/* * (C) Copyright 2000-2009 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * SPDX-License-Identifier: GPL-2.0+ */ /* * Boot support */ #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_CMD_USB) #include #endif #ifdef CONFIG_SYS_HUSH_PARSER #include #endif #if defined(CONFIG_OF_LIBFDT) #include #include #endif #ifdef CONFIG_LZMA #include #include #include #endif /* CONFIG_LZMA */ #ifdef CONFIG_LZO #include #endif /* CONFIG_LZO */ DECLARE_GLOBAL_DATA_PTR; #ifndef CONFIG_SYS_BOOTM_LEN #define CONFIG_SYS_BOOTM_LEN 0x800000 /* use 8MByte as default max gunzip size */ #endif #ifdef CONFIG_BZIP2 extern void bz_internal_error(int); #endif #if defined(CONFIG_CMD_IMI) static int image_info(unsigned long addr); #endif #if defined(CONFIG_CMD_IMLS) #include #include extern flash_info_t flash_info[]; /* info for FLASH chips */ #endif #if defined(CONFIG_CMD_IMLS) || defined(CONFIG_CMD_IMLS_NAND) static int do_imls(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); #endif #include #include #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY) static void fixup_silent_linux(void); #endif static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[], bootm_headers_t *images, ulong *os_data, ulong *os_len); /* * Continue booting an OS image; caller already has: * - copied image header to global variable `header' * - checked header magic number, checksums (both header & image), * - verified image architecture (PPC) and type (KERNEL or MULTI), * - loaded (first part of) image to header load address, * - disabled interrupts. * * @flag: Flags indicating what to do (BOOTM_STATE_...) * @argc: Number of arguments. Note that the arguments are shifted down * so that 0 is the first argument not processed by U-Boot, and * argc is adjusted accordingly. This avoids confusion as to how * many arguments are available for the OS. * @images: Pointers to os/initrd/fdt * @return 1 on error. On success the OS boots so this function does * not return. */ typedef int boot_os_fn(int flag, int argc, char * const argv[], bootm_headers_t *images); #ifdef CONFIG_BOOTM_LINUX extern boot_os_fn do_bootm_linux; #endif #ifdef CONFIG_BOOTM_NETBSD static boot_os_fn do_bootm_netbsd; #endif #if defined(CONFIG_LYNXKDI) static boot_os_fn do_bootm_lynxkdi; extern void lynxkdi_boot(image_header_t *); #endif #ifdef CONFIG_BOOTM_RTEMS static boot_os_fn do_bootm_rtems; #endif #if defined(CONFIG_BOOTM_OSE) static boot_os_fn do_bootm_ose; #endif #if defined(CONFIG_BOOTM_PLAN9) static boot_os_fn do_bootm_plan9; #endif #if defined(CONFIG_CMD_ELF) static boot_os_fn do_bootm_vxworks; static boot_os_fn do_bootm_qnxelf; int do_bootvx(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); int do_bootelf(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); #endif #if defined(CONFIG_INTEGRITY) static boot_os_fn do_bootm_integrity; #endif static boot_os_fn *boot_os[] = { #ifdef CONFIG_BOOTM_LINUX [IH_OS_LINUX] = do_bootm_linux, #endif #ifdef CONFIG_BOOTM_NETBSD [IH_OS_NETBSD] = do_bootm_netbsd, #endif #ifdef CONFIG_LYNXKDI [IH_OS_LYNXOS] = do_bootm_lynxkdi, #endif #ifdef CONFIG_BOOTM_RTEMS [IH_OS_RTEMS] = do_bootm_rtems, #endif #if defined(CONFIG_BOOTM_OSE) [IH_OS_OSE] = do_bootm_ose, #endif #if defined(CONFIG_BOOTM_PLAN9) [IH_OS_PLAN9] = do_bootm_plan9, #endif #if defined(CONFIG_CMD_ELF) [IH_OS_VXWORKS] = do_bootm_vxworks, [IH_OS_QNX] = do_bootm_qnxelf, #endif #ifdef CONFIG_INTEGRITY [IH_OS_INTEGRITY] = do_bootm_integrity, #endif }; bootm_headers_t images; /* pointers to os/initrd/fdt images */ /* Allow for arch specific config before we boot */ static void __arch_preboot_os(void) { /* please define platform specific arch_preboot_os() */ } void arch_preboot_os(void) __attribute__((weak, alias("__arch_preboot_os"))); #define IH_INITRD_ARCH IH_ARCH_DEFAULT #ifdef CONFIG_LMB static void boot_start_lmb(bootm_headers_t *images) { ulong mem_start; phys_size_t mem_size; lmb_init(&images->lmb); mem_start = getenv_bootm_low(); mem_size = getenv_bootm_size(); lmb_add(&images->lmb, (phys_addr_t)mem_start, mem_size); arch_lmb_reserve(&images->lmb); board_lmb_reserve(&images->lmb); } #else #define lmb_reserve(lmb, base, size) static inline void boot_start_lmb(bootm_headers_t *images) { } #endif static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { memset((void *)&images, 0, sizeof(images)); images.verify = getenv_yesno("verify"); boot_start_lmb(&images); bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start"); images.state = BOOTM_STATE_START; return 0; } static int bootm_find_os(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { const void *os_hdr; /* get kernel image header, start address and length */ os_hdr = boot_get_kernel(cmdtp, flag, argc, argv, &images, &images.os.image_start, &images.os.image_len); if (images.os.image_len == 0) { puts("ERROR: can't get kernel image!\n"); return 1; } /* get image parameters */ switch (genimg_get_format(os_hdr)) { case IMAGE_FORMAT_LEGACY: images.os.type = image_get_type(os_hdr); images.os.comp = image_get_comp(os_hdr); images.os.os = image_get_os(os_hdr); images.os.end = image_get_image_end(os_hdr); images.os.load = image_get_load(os_hdr); break; #if defined(CONFIG_FIT) case IMAGE_FORMAT_FIT: if (fit_image_get_type(images.fit_hdr_os, images.fit_noffset_os, &images.os.type)) { puts("Can't get image type!\n"); bootstage_error(BOOTSTAGE_ID_FIT_TYPE); return 1; } if (fit_image_get_comp(images.fit_hdr_os, images.fit_noffset_os, &images.os.comp)) { puts("Can't get image compression!