/* * (C) Copyright 2002, 2003 * Daniel Engström, Omicron Ceti AB, daniel@omicron.se * * (C) Copyright 2002 * Sysgo Real-Time Solutions, GmbH * Alex Zuepke * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #define PROBE_BUFFER_SIZE 1024 static unsigned char buffer[PROBE_BUFFER_SIZE]; #define SC520_MAX_FLASH_BANKS 1 #define SC520_FLASH_BANK0_BASE 0x38000000 /* BOOTCS */ #define SC520_FLASH_BANKSIZE 0x8000000 #define A29LV641DH_SIZE 0x800000 #define A29LV641DH_SECTORS 128 #define A29LV641MH_SIZE 0x800000 #define A29LV641MH_SECTORS 128 #define I28F320J3A_SIZE 0x400000 #define I28F320J3A_SECTORS 32 #define I28F640J3A_SIZE 0x800000 #define I28F640J3A_SECTORS 64 #define I28F128J3A_SIZE 0x1000000 #define I28F128J3A_SECTORS 128 flash_info_t flash_info[SC520_MAX_FLASH_BANKS]; #define READY 1 #define ERR 2 #define TMO 4 /*----------------------------------------------------------------------- */ static u32 _probe_flash(u32 addr, u32 bw, int il) { u32 result=0; /* First do an unlock cycle for the benefit of * devices that need it */ switch (bw) { case 1: *(volatile u8*)(addr+0x5555) = 0xaa; *(volatile u8*)(addr+0x2aaa) = 0x55; *(volatile u8*)(addr+0x5555) = 0x90; /* Read vendor */ result = *(volatile u8*)addr; result <<= 16; /* Read device */ result |= *(volatile u8*)(addr+2); /* Return device to data mode */ *(volatile u8*)addr = 0xff; *(volatile u8*)(addr+0x5555), 0xf0; break; case 2: *(volatile u16*)(addr+0xaaaa) = 0xaaaa; *(volatile u16*)(addr+0x5554) = 0x5555; /* Issue identification command */ if (il == 2) { *(volatile u16*)(addr+0xaaaa) = 0x9090; /* Read vendor */ result = *(volatile u8*)addr; result <<= 16; /* Read device */ result |= *(volatile u8*)(addr+2); /* Return device to data mode */ *(volatile u16*)addr = 0xffff; *(volatile u16*)(addr+0xaaaa), 0xf0f0; } else { *(volatile u8*)(addr+0xaaaa) = 0x90; /* Read vendor */ result = *(volatile u16*)addr; result <<= 16; /* Read device */ result |= *(volatile u16*)(addr+2); /* Return device to data mode */ *(volatile u8*)addr = 0xff; *(volatile u8*)(addr+0xaaaa), 0xf0; } break; case 4: *(volatile u32*)(addr+0x5554) = 0xaaaaaaaa; *(volatile u32*)(addr+0xaaa8) = 0x55555555; switch (il) { case 1: /* Issue identification command */ *(volatile u8*)(addr+0x5554) = 0x90; /* Read vendor */ result = *(volatile u16*)addr; result <<= 16; /* Read device */ result |= *(volatile u16*)(addr+4); /* Return device to data mode */ *(volatile u8*)addr = 0xff; *(volatile u8*)(addr+0x5554), 0xf0; break; case 2: /* Issue identification command */ *(volatile u32*)(addr + 0x5554) = 0x00900090; /* Read vendor */ result = *(volatile u16*)addr; result <<= 16; /* Read device */ result |= *(volatile u16*)(addr+4); /* Return device to data mode */ *(volatile u32*)addr = 0x00ff00ff; *(volatile u32*)(addr+0x5554), 0x00f000f0; break; case 4: /* Issue identification command */ *(volatile u32*)(addr+0x5554) = 0x90909090; /* Read vendor */ result = *(volatile u8*)addr; result <<= 16; /* Read device */ result |= *(volatile u8*)(addr+4); /* Return device to data mode */ *(volatile u32*)addr = 0xffffffff; *(volatile u32*)(addr+0x5554), 0xf0f0f0f0; break; } break; } return result; } extern int _probe_flash_end; asm ("_probe_flash_end:\n" ".long 