("e300c3, "); break; case PVR_E300C4: printf("e300c4, "); break; default: printf("Unknown core, "); } spridr = immr->sysconf.spridr; switch(spridr) { case SPR_8349E_REV10: case SPR_8349E_REV11: case SPR_8349E_REV31: puts("MPC8349E, "); break; case SPR_8349_REV10: case SPR_8349_REV11: case SPR_8349_REV31: puts("MPC8349, "); break; case SPR_8347E_REV10_TBGA: case SPR_8347E_REV11_TBGA: case SPR_8347E_REV31_TBGA: case SPR_8347E_REV10_PBGA: case SPR_8347E_REV11_PBGA: case SPR_8347E_REV31_PBGA: puts("MPC8347E, "); break; case SPR_8347_REV10_TBGA: case SPR_8347_REV11_TBGA: case SPR_8347_REV31_TBGA: case SPR_8347_REV10_PBGA: case SPR_8347_REV11_PBGA: case SPR_8347_REV31_PBGA: puts("MPC8347, "); break; case SPR_8343E_REV10: case SPR_8343E_REV11: case SPR_8343E_REV31: puts("MPC8343E, "); break; case SPR_8343_REV10: case SPR_8343_REV11: case SPR_8343_REV31: puts("MPC8343, "); break; case SPR_8360E_REV10: case SPR_8360E_REV11: case SPR_8360E_REV12: case SPR_8360E_REV20: case SPR_8360E_REV21: puts("MPC8360E, "); break; case SPR_8360_REV10: case SPR_8360_REV11: case SPR_8360_REV12: case SPR_8360_REV20: case SPR_8360_REV21: puts("MPC8360, "); break; case SPR_8323E_REV10: case SPR_8323E_REV11: puts("MPC8323E, "); break; case SPR_8323_REV10: case SPR_8323_REV11: puts("MPC8323, "); break; case SPR_8321E_REV10: case SPR_8321E_REV11: puts("MPC8321E, "); break; case SPR_8321_REV10: case SPR_8321_REV11: puts("MPC8321, "); break; case SPR_8311_REV10: puts("MPC8311, "); break; case SPR_8311E_REV10: puts("MPC8311E, "); break; case SPR_8313_REV10: puts("MPC8313, "); break; case SPR_8313E_REV10: puts("MPC8313E, "); break; case SPR_8315E_REV10: puts("MPC8315E, "); break; case SPR_8315_REV10: puts("MPC8315, "); break; case SPR_8314E_REV10: puts("MPC8314E, "); break; case SPR_8314_REV10: puts("MPC8314, "); break; case SPR_8379E_REV10: puts("MPC8379E, "); break; case SPR_8379_REV10: puts("MPC8379, "); break; case SPR_8378E_REV10: puts("MPC8378E, "); break; case SPR_8378_REV10: puts("MPC8378, "); break; case SPR_8377E_REV10: puts("MPC8377E, "); break; case SPR_8377_REV10: puts("MPC8377, "); break; default: printf("Rev: Unknown revision number:%08x\n" "Warning: Unsupported cpu revision!\n",spridr); return 0; } #if defined(CONFIG_MPC834X) /* Multiple revisons of 834x processors may have the same SPRIDR value. * So use PVR to identify the revision number. */ printf("Rev: %02x at %s MHz", PVR_MAJ(pvr)<<4 | PVR_MIN(pvr), strmhz(buf, clock)); #else printf("Rev: %02x at %s MHz", spridr & 0x0000FFFF, strmhz(buf, clock)); #endif printf(", CSB: %4d MHz\n", gd->csb_clk / 1000000); return 0; } /* * Program a UPM with the code supplied in the table. * * The 'dummy' variable is used to increment the MAD. 'dummy' is * supposed to be a pointer to the memory of the device being * programmed by the UPM. The data in the MDR is written into * memory and the MAD is incremented every time there's a read * from 'dummy'. Unfortunately, the current prototype for this * function doesn't allow for passing the address of this * device, and changing the prototype will break a number lots * of other code, so we need to use a round-about way of finding * the value for 'dummy'. * * The value can be extracted from the base address bits of the * Base Register (BR) associated with the specific UPM. To find * that BR, we need to scan all 8 BRs until we find the one that * has its MSEL bits matching the UPM we want. Once we know the * right BR, we can extract the base address bits from it. * * The MxMR and the BR and OR of the chosen bank should all be * configured before calling this function. * * Parameters: * upm: 0=UPMA, 1=UPMB, 2=UPMC * table: Pointer to an array of values to program * size: Number of elements in the array. Must be 64 or less. */ void upmconfig (uint upm, uint *table, uint size) { #if defined(CONFIG_MPC834X) volatile immap_t *immap = (immap_t *) CFG_IMMR; volatile lbus83xx_t *lbus = &immap->lbus; volatile uchar *dummy = NULL; const u32 msel = (upm + 4) << BR_MSEL_SHIFT; /* What the MSEL field in BRn should be */ volatile u32 *mxmr = &lbus->mamr + upm; /* Pointer to mamr, mbmr, or mcmr */ uint i; /* Scan all the banks to determine the base address of the device */ for (i = 0; i < 8; i++) { if ((lbus->bank[i].br & BR_MSEL) == msel) { dummy = (uchar *) (lbus->bank[i].br & BR_BA); break; } } if (!dummy) { printf("Error: %s() could not find matching BR\n", __FUNCTION__); hang(); } /* Set the OP field in the MxMR to "write" and the MAD field to 000000 */ *mxmr = (*mxmr & 0xCFFFFFC0) | 0x10000000; for (i = 0; i < size; i++) { lbus->mdr = table[i]; __asm__ __volatile__ ("sync"); *dummy; /* Write the value to memory and increment MAD */ __asm__ __volatile__ ("sync"); } /* Set the OP field in the MxMR to "normal" and the MAD field to 000000 */ *mxmr &= 0xCFFFFFC0; #else printf("Error: %s() not defined for this configuration.