\n"); bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION); return 1; } if (fit_image_get_os(images.fit_hdr_os, images.fit_noffset_os, &images.os.os)) { puts("Can't get image OS!\n"); bootstage_error(BOOTSTAGE_ID_FIT_OS); return 1; } images.os.end = fit_get_end(images.fit_hdr_os); if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os, &images.os.load)) { puts("Can't get image load address!\n"); bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR); return 1; } break; #endif default: puts("ERROR: unknown image format type!\n"); return 1; } /* find kernel entry point */ if (images.legacy_hdr_valid) { images.ep = image_get_ep(&images.legacy_hdr_os_copy); #if defined(CONFIG_FIT) } else if (images.fit_uname_os) { int ret; ret = fit_image_get_entry(images.fit_hdr_os, images.fit_noffset_os, &images.ep); if (ret) { puts("Can't get entry point property!\n"); return 1; } #endif } else { puts("Could not find kernel entry point!\n"); return 1; } if (images.os.type == IH_TYPE_KERNEL_NOLOAD) { images.os.load = images.os.image_start; images.ep += images.os.load; } images.os.start = (ulong)os_hdr; return 0; } static int bootm_find_ramdisk(int flag, int argc, char * const argv[]) { int ret; /* find ramdisk */ ret = boot_get_ramdisk(argc, argv, &images, IH_INITRD_ARCH, &images.rd_start, &images.rd_end); if (ret) { puts("Ramdisk image is corrupt or invalid\n"); return 1; } return 0; } #if defined(CONFIG_OF_LIBFDT) static int bootm_find_fdt(int flag, int argc, char * const argv[]) { int ret; /* find flattened device tree */ ret = boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, &images, &images.ft_addr, &images.ft_len); if (ret) { puts("Could not find a valid device tree\n"); return 1; } set_working_fdt_addr(images.ft_addr); return 0; } #endif static int bootm_find_other(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { if (((images.os.type == IH_TYPE_KERNEL) || (images.os.type == IH_TYPE_KERNEL_NOLOAD) || (images.os.type == IH_TYPE_MULTI)) && (images.os.os == IH_OS_LINUX)) { if (bootm_find_ramdisk(flag, argc, argv)) return 1; #if defined(CONFIG_OF_LIBFDT) if (bootm_find_fdt(flag, argc, argv)) return 1; #endif } return 0; } #define BOOTM_ERR_RESET -1 #define BOOTM_ERR_OVERLAP -2 #define BOOTM_ERR_UNIMPLEMENTED -3 static int bootm_load_os(bootm_headers_t *images, unsigned long *load_end, int boot_progress) { image_info_t os = images->os; uint8_t comp = os.comp; ulong load = os.load; ulong blob_start = os.start; ulong blob_end = os.end; ulong image_start = os.image_start; ulong image_len = os.image_len; __maybe_unused uint unc_len = CONFIG_SYS_BOOTM_LEN; int no_overlap = 0; void *load_buf, *image_buf; #if defined(CONFIG_LZMA) || defined(CONFIG_LZO) int ret; #endif /* defined(CONFIG_LZMA) || defined(CONFIG_LZO) */ const char *type_name = genimg_get_type_name(os.type); load_buf = map_sysmem(load, unc_len); image_buf = map_sysmem(image_start, image_len); switch (comp) { case IH_COMP_NONE: if (load == blob_start || load == image_start) { printf(" XIP %s ... ", type_name); no_overlap = 1; } else { printf(" Loading %s ... ", type_name); memmove_wd(load_buf, image_buf, image_len, CHUNKSZ); } *load_end = load + image_len; break; #ifdef CONFIG_GZIP case IH_COMP_GZIP: printf(" Uncompressing %s ... ", type_name); if (gunzip(load_buf, unc_len, image_buf, &image_len) != 0) { puts("GUNZIP: uncompress, out-of-mem or overwrite " "error - must RESET board to recover\n"); if (boot_progress) bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE); return BOOTM_ERR_RESET; } *load_end = load + image_len; break; #endif /* CONFIG_GZIP */ #ifdef CONFIG_BZIP2 case IH_COMP_BZIP2: printf(" Uncompressing %s ... ", type_name); /* * If we've got less than 4 MB of malloc() space, * use slower decompression algorithm which requires * at most 2300 KB of memory. */ int i = BZ2_bzBuffToBuffDecompress(load_buf, &unc_len, image_buf, image_len, CONFIG_SYS_MALLOC_LEN < (4096 * 1024), 0); if (i != BZ_OK) { printf("BUNZIP2: uncompress or overwrite error %d " "- must RESET board to recover\n", i); if (boot_progress) bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE); return BOOTM_ERR_RESET; } *load_end = load + unc_len; break; #endif /* CONFIG_BZIP2 */ #ifdef CONFIG_LZMA case IH_COMP_LZMA: { SizeT lzma_len = unc_len; printf(" Uncompressing %s ... ", type_name); ret = lzmaBuffToBuffDecompress(load_buf, &lzma_len, image_buf, image_len); unc_len = lzma_len; if (ret != SZ_OK) { printf("LZMA: uncompress or overwrite error %d " "- must RESET board to recover\n", ret); bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE); return BOOTM_ERR_RESET; } *load_end = load + unc_len; break; } #endif /* CONFIG_LZMA */ #ifdef CONFIG_LZO case IH_COMP_LZO: { size_t size; printf(" Uncompressing %s ... ", type_name); ret = lzop_decompress(image_buf, image_len, load_buf, &size); if (ret != LZO_E_OK) { printf("LZO: uncompress or overwrite error %d " "- must RESET board to recover\n", ret); if (boot_progress) bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE); return BOOTM_ERR_RESET; } *load_end = load + size; break; } #endif /* CONFIG_LZO */ default: printf("Unimplemented compression type %d\n", comp); return BOOTM_ERR_UNIMPLEMENTED; } flush_cache(load, (*load_end - load) * sizeof(ulong)); puts("OK\n"); debug(" kernel loaded at 0x%08lx, end = 0x%08lx\n", load, *load_end); bootstage_mark(BOOTSTAGE_ID_KERNEL_LOADED); if (!no_overlap && (load < blob_end) && (*load_end > blob_start)) { debug("images.os.start = 0x%lX, images.os.end = 0x%lx\n", blob_start, blob_end); debug("images.os.load = 0x%lx, load_end = 0x%lx\n", load, *load_end); /* Check what type