0\n"); static int identify_flash(unsigned address, int width) { int is; int device; int vendor; int size; unsigned res; u32 (*_probe_flash_ptr)(u32 a, u32 bw, int il); size = (unsigned)&_probe_flash_end - (unsigned)_probe_flash; if (size > PROBE_BUFFER_SIZE) { printf("_probe_flash() routine too large (%d) %p - %p\n", size, &_probe_flash_end, _probe_flash); return 0; } memcpy(buffer, _probe_flash, size); _probe_flash_ptr = (void*)buffer; is = disable_interrupts(); res = _probe_flash_ptr(address, width, 1); if (is) { enable_interrupts(); } vendor = res >> 16; device = res & 0xffff; return res; } ulong flash_init(void) { int i, j; ulong size = 0; for (i = 0; i < SC520_MAX_FLASH_BANKS; i++) { unsigned id; ulong flashbase = 0; int sectsize = 0; memset(flash_info[i].protect, 0, CFG_MAX_FLASH_SECT); switch (i) { case 0: flashbase = SC520_FLASH_BANK0_BASE; break; default: panic("configured too many flash banks!\n"); } id = identify_flash(flashbase, 2); switch (id) { case 0x000122d7: /* 29LV641DH */ flash_info[i].flash_id = (AMD_MANUFACT & FLASH_VENDMASK) | (AMD_ID_LV640U & FLASH_TYPEMASK); flash_info[i].size = A29LV641DH_SIZE; flash_info[i].sector_count = A29LV641DH_SECTORS; sectsize = A29LV641DH_SIZE/A29LV641DH_SECTORS; printf("Bank %d: AMD 29LV641DH\n", i); break; case 0x0001227E: /* 29LV641MH */ flash_info[i].flash_id = (AMD_MANUFACT & FLASH_VENDMASK) | (AMD_ID_DL640 & FLASH_TYPEMASK); flash_info[i].size = A29LV641MH_SIZE; flash_info[i].sector_count = A29LV641MH_SECTORS; sectsize = A29LV641MH_SIZE/A29LV641MH_SECTORS; printf("Bank %d: AMD 29LV641MH\n", i); break; case 0x00890016: /* 28F320J3A */ flash_info[i].flash_id = (INTEL_MANUFACT & FLASH_VENDMASK) | (INTEL_ID_28F320J3A & FLASH_TYPEMASK); flash_info[i].size = I28F320J3A_SIZE; flash_info[i].sector_count = I28F320J3A_SECTORS; sectsize = I28F320J3A_SIZE/I28F320J3A_SECTORS; printf("Bank %d: Intel 28F320J3A\n", i); break; case 0x00890017: /* 28F640J3A */ flash_info[i].flash_id = (INTEL_MANUFACT & FLASH_VENDMASK) | (INTEL_ID_28F640J3A & FLASH_TYPEMASK); flash_info[i].size = I28F640J3A_SIZE; flash_info[i].sector_count = I28F640J3A_SECTORS; sectsize = I28F640J3A_SIZE/I28F640J3A_SECTORS; printf("Bank %d: Intel 28F640J3A\n", i); break; case 0x00890018: /* 28F128J3A */ flash_info[i].flash_id = (INTEL_MANUFACT & FLASH_VENDMASK) | (INTEL_ID_28F128J3A & FLASH_TYPEMASK); flash_info[i].size = I28F128J3A_SIZE; flash_info[i].sector_count = I28F128J3A_SECTORS; sectsize = I28F128J3A_SIZE/I28F128J3A_SECTORS; printf("Bank %d: Intel 28F128J3A\n", i); break; default: printf("Bank %d have unknown flash %08x\n", i, id); flash_info[i].flash_id = FLASH_UNKNOWN; continue; } for (j = 0; j < flash_info[i].sector_count; j++) { flash_info[i].start[j] = flashbase + j * sectsize; } size += flash_info[i].size; flash_protect(FLAG_PROTECT_CLEAR, flash_info[i].start[0], flash_info[i].start[0] + flash_info[i].size - 1, &flash_info[i]); } /* * Protect monitor and environment sectors */ flash_protect(FLAG_PROTECT_SET, i386boot_start, i386boot_end, &flash_info[0]); #ifdef CFG_ENV_ADDR flash_protect(FLAG_PROTECT_SET, CFG_ENV_ADDR, CFG_ENV_ADDR + CFG_ENV_SIZE - 1, &flash_info[0]); #endif return size; } /*----------------------------------------------------------------------- */ void flash_print_info(flash_info_t *info) { int i; switch (info->flash_id & FLASH_VENDMASK) { case (INTEL_MANUFACT & FLASH_VENDMASK): printf("INTEL: "); switch (info->flash_id & FLASH_TYPEMASK) { case (INTEL_ID_28F320J3A & FLASH_TYPEMASK): printf("1x I28F320J3A (32Mbit)\n"); break; case (INTEL_ID_28F640J3A & FLASH_TYPEMASK): printf("1x I28F640J3A (64Mbit)\n"); break; case (INTEL_ID_28F128J3A & FLASH_TYPEMASK): printf("1x I28F128J3A (128Mbit)\n"); break; default: printf("Unknown Chip Type\n"); goto done; break; } break; case (AMD_MANUFACT & FLASH_VENDMASK): printf("AMD: "); switch (info->flash_id & FLASH_TYPEMASK) { case (AMD_ID_LV640U & FLASH_TYPEMASK): printf("1x AMD29LV641DH (64Mbit)\n"); break; case (AMD_ID_DL640 & FLASH_TYPEMASK): printf("1x AMD29LV641MH (64Mbit)\n"); break; default: printf("Unknown Chip Type\n"); goto done; break; } break; default: printf("Unknown Vendor "); break; } printf(" Size: %ld MB in %d Sectors\n", info->size >> 20, info->sector_count); printf(" Sector Start Addresses:"); for (i = 0; i < info->sector_count; i++) { if ((i % 5) == 0) { printf ("\n "); } printf (" %08lX%s", info->start[i], info->protect[i] ? " (RO)" : " "); } printf ("\n"); done: return; } /*----------------------------------------------------------------------- */ static u32 _amd_erase_flash(u32 addr, u32 sector) { unsigned elapsed; /* Issue erase */ *(volatile u16*)(addr + 0xaaaa) = 0x00AA; *(volatile u16*)(addr + 0x5554) = 0x0055; *(volatile u16*)(addr + 0xaaaa) = 0x0080; /* And one unlock */ *(volatile u16*)(addr + 0xaaaa) = 0x00AA; *(volatile u16*)(addr + 0x5554) = 0x0055; /* Sector erase command comes last */ *(volatile u16*)(addr + sector) = 0x0030; elapsed = *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI); /* dummy read */ elapsed = 0; while (((*(volatile u16*)(addr + sector)) & 0x0080) != 0x0080) { elapsed += *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI); if (elapsed > ((CFG_FLASH_ERASE_TOUT/CFG_HZ) * 1000)) { *(volatile u16*)(addr) = 0x00f0; return 1; } } *(volatile u16*)(addr) = 0x00f0; return 0; } extern int _amd_erase_flash_end; asm ("_amd_erase_flash_end:\n" ".long 0\n"); /* this needs to be inlined, the SWTMRMMILLI register is reset by each read */ #define __udelay(delay) \ { \ unsigned micro; \ unsigned milli=0; \ \ micro = *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI); \ \ for (;;) { \ \ milli += *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI); \ micro = *(volatile u16*)(0xfffef000+SC520_SWTMRMICRO); \ \ if ((delay) <= (micro + (milli * 1000))) { \ break; \ } \ } \ } while (0) static u32 _intel_erase_flash(u32 addr, u32 sector) { unsigned elapsed; *(volatile u16*)(addr + sector) = 0x0050; /* clear status register */ *(volatile u16*)(addr + sector) = 0x0020; /* erase setup */ *(volatile u16*)(addr + sector) = 0x00D0; /* erase confirm */ /* Wait at least 80us - let's wait 1 ms */ __udelay(1000); elapsed = 0; while (((*(volatile u16*)(addr + sector)) & 0x0080) != 0x0080) { elapsed += *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI); if (elapsed > ((CFG_FLASH_ERASE_TOUT/CFG_HZ) * 1000)) { *(volatile u16*)(addr + sector) = 0x00B0; /* suspend erase */ *(volatile