\n", __FUNCTION__); hang(); #endif } int do_reset (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[]) { ulong msr; #ifndef MPC83xx_RESET ulong addr; #endif volatile immap_t *immap = (immap_t *) CFG_IMMR; #ifdef MPC83xx_RESET /* Interrupts and MMU off */ __asm__ __volatile__ ("mfmsr %0":"=r" (msr):); msr &= ~( MSR_EE | MSR_IR | MSR_DR); __asm__ __volatile__ ("mtmsr %0"::"r" (msr)); /* enable Reset Control Reg */ immap->reset.rpr = 0x52535445; __asm__ __volatile__ ("sync"); __asm__ __volatile__ ("isync"); /* confirm Reset Control Reg is enabled */ while(!((immap->reset.rcer) & RCER_CRE)); printf("Resetting the board."); printf("\n"); udelay(200); /* perform reset, only one bit */ immap->reset.rcr = RCR_SWHR; #else /* ! MPC83xx_RESET */ immap->reset.rmr = RMR_CSRE; /* Checkstop Reset enable */ /* Interrupts and MMU off */ __asm__ __volatile__ ("mfmsr %0":"=r" (msr):); msr &= ~(MSR_ME | MSR_EE | MSR_IR | MSR_DR); __asm__ __volatile__ ("mtmsr %0"::"r" (msr)); /* * Trying to execute the next instruction at a non-existing address * should cause a machine check, resulting in reset */ addr = CFG_RESET_ADDRESS; printf("resetting the board."); printf("\n"); ((void (*)(void)) addr) (); #endif /* MPC83xx_RESET */ return 1; } /* * Get timebase clock frequency (like cpu_clk in Hz) */ unsigned long get_tbclk(void) { ulong tbclk; tbclk = (gd->bus_clk + 3L) / 4L; return tbclk; } #if defined(CONFIG_WATCHDOG) void watchdog_reset (void) { int re_enable = disable_interrupts(); /* Reset the 83xx watchdog */ volatile immap_t *immr = (immap_t *) CFG_IMMR; immr->wdt.swsrr = 0x556c; immr->wdt.swsrr = 0xaa39; if (re_enable) enable_interrupts (); } #endif #if defined(CONFIG_DDR_ECC) void dma_init(void) { volatile immap_t *immap = (immap_t *)CFG_IMMR; volatile dma83xx_t *dma = &immap->dma; volatile u32 status = swab32(dma->dmasr0); volatile u32 dmamr0 = swab32(dma->dmamr0); debug("DMA-init\n"); /* initialize DMASARn, DMADAR and DMAABCRn */ dma->dmadar0 = (u32)0; dma->dmasar0 = (u32)0; dma->dmabcr0 = 0; __asm__ __volatile__ ("sync"); __asm__ __volatile__ ("isync"); /* clear CS bit */ dmamr0 &= ~DMA_CHANNEL_START; dma->dmamr0 = swab32(dmamr0); __asm__ __volatile__ ("sync"); __asm__ __volatile__ ("isync"); /* while the channel is busy, spin */ while(status & DMA_CHANNEL_BUSY) { status = swab32(dma->dmasr0); } debug("DMA-init end\n"); } uint dma_check(void) { volatile immap_t *immap = (immap_t *)CFG_IMMR; volatile dma83xx_t *dma = &immap->dma; volatile u32 status = swab32(dma->dmasr0); volatile u32 byte_count = swab32(dma->dmabcr0); /* while the channel is busy, spin */ while (status & DMA_CHANNEL_BUSY) { status = swab32(dma->dmasr0); } if (status & DMA_CHANNEL_TRANSFER_ERROR) { printf ("DMA Error: status = %x @ %d\n", status, byte_count); } return status; } int dma_xfer(void *dest, u32 count, void *src) { volatile immap_t *immap = (immap_t *)CFG_IMMR; volatile dma83xx_t *dma = &immap->dma; volatile u32 dmamr0; /* initialize DMASARn, DMADAR and DMAABCRn */ dma->dmadar0 = swab32((u32)dest); dma->dmasar0 = swab32((u32)src); dma->dmabcr0 = swab32(count); __asm__ __volatile__ ("sync"); __asm__ __volatile__ ("isync"); /* init direct transfer, clear CS bit */ dmamr0 = (DMA_CHANNEL_TRANSFER_MODE_DIRECT | DMA_CHANNEL_SOURCE_ADDRESS_HOLD_8B | DMA_CHANNEL_SOURCE_ADRESSS_HOLD_EN); dma->dmamr0 = swab32(dmamr0); __asm__ __volatile__ ("sync"); __asm__ __volatile__ ("isync"); /* set CS to start DMA transfer */ dmamr0 |= DMA_CHANNEL_START; dma->dmamr0 = swab32(dmamr0); __asm__ __volatile__ ("sync"); __asm__ __volatile__ ("isync"); return ((int)dma_check()); } #endif /*CONFIG_DDR_ECC*/