of image this is. */ if (images->legacy_hdr_valid) { if (image_get_type(&images->legacy_hdr_os_copy) == IH_TYPE_MULTI) puts("WARNING: legacy format multi component image overwritten\n"); return BOOTM_ERR_OVERLAP; } else { puts("ERROR: new format image overwritten - must RESET the board to recover\n"); bootstage_error(BOOTSTAGE_ID_OVERWRITTEN); return BOOTM_ERR_RESET; } } return 0; } static int bootm_start_standalone(int argc, char * const argv[]) { char *s; int (*appl)(int, char * const []); /* Don't start if "autostart" is set to "no" */ if (((s = getenv("autostart")) != NULL) && (strcmp(s, "no") == 0)) { setenv_hex("filesize", images.os.image_len); return 0; } appl = (int (*)(int, char * const []))(ulong)ntohl(images.ep); (*appl)(argc, argv); return 0; } /* we overload the cmd field with our state machine info instead of a * function pointer */ static cmd_tbl_t cmd_bootm_sub[] = { U_BOOT_CMD_MKENT(start, 0, 1, (void *)BOOTM_STATE_START, "", ""), U_BOOT_CMD_MKENT(loados, 0, 1, (void *)BOOTM_STATE_LOADOS, "", ""), #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH U_BOOT_CMD_MKENT(ramdisk, 0, 1, (void *)BOOTM_STATE_RAMDISK, "", ""), #endif #ifdef CONFIG_OF_LIBFDT U_BOOT_CMD_MKENT(fdt, 0, 1, (void *)BOOTM_STATE_FDT, "", ""), #endif U_BOOT_CMD_MKENT(cmdline, 0, 1, (void *)BOOTM_STATE_OS_CMDLINE, "", ""), U_BOOT_CMD_MKENT(bdt, 0, 1, (void *)BOOTM_STATE_OS_BD_T, "", ""), U_BOOT_CMD_MKENT(prep, 0, 1, (void *)BOOTM_STATE_OS_PREP, "", ""), U_BOOT_CMD_MKENT(fake, 0, 1, (void *)BOOTM_STATE_OS_FAKE_GO, "", ""), U_BOOT_CMD_MKENT(go, 0, 1, (void *)BOOTM_STATE_OS_GO, "", ""), }; static int boot_selected_os(int argc, char * const argv[], int state, bootm_headers_t *images, boot_os_fn *boot_fn) { if (images->os.type == IH_TYPE_STANDALONE) { /* This may return when 'autostart' is 'no' */ bootm_start_standalone(argc, argv); return 0; } arch_preboot_os(); boot_fn(state, argc, argv, images); if (state == BOOTM_STATE_OS_FAKE_GO) /* We expect to return */ return 0; bootstage_error(BOOTSTAGE_ID_BOOT_OS_RETURNED); #ifdef DEBUG puts("\n## Control returned to monitor - resetting...\n"); #endif return BOOTM_ERR_RESET; } /** * bootm_disable_interrupts() - Disable interrupts in preparation for load/boot * * @return interrupt flag (0 if interrupts were disabled, non-zero if they were * enabled) */ static ulong bootm_disable_interrupts(void) { ulong iflag; /* * We have reached the point of no return: we are going to * overwrite all exception vector code, so we cannot easily * recover from any failures any more... */ iflag = disable_interrupts(); #ifdef CONFIG_NETCONSOLE /* Stop the ethernet stack if NetConsole could have left it up */ eth_halt(); eth_unregister(eth_get_dev()); #endif #if defined(CONFIG_CMD_USB) /* * turn off USB to prevent the host controller from writing to the * SDRAM while Linux is booting. This could happen (at least for OHCI * controller), because the HCCA (Host Controller Communication Area) * lies within the SDRAM and the host controller writes continously to * this area (as busmaster!). The HccaFrameNumber is for example * updated every 1 ms within the HCCA structure in SDRAM! For more * details see the OpenHCI specification. */ usb_stop(); #endif return iflag; } /** * Execute selected states of the bootm command. * * Note the arguments to this state must be the first argument, Any 'bootm' * or sub-command arguments must have already been taken. * * Note that if states contains more than one flag it MUST contain * BOOTM_STATE_START, since this handles and consumes the command line args. * * Also note that aside from boot_os_fn functions and bootm_load_os no other * functions we store the return value of in 'ret' may use a negative return * value, without special handling. * * @param cmdtp Pointer to bootm command table entry * @param flag Command flags (CMD_FLAG_...) * @param argc Number of subcommand arguments (0 = no arguments) * @param argv Arguments * @param states Mask containing states to run (BOOTM_STATE_...) * @param images Image header information * @param boot_progress 1 to show boot progress, 0 to not do this * @return 0 if ok, something else on error. Some errors will cause this * function to perform a reboot! If states contains BOOTM_STATE_OS_GO * then the intent is to boot an OS, so this function will not return * unless the image type is standalone. */ static int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[], int states, bootm_headers_t *images, int boot_progress) { boot_os_fn *boot_fn; ulong iflag = 0; int ret = 0, need_boot_fn; images->state |= states; /* * Work through the states and see how far we get. We stop on * any error. */ if (states & BOOTM_STATE_START) ret = bootm_start(cmdtp, flag, argc, argv); if (!ret && (states & BOOTM_STATE_FINDOS)) ret = bootm_find_os(cmdtp, flag, argc, argv); if (!ret && (states & BOOTM_STATE_FINDOTHER)) { ret = bootm_find_other(cmdtp, flag, argc, argv); argc = 0; /* consume the args */ } /* Load the OS */ if (!ret && (states & BOOTM_STATE_LOADOS)) { ulong load_end; iflag = bootm_disable_interrupts(); ret = bootm_load_os(images, &load_end, 0); if (ret == 0) lmb_reserve(&images->lmb, images->os.load, (load_end - images->os.load)); else if (ret && ret != BOOTM_ERR_OVERLAP) goto err; else if (ret == BOOTM_ERR_OVERLAP) ret = 0; #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY) if (images->os.os == IH_OS_LINUX) fixup_silent_linux(); #endif } /* Relocate the ramdisk */ #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH if (!ret && (states & BOOTM_STATE_RAMDISK)) { ulong