u16*)(addr + sector) = 0x00FF; /* reset to read mode */ return 1; } } *(volatile u16*)(addr + sector) = 0x00FF; /* reset to read mode */ return 0; } extern int _intel_erase_flash_end; asm ("_intel_erase_flash_end:\n" ".long 0\n"); int flash_erase(flash_info_t *info, int s_first, int s_last) { u32 (*_erase_flash_ptr)(u32 a, u32 so); int prot; int sect; unsigned size; if ((s_first < 0) || (s_first > s_last)) { if (info->flash_id == FLASH_UNKNOWN) { printf("- missing\n"); } else { printf("- no sectors to erase\n"); } return 1; } if ((info->flash_id & FLASH_VENDMASK) == (AMD_MANUFACT & FLASH_VENDMASK)) { size = (unsigned)&_amd_erase_flash_end - (unsigned)_amd_erase_flash; if (size > PROBE_BUFFER_SIZE) { printf("_amd_erase_flash() routine too large (%d) %p - %p\n", size, &_amd_erase_flash_end, _amd_erase_flash); return 0; } memcpy(buffer, _amd_erase_flash, size); _erase_flash_ptr = (void*)buffer; } else if ((info->flash_id & FLASH_VENDMASK) == (INTEL_MANUFACT & FLASH_VENDMASK)) { size = (unsigned)&_intel_erase_flash_end - (unsigned)_intel_erase_flash; if (size > PROBE_BUFFER_SIZE) { printf("_intel_erase_flash() routine too large (%d) %p - %p\n", size, &_intel_erase_flash_end, _intel_erase_flash); return 0; } memcpy(buffer, _intel_erase_flash, size); _erase_flash_ptr = (void*)buffer; } else { printf ("Can't erase unknown flash type - aborted\n"); return 1; } prot = 0; for (sect=s_first; sect<=s_last; ++sect) { if (info->protect[sect]) { prot++; } } if (prot) { printf ("- Warning: %d protected sectors will not be erased!\n", prot); } else { printf ("\n"); } /* Start erase on unprotected sectors */ for (sect = s_first; sect<=s_last; sect++) { if (info->protect[sect] == 0) { /* not protected */ int res; int flag; /* Disable interrupts which might cause a timeout here */ flag = disable_interrupts(); res = _erase_flash_ptr(info->start[0], info->start[sect]-info->start[0]); /* re-enable interrupts if necessary */ if (flag) { enable_interrupts(); } if (res) { printf("Erase timed out, sector %d\n", sect); return res; } putc('.'); } } return 0; } /*----------------------------------------------------------------------- * Write a word to Flash, returns: * 0 - OK * 1 - write timeout * 2 - Flash not erased */ static int _amd_write_word(unsigned start, unsigned dest, u16 data) { volatile u16 *addr2 = (volatile u16*)start; volatile u16 *dest2 = (volatile u16*)dest; volatile u16 *data2 = (volatile u16*)&data; int i; unsigned elapsed; /* Check if Flash is (sufficiently) erased */ if ((*((volatile u16*)dest) & (u16)data) != (u16)data) { return 2; } for (i = 0; i < 2; i++) { addr2[0x5555] = 0x00AA; addr2[0x2aaa] = 0x0055; addr2[0x5555] = 0x00A0; dest2[i] = (data >> (i*16)) & 0xffff; elapsed = *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI); /* dummy read */ elapsed = 0; /* data polling for D7 */ while ((dest2[i] & 0x0080) != (data2[i] & 0x0080)) { elapsed += *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI); if (elapsed > ((CFG_FLASH_WRITE_TOUT/CFG_HZ) * 1000)) { addr2[i] = 0x00f0; return 1; } } } addr2[i] = 0x00f0; return 0; } extern int _amd_write_word_end; asm ("_amd_write_word_end:\n" ".long 0\n"); static int _intel_write_word(unsigned start, unsigned