rd_len = images->rd_end - images->rd_start; ret = boot_ramdisk_high(&images->lmb, images->rd_start, rd_len, &images->initrd_start, &images->initrd_end); if (!ret) { setenv_hex("initrd_start", images->initrd_start); setenv_hex("initrd_end", images->initrd_end); } } #endif #if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_LMB) if (!ret && (states & BOOTM_STATE_FDT)) { boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr); ret = boot_relocate_fdt(&images->lmb, &images->ft_addr, &images->ft_len); } #endif /* From now on, we need the OS boot function */ if (ret) return ret; boot_fn = boot_os[images->os.os]; need_boot_fn = states & (BOOTM_STATE_OS_CMDLINE | BOOTM_STATE_OS_BD_T | BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO); if (boot_fn == NULL && need_boot_fn) { if (iflag) enable_interrupts(); printf("ERROR: booting os '%s' (%d) is not supported\n", genimg_get_os_name(images->os.os), images->os.os); bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS); return 1; } /* Call various other states that are not generally used */ if (!ret && (states & BOOTM_STATE_OS_CMDLINE)) ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images); if (!ret && (states & BOOTM_STATE_OS_BD_T)) ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images); if (!ret && (states & BOOTM_STATE_OS_PREP)) ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images); #ifdef CONFIG_TRACE /* Pretend to run the OS, then run a user command */ if (!ret && (states & BOOTM_STATE_OS_FAKE_GO)) { char *cmd_list = getenv("fakegocmd"); ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_FAKE_GO, images, boot_fn); if (!ret && cmd_list) ret = run_command_list(cmd_list, -1, flag); } #endif /* Check for unsupported subcommand. */ if (ret) { puts("subcommand not supported\n"); return ret; } /* Now run the OS! We hope this doesn't return */ if (!ret && (states & BOOTM_STATE_OS_GO)) ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO, images, boot_fn); /* Deal with any fallout */ err: if (iflag) enable_interrupts(); if (ret == BOOTM_ERR_UNIMPLEMENTED) bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL); else if (ret == BOOTM_ERR_RESET) do_reset(cmdtp, flag, argc, argv); return ret; } static int do_bootm_subcommand(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { int ret = 0; long state; cmd_tbl_t *c; c = find_cmd_tbl(argv[0], &cmd_bootm_sub[0], ARRAY_SIZE(cmd_bootm_sub)); argc--; argv++; if (c) { state = (long)c->cmd; if (state == BOOTM_STATE_START) state |= BOOTM_STATE_FINDOS | BOOTM_STATE_FINDOTHER; } else { /* Unrecognized command */ return CMD_RET_USAGE; } if (state != BOOTM_STATE_START && images.state >= state) { printf("Trying to execute a command out of order\n"); return CMD_RET_USAGE; } ret = do_bootm_states(cmdtp, flag, argc, argv, state, &images, 0); return ret; } /*******************************************************************/ /* bootm - boot application image from image in memory */ /*******************************************************************/ int do_bootm(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { #ifdef CONFIG_NEEDS_MANUAL_RELOC static int relocated = 0; if (!relocated) { int i; /* relocate boot function table */ for (i = 0; i < ARRAY_SIZE(boot_os); i++) if (boot_os[i] != NULL) boot_os[i] += gd->reloc_off; /* relocate names of sub-command table */ for (i = 0; i < ARRAY_SIZE(cmd_bootm_sub); i++) cmd_bootm_sub[i].name += gd->reloc_off; relocated = 1; } #endif /* determine if we have a sub command */ argc--; argv++; if (argc > 0) { char *endp; simple_strtoul(argv[0], &endp, 16); /* endp pointing to NULL means that argv[0] was just a * valid number, pass it along to the normal bootm processing * * If endp is ':' or '#' assume a FIT identifier so pass * along for normal processing. * * Right now we assume the first arg should never be '-' */ if ((*endp != 0) && (*endp != ':') && (*endp != '#')) return do_bootm_subcommand(cmdtp, flag, argc, argv); } return do_bootm_states(cmdtp, flag, argc, argv, BOOTM_STATE_START | BOOTM_STATE_FINDOS | BOOTM_STATE_FINDOTHER | BOOTM_STATE_LOADOS | BOOTM_STATE_OS_CMDLINE | BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO, &images, 1); } int bootm_maybe_autostart(cmd_tbl_t *cmdtp, const char *cmd) { const char *ep = getenv("autostart"); if (ep && !strcmp(ep, "yes")) { char *local_args[2]; local_args[0] = (char *)cmd; local_args[1] = NULL; printf("Automatic boot of image at addr 0x%08lX ...\n", load_addr); return do_bootm(cmdtp, 0, 1, local_args); } return 0; } /** * image_get_kernel - verify legacy format kernel image * @img_addr: in RAM address of the legacy format image to be verified * @verify: data CRC verification flag * * image_get_kernel() verifies legacy image integrity and returns pointer to * legacy image header if image verification was completed successfully. * * returns: * pointer to a legacy image header if valid image was found * otherwise return NULL */ static image_header_t *image_get_kernel(ulong img_addr, int verify) { image_header_t *hdr = (image_header_t *)img_addr; if (!image_check_magic(hdr)) { puts("Bad Magic Number\n"); bootstage_error(BOOTSTAGE_ID_CHECK_MAGIC); return NULL; } bootstage_mark(BOOTSTAGE_ID_CHECK_HEADER); if (!image_check_hcrc(hdr)) { puts("Bad Header Checksum\n"); bootstage_error(BOOTSTAGE_ID_CHECK_HEADER); return NULL; } bootstage_mark(BOOTSTAGE_ID_CHECK_CHECKSUM); image_print_contents(hdr); if (verify) { puts(" Verifying Checksum ... "); if (!image_check_dcrc(hdr)) { printf("Bad Data CRC\n"); bootstage_error(BOOTSTAGE_ID_CHECK_CHECKSUM); return NULL; } puts("OK\n"); } bootstage_mark(BOOTSTAGE_ID_CHECK_ARCH); if (!image_check_target_arch(hdr)) { printf("Unsupported Architecture 0x%x\n", image_get_arch(hdr)); bootstage_error(BOOTSTAGE_ID_CHECK_ARCH); return NULL; } return hdr; } /** * boot_get_kernel - find kernel image * @os_data: pointer to a ulong variable, will hold os data start address * @os_len: pointer to a ulong variable, will hold os data length * * boot_get_kernel() tries to find a kernel image, verifies its integrity * and locates kernel data. * * returns: * pointer to image header if valid image was found, plus kernel start * address and length, otherwise NULL */ static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[], bootm_headers_t *images, ulong *os_data, ulong *os_len) { image_header_t *hdr; ulong img_addr; const void *buf; #if defined(CONFIG_FIT) const char *fit_uname_config = NULL; const char *fit_uname_kernel = NULL; int os_noffset; #endif /* find out kernel image address */ if (argc < 1) { img_addr = load_addr; debug("* kernel: default image load address = 0x%08lx\n", load_addr); #if defined(CONFIG_FIT) } else if (fit_parse_conf(argv[0], load_addr, &img_addr, &fit_uname_config)) { debug("* kernel: config '%s' from image at 0x%08lx\n", fit_uname_config, img_addr); } else if (fit_parse_subimage(argv[0], load_addr, &img_addr, &fit_uname_kernel)) { debug("* kernel: subimage '%s' from image at 0x%08lx\n", fit_uname_kernel, img_addr); #endif } else { img_addr = simple_strtoul(argv[0], NULL, 16); debug("* kernel: cmdline image address = 0x%08lx\n", img_addr); } bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC); /* copy from dataflash if needed */ img_addr = genimg_get_image(img_addr); /* check image type, for FIT images get FIT kernel node */ *os_data = *os_len = 0; buf = map_sysmem(img_addr, 0); switch (genimg_get_format(buf)) { case IMAGE_FORMAT_LEGACY: printf("## Booting kernel from Legacy Image at %08lx ...\n", img_addr); hdr = image_get_kernel(img_addr, images->verify); if (!hdr) return NULL; bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE); /* get os_data and os_len */ switch (image_get_type(hdr)) { case IH_TYPE_KERNEL: case IH_TYPE_KERNEL_NOLOAD: *os_data = image_get_data(hdr); *os_len = image_get_data_size(hdr); break; case IH_TYPE_MULTI: image_multi_getimg(hdr, 0, os_data, os_len); break; case IH_TYPE_STANDALONE: *os_data = image_get_data(hdr); *os_len = image_get_data_size(hdr); break; default: printf("Wrong Image Type for %s command\n", cmdtp->name); bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE); return NULL; } /* * copy image header to allow for image overwrites during * kernel decompression. */ memmove(&images->legacy_hdr_os_copy, hdr, sizeof(image_header_t)); /* save pointer to image header */ images->legacy_hdr_os = hdr; images->legacy_hdr_valid = 1; bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE); break; #if defined(CONFIG_FIT) case IMAGE_FORMAT_FIT: os_noffset = fit_image_load(images, FIT_KERNEL_PROP, img_addr, &fit_uname_kernel, &fit_uname_config, IH_ARCH_DEFAULT, IH_TYPE_KERNEL, BOOTSTAGE_ID_FIT_KERNEL_START, FIT_LOAD_IGNORED, os_data, os_len); if (os_noffset < 0) return NULL; images->fit_hdr_os = map_sysmem(img_addr, 0); images->fit_uname_os = fit_uname_kernel; images->fit_uname_cfg = fit_uname_config; images->fit_noffset_os = os_noffset; break; #endif default: printf("Wrong Image Format for %s command\n", cmdtp->name); bootstage_error(BOOTSTAGE_ID_FIT_KERNEL_INFO); return NULL; } debug(" kernel data at 0x%08lx, len = 0x%08lx (%ld)\n", *os_data, *os_len, *os_len); return buf; } #ifdef CONFIG_SYS_LONGHELP static char bootm_help_text[] = "[addr [arg ...]]\n - boot application image stored in memory\n" "\tpassing arguments 'arg ...'; when booting a Linux kernel,\n" "\t'arg' can be the address of an initrd image\n" #if defined(CONFIG_OF_LIBFDT) "\tWhen booting a Linux kernel which requires a flat device-tree\n" "\ta third argument is required which is the address of the\n" "\tdevice-tree blob. To boot that kernel without an initrd image,\n" "\tuse a '-' for the second argument. If you do not pass a third\n" "\ta bd_info struct will be passed instead\n" #endif #if defined(CONFIG_FIT) "\t\nFor the new multi component uImage format (FIT) addresses\n" "\tmust be extened to include component or configuration unit name:\n" "\taddr: - direct component image specification\n" "\taddr# - configuration specification\n" "\tUse iminfo command to get the list of existing component\n" "\timages and configurations.\n" #endif "\nSub-commands to do part of the bootm sequence. The sub-commands " "must be\n" "issued in the order below (it's ok to not issue all sub-commands):\n" "\tstart [addr [arg ...]]\n" "\tloados - load OS image\n" #if defined(CONFIG_SYS_BOOT_RAMDISK_HIGH) "\tramdisk - relocate initrd, set env initrd_start/initrd_end\n" #endif #if defined(CONFIG_OF_LIBFDT) "\tfdt - relocate flat device tree\n" #endif "\tcmdline - OS specific command line processing/setup\n" "\tbdt - OS specific bd_t processing\n" "\tprep - OS specific prep before relocation or go\n" "\tgo - start OS"; #endif U_BOOT_CMD( bootm, CONFIG_SYS_MAXARGS, 1, do_bootm, "boot application image from memory", bootm_help_text ); /*******************************************************************/ /* bootd - boot default image */ /*******************************************************************/ #if defined(CONFIG_CMD_BOOTD) int do_bootd(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { int rcode = 0; if (run_command(getenv("bootcmd"), flag) < 0) rcode = 1; return rcode; } U_BOOT_CMD( boot, 1, 1, do_bootd, "boot default, i.e., run 'bootcmd'", "" ); /* keep old command name "bootd" for backward compatibility */ U_BOOT_CMD( bootd, 1, 1, do_bootd, "boot default, i.e., run 'bootcmd'", "" ); #endif /*******************************************************************/ /* iminfo - print header info for a requested image */ /*******************************************************************/ #if defined(CONFIG_CMD_IMI) static int do_iminfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { int arg; ulong addr; int rcode = 0; if (argc < 2) { return image_info(load_addr); } for (arg = 1; arg < argc; ++arg) { addr = simple_strtoul(argv[arg], NULL, 16); if (image_info(addr) != 0) rcode = 1; } return rcode; } static int image_info(ulong addr) { void *hdr = (void *)addr; printf("\n## Checking Image at %08lx ...\n", addr); switch (genimg_get_format(hdr)) { case IMAGE_FORMAT_LEGACY: puts(" Legacy image found\n"); if (!image_check_magic(hdr)) { puts(" Bad Magic Number\n"); return 1; } if (!image_check_hcrc(hdr)) { puts(" Bad Header Checksum\n"); return 1; } image_print_contents(hdr); puts(" Verifying Checksum ... "); if (!image_check_dcrc(hdr)) { puts(" Bad Data CRC\n"); return 1; } puts("OK\n"); return 0; #if defined(CONFIG_FIT) case IMAGE_FORMAT_FIT: puts(" FIT image found\n"); if (!fit_check_format(hdr)) { puts("Bad FIT image format!\n"); return 1; } fit_print_contents(hdr); if (!fit_all_image_verify(hdr)) { puts("Bad hash in FIT image!\n"); return 1; } return 0; #endif default: puts("Unknown image format!\n"); break; } return 1; } U_BOOT_CMD( iminfo, CONFIG_SYS_MAXARGS, 1, do_iminfo, "print header information for application image", "addr [addr ...]\n" " - print header information for application image starting at\n" " address 'addr' in memory; this includes verification of the\n" " image contents (magic number, header and payload checksums)" ); #endif /*******************************************************************/ /* imls - list all images found in flash */ /*******************************************************************/ #if defined(CONFIG_CMD_IMLS) static int do_imls_nor(void) { flash_info_t *info; int i, j; void *hdr; for (i = 0, info = &flash_info[0]; i < CONFIG_SYS_MAX_FLASH_BANKS; ++i, ++info) { if (info->flash_id == FLASH_UNKNOWN) goto next_bank; for (j = 0; j < info->sector_count; ++j) { hdr = (void *)info->start[j]; if (!hdr) goto next_sector; switch (genimg_get_format(hdr)) { case IMAGE_FORMAT_LEGACY: if (!image_check_hcrc(hdr)) goto next_sector; printf("Legacy Image at %08lX:\n", (ulong)hdr); image_print_contents(hdr); puts(" Verifying Checksum ... "); if (!image_check_dcrc(hdr)) { puts("Bad Data CRC\n"); } else { puts("OK\n"); } break; #if defined(CONFIG_FIT) case IMAGE_FORMAT_FIT: if (!fit_check_format(hdr)) goto next_sector; printf("FIT Image at %08lX:\n", (ulong)hdr); fit_print_contents(hdr); break; #endif default: goto next_sector; } next_sector: ; } next_bank: ; } return 0; } #endif #if defined(CONFIG_CMD_IMLS_NAND) static int nand_imls_legacyimage(nand_info_t *nand, int nand_dev, loff_t off, size_t len) { void *imgdata; int ret; imgdata = malloc(len); if (!imgdata) { printf("May be a Legacy Image at NAND device %d offset %08llX:\n", nand_dev, off); printf(" Low memory(cannot allocate memory for image)\n"); return -ENOMEM; } ret = nand_read_skip_bad(nand, off, &len, imgdata); if (ret < 0 && ret != -EUCLEAN) { free(imgdata); return ret; } if (!image_check_hcrc(imgdata)) { free(imgdata); return 0; } printf("Legacy Image at NAND device %d offset %08llX:\n", nand_dev, off); image_print_contents(imgdata); puts(" Verifying Checksum ... "); if (!image_check_dcrc(imgdata)) puts("Bad Data CRC\n"); else puts("OK\n"); free(imgdata); return 0; } static int nand_imls_fitimage(nand_info_t *nand, int nand_dev, loff_t off, size_t len) { void *imgdata; int ret; imgdata = malloc(len); if (!imgdata) { printf("May be a FIT Image at NAND device %d offset %08llX:\n", nand_dev, off); printf(" Low memory(cannot allocate memory for image)\n"); return -ENOMEM; } ret = nand_read_skip_bad(nand, off, &len, imgdata); if (ret < 0 && ret != -EUCLEAN) { free(imgdata); return ret; } if (!fit_check_format(imgdata)) { free(imgdata); return 0; } printf("FIT Image at NAND device %d offset %08llX:\n", nand_dev, off); fit_print_contents(imgdata); free(imgdata); return 0; } static int do_imls_nand(void) { nand_info_t *nand; int nand_dev = nand_curr_device; size_t len; loff_t off; u32 buffer[16]; if (nand_dev < 0 || nand_dev >= CONFIG_SYS_MAX_NAND_DEVICE) { puts("\nNo NAND devices available\n"); return -ENODEV; } printf("\n"); for (nand_dev = 0; nand_dev < CONFIG_SYS_MAX_NAND_DEVICE; nand_dev++) { nand = &nand_info[nand_dev]; if (!nand->name || !nand->size) continue; for (off = 0; off < nand->size; off += nand->erasesize) { const image_header_t *header; int ret; if (nand_block_isbad(nand, off)) continue; len = sizeof(buffer); ret = nand_read(nand, off, &len, (u8 *)buffer); if (ret < 0 && ret != -EUCLEAN) { printf("NAND read error %d at offset %08llX\n", ret, off); continue; } switch (genimg_get_format(buffer)) { case IMAGE_FORMAT_LEGACY: header = (const image_header_t *)buffer; len = image_get_image_size(header); nand_imls_legacyimage(nand, nand_dev, off, len); break; #if defined(CONFIG_FIT) case IMAGE_FORMAT_FIT: len = fit_get_size(buffer); nand_imls_fitimage(nand, nand_dev, off, len); break; #endif } } } return 0; } #endif #if defined(CONFIG_CMD_IMLS) || defined(CONFIG_CMD_IMLS_NAND) static int do_imls(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { int ret_nor = 0, ret_nand = 0; #if defined(CONFIG_CMD_IMLS) ret_nor = do_imls_nor(); #endif #if defined(CONFIG_CMD_IMLS_NAND) ret_nand = do_imls_nand(); #endif if (ret_nor) return ret_nor; if (ret_nand) return ret_nand; return (0); } U_BOOT_CMD( imls, 1, 1, do_imls, "list all images found in flash", "\n" " - Prints information about all images found at sector/block\n" " boundaries in nor/nand flash." ); #endif /*******************************************************************/ /* helper routines */ /*******************************************************************/ #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY) #define CONSOLE_ARG "console=" #define CONSOLE_ARG_LEN (sizeof(CONSOLE_ARG) - 1) static void fixup_silent_linux(void) { char *buf; const char *env_val; char *cmdline = getenv("bootargs"); int want_silent; /* * Only fix cmdline when requested. The environment variable can be: * * no - we never fixup * yes - we always fixup * unset - we rely on the console silent flag */ want_silent = getenv_yesno("silent_linux"); if (want_silent == 0) return; else if (want_silent == -1 && !(gd->flags & GD_FLG_SILENT)) return; debug("before silent fix-up: %s\n", cmdline); if (cmdline && (cmdline[0] != '\0')) { char *start = strstr(cmdline, CONSOLE_ARG); /* Allocate space for maximum possible new command line */ buf = malloc(strlen(cmdline) + 1 + CONSOLE_ARG_LEN + 1); if (!buf) { debug("%s: out of memory\n", __func__); return; } if (start) { char *end = strchr(start, ' '); int num_start_bytes = start - cmdline + CONSOLE_ARG_LEN; strncpy(buf, cmdline, num_start_bytes); if (end) strcpy(buf + num_start_bytes, end); else buf[num_start_bytes] = '\0'; } else { sprintf(buf, "%s %s", cmdline, CONSOLE_ARG); } env_val = buf; } else { buf = NULL; env_val = CONSOLE_ARG; } setenv("bootargs", env_val); debug("after silent fix-up: %s\n", env_val); free(buf); } #endif /* CONFIG_SILENT_CONSOLE */ #if defined(CONFIG_BOOTM_NETBSD) || defined(CONFIG_BOOTM_PLAN9) static void copy_args(char *dest, int argc, char * const argv[], char delim) { int i; for (i = 0; i < argc; i++) { if (i > 0) *dest++ = delim; strcpy(dest, argv[i]); dest += strlen(argv[i]); } } #endif /*******************************************************************/ /* OS booting routines */ /*******************************************************************/ #ifdef CONFIG_BOOTM_NETBSD static int do_bootm_netbsd(int flag, int argc, char * const argv[], bootm_headers_t *images) { void (*loader)(bd_t *, image_header_t *, char *, char *); image_header_t *os_hdr, *hdr; ulong kernel_data, kernel_len; char *consdev; char *cmdline; if (flag & BOOTM_STATE_OS_PREP) return 0; if ((flag != 0) && (flag != BOOTM_STATE_OS_GO)) return 1; #if defined(CONFIG_FIT) if (!images->legacy_hdr_valid) { fit_unsupported_reset("NetBSD"); return 1; } #endif hdr = images->legacy_hdr_os; /* * Booting a (NetBSD) kernel image * * This process is pretty similar to a standalone application: * The (first part of an multi-) image must be a stage-2 loader, * which in turn is responsible for loading & invoking the actual * kernel. The only differences are the parameters being passed: * besides the board info strucure, the loader expects a command * line, the name of the console device, and (optionally) the * address of the original image header. */ os_hdr = NULL; if (image_check_type(&images->legacy_hdr_os_copy, IH_TYPE_MULTI)) { image_multi_getimg(hdr, 1, &kernel_data, &kernel_len); if (kernel_len) os_hdr = hdr; } consdev = ""; #if defined(CONFIG_8xx_CONS_SMC1) consdev = "smc1"; #elif defined(CONFIG_8xx_CONS_SMC2) consdev = "smc2"; #elif defined(CONFIG_8xx_CONS_SCC2) consdev = "scc2"; #elif defined(CONFIG_8xx_CONS_SCC3) consdev = "scc3"; #endif if (argc > 0) { ulong len; int i; for (i = 0, len = 0; i < argc; i += 1) len += strlen(argv[i]) + 1; cmdline = malloc(len); copy_args(cmdline, argc, argv, ' '); } else if ((cmdline = getenv("bootargs")) == NULL) { cmdline = ""; } loader = (void (*)(bd_t *, image_header_t *, char *, char *))images->ep; printf("## Transferring control to NetBSD stage-2 loader " "(at address %08lx) ...\n", (ulong)loader); bootstage_mark(BOOTSTAGE_ID_RUN_OS); /* * NetBSD Stage-2 Loader Parameters: * r3: ptr to board info data * r4: image address * r5: console device * r6: boot args string */ (*loader)(gd->bd, os_hdr, consdev, cmdline); return 1; } #endif /* CONFIG_BOOTM_NETBSD*/ #ifdef CONFIG_LYNXKDI static int do_bootm_lynxkdi(int flag, int argc, char * const argv[], bootm_headers_t *images) { image_header_t *hdr = &images->legacy_hdr_os_copy; if (flag & BOOTM_STATE_OS_PREP) return 0; if ((flag != 0) && (flag != BOOTM_STATE_OS_GO)) return 1; #if defined(CONFIG_FIT) if (!images->legacy_hdr_valid) { fit_unsupported_reset("Lynx"); return 1; } #endif lynxkdi_boot((image_header_t *)hdr); return 1; } #endif /* CONFIG_LYNXKDI */ #ifdef CONFIG_BOOTM_RTEMS static int do_bootm_rtems(int flag, int argc, char * const argv[], bootm_headers_t *images) { void (*entry_point)(bd_t *); if (flag & BOOTM_STATE_OS_PREP) return 0; if ((flag != 0) && (flag != BOOTM_STATE_OS_GO)) return 1; #if defined(CONFIG_FIT) if (!images->legacy_hdr_valid) { fit_unsupported_reset("RTEMS"); return 1; } #endif entry_point = (void (*)(bd_t *))images->ep; printf("## Transferring control to RTEMS (at address %08lx) ...\n", (ulong)entry_point); bootstage_mark(BOOTSTAGE_ID_RUN_OS); /* * RTEMS Parameters: * r3: ptr to board info data */ (*entry_point)(gd->bd); return 1; } #endif /* CONFIG_BOOTM_RTEMS */ #if defined(CONFIG_BOOTM_OSE) static int do_bootm_ose(int flag, int argc, char * const argv[], bootm_headers_t *images) { void (*entry_point)(void); if (flag & BOOTM_STATE_OS_PREP) return 0; if ((flag != 0) && (flag != BOOTM_STATE_OS_GO)) return 1; #if defined(CONFIG_FIT) if (!images->legacy_hdr_valid) { fit_unsupported_reset("OSE"); return 1; } #endif entry_point = (void (*)(void))images->ep; printf("## Transferring control to OSE (at address %08lx) ...\n", (ulong)entry_point); bootstage_mark(BOOTSTAGE_ID_RUN_OS); /* * OSE Parameters: * None */ (*entry_point)(); return 1; } #endif /* CONFIG_BOOTM_OSE */ #if defined(CONFIG_BOOTM_PLAN9) static int do_bootm_plan9(int flag, int argc, char * const argv[], bootm_headers_t *images) { void (*entry_point)(void); char *s; if (flag & BOOTM_STATE_OS_PREP) return 0; if ((flag != 0) && (flag != BOOTM_STATE_OS_GO)) return 1; #if defined(CONFIG_FIT) if (!images->legacy_hdr_valid) { fit_unsupported_reset("Plan 9"); return 1; } #endif /* See README.plan9 */ s = getenv("confaddr"); if (s != NULL) { char *confaddr = (char *)simple_strtoul(s, NULL, 16); if (argc > 0) { copy_args(confaddr, argc, argv, '\n'); } else { s = getenv("bootargs"); if (s != NULL) strcpy(confaddr, s); } } entry_point = (void (*)(void))images->ep; printf("## Transferring control to Plan 9 (at address %08lx) ...\n", (ulong)entry_point); bootstage_mark(BOOTSTAGE_ID_RUN_OS); /* * Plan 9 Parameters: * None */ (*entry_point)(); return 1; } #endif /* CONFIG_BOOTM_PLAN9 */ #if defined(CONFIG_CMD_ELF) static int do_bootm_vxworks(int flag, int argc, char * const argv[], bootm_headers_t *images) { char str[80]; if (flag & BOOTM_STATE_OS_PREP) return 0; if ((flag != 0) && (flag != BOOTM_STATE_OS_GO)) return 1; #if defined(CONFIG_FIT) if (!images->legacy_hdr_valid) { fit_unsupported_reset("VxWorks"); return 1; } #endif sprintf(str, "%lx", images->ep); /* write entry-point into string */ setenv("loadaddr", str); do_bootvx(NULL, 0, 0, NULL); return 1; } static int do_bootm_qnxelf(int flag, int argc, char * const argv[], bootm_headers_t *images) { char *local_args[2]; char str[16]; if (flag & BOOTM_STATE_OS_PREP) return 0; if ((flag != 0) && (flag != BOOTM_STATE_OS_GO)) return 1; #if defined(CONFIG_FIT) if (!images->legacy_hdr_valid) { fit_unsupported_reset("QNX"); return 1; } #endif sprintf(str, "%lx", images->ep); /* write entry-point into string */ local_args[0] = argv[0]; local_args[1] = str; /* and provide it via the arguments */ do_bootelf(NULL, 0, 2, local_args); return 1; } #endif #ifdef CONFIG_INTEGRITY static int do_bootm_integrity(int flag, int argc, char * const argv[], bootm_headers_t *images) { void (*entry_point)(void); if (flag & BOOTM_STATE_OS_PREP) return 0; if ((flag != 0) && (flag != BOOTM_STATE_OS_GO)) return 1; #if defined(CONFIG_FIT) if (!images->legacy_hdr_valid) { fit_unsupported_reset("INTEGRITY"); return 1; } #endif entry_point = (void (*)(void))images->ep; printf("## Transferring control to INTEGRITY (at address %08lx) ...\n", (ulong)entry_point); bootstage_mark(BOOTSTAGE_ID_RUN_OS); /* * INTEGRITY Parameters: * None */ (*entry_point)(); return 1; } #endif #ifdef CONFIG_CMD_BOOTZ int __weak bootz_setup(ulong image, ulong *start, ulong *end) { /* Please define bootz_setup() for your platform */ puts("Your platform's zImage format isn't supported yet!\n"); return -1; } /* * zImage booting support */ static int bootz_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[], bootm_headers_t *images) { int ret; ulong zi_start, zi_end; ret = do_bootm_states(cmdtp, flag, argc, argv, BOOTM_STATE_START, images, 1); /* Setup Linux kernel zImage entry point */ if (!argc) { images->ep = load_addr; debug("* kernel: default image load address = 0x%08lx\n", load_addr); } else { images->ep = simple_strtoul(argv[0], NULL, 16); debug("* kernel: cmdline image address = 0x%08lx\n", images->ep); } ret = bootz_setup(images->ep, &zi_start, &zi_end); if (ret != 0) return 1; lmb_reserve(&images->lmb, images->ep, zi_end - zi_start); /* * Handle the BOOTM_STATE_FINDOTHER state ourselves as we do not * have a header that provide this informaiton. */ if (bootm_find_ramdisk(flag, argc, argv)) return 1; #if defined(CONFIG_OF_LIBFDT) if (bootm_find_fdt(flag, argc, argv)) return 1; #endif return 0; } int do_bootz(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { int ret; /* Consume 'bootz' */ argc--; argv++; if (bootz_start(cmdtp, flag, argc, argv, &images)) return 1; /* * We are doing the BOOTM_STATE_LOADOS state ourselves, so must * disable interrupts ourselves */ bootm_disable_interrupts(); images.os.os = IH_OS_LINUX; ret = do_bootm_states(cmdtp, flag, argc, argv, BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO, &images, 1); return ret; } #ifdef CONFIG_SYS_LONGHELP static char bootz_help_text[] = "[addr [initrd[:size]] [fdt]]\n" " - boot Linux zImage stored in memory\n" "\tThe argument 'initrd' is optional and specifies the address\n" "\tof the initrd in memory. The optional argument ':size' allows\n" "\tspecifying the size of RAW initrd.\n" #if defined(CONFIG_OF_LIBFDT) "\tWhen booting a Linux kernel which requires a flat device-tree\n" "\ta third argument is required which is the address of the\n" "\tdevice-tree blob. To boot that kernel without an initrd image,\n" "\tuse a '-' for the second argument. If you do not pass a third\n" "\ta bd_info struct will be passed instead\n" #endif ""; #endif U_BOOT_CMD( bootz, CONFIG_SYS_MAXARGS, 1, do_bootz, "boot Linux zImage image from memory", bootz_help_text ); #endif /* CONFIG_CMD_BOOTZ */