dest, unsigned data) { int i; unsigned elapsed; /* Check if Flash is (sufficiently) erased */ if ((*((volatile u16*)dest) & (u16)data) != (u16)data) { return 2; } for (i = 0; i < 2; i++) { *(volatile u16*)(dest+2*i) = 0x0040; /* write setup */ *(volatile u16*)(dest+2*i) = (data >> (i*16)) & 0xffff; elapsed = *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI); /* dummy read */ elapsed = 0; /* data polling for D7 */ while ((*(volatile u16*)dest & 0x0080) != 0x0080) { elapsed += *(volatile u16*)(0xfffef000+SC520_SWTMRMILLI); if (elapsed > ((CFG_FLASH_WRITE_TOUT/CFG_HZ) * 1000)) { *(volatile u16*)dest = 0x00ff; return 1; } } } *(volatile u16*)dest = 0x00ff; return 0; } extern int _intel_write_word_end; asm ("_intel_write_word_end:\n" ".long 0\n"); /*----------------------------------------------------------------------- * Copy memory to flash, returns: * 0 - OK * 1 - write timeout * 2 - Flash not erased * 3 - Unsupported flash type */ int write_buff(flash_info_t *info, uchar *src, ulong addr, ulong cnt) { ulong cp, wp, data; int i, l, rc; int flag; u32 (*_write_word_ptr)(unsigned start, unsigned dest, unsigned data); unsigned size; if ((info->flash_id & FLASH_VENDMASK) == (AMD_MANUFACT & FLASH_VENDMASK)) { size = (unsigned)&_amd_write_word_end - (unsigned)_amd_write_word; if (size > PROBE_BUFFER_SIZE) { printf("_amd_write_word() routine too large (%d) %p - %p\n", size, &_amd_write_word_end, _amd_write_word); return 0; } memcpy(buffer, _amd_write_word, size); _write_word_ptr = (void*)buffer; } else if ((info->flash_id & FLASH_VENDMASK) == (INTEL_MANUFACT & FLASH_VENDMASK)) { size = (unsigned)&_intel_write_word_end - (unsigned)_intel_write_word; if (size > PROBE_BUFFER_SIZE) { printf("_intel_write_word() routine too large (%d) %p - %p\n", size, &_intel_write_word_end, _intel_write_word); return 0; } memcpy(buffer, _intel_write_word, size); _write_word_ptr = (void*)buffer; } else { printf ("Can't program unknown flash type - aborted\n"); return 3; } wp = (addr & ~3); /* get lower word aligned address */ /* * handle unaligned start bytes */ if ((l = addr - wp) != 0) { data = 0; for (i=0, cp=wp; i0; ++i) { data |= *src++ << (8*i); --cnt; ++cp; } for (; cnt==0 && i<4; ++i, ++cp) { data |= (*(uchar *)cp) << (8*i); } /* Disable interrupts which might cause a timeout here */ flag = disable_interrupts(); rc = _write_word_ptr(info->start[0], wp, data); /* re-enable interrupts if necessary */ if (flag) { enable_interrupts(); } if (rc != 0) { return rc; } wp += 4; } /* * handle word aligned part */ while (cnt >= 4) { data = 0; for (i=0; i<4; ++i) { data |= *src++ << (8*i); } /* Disable interrupts which might cause a timeout here */ flag = disable_interrupts(); rc = _write_word_ptr(info->start[0], wp, data); /* re-enable interrupts if necessary */ if (flag) { enable_interrupts(); } if (rc != 0) { return rc; } wp += 4; cnt -= 4; } if (cnt == 0) { return 0; } /* * handle unaligned tail bytes */ data = 0; for (i=0, cp=wp; i<4 && cnt>0; ++i, ++cp) { data |= *src++ << (8*i); --cnt; } for (; i<4; ++i, ++cp) { data |= (*(uchar *)cp) << (8*i); } /* Disable interrupts which might cause a timeout here */ flag = disable_interrupts(); rc = _write_word_ptr(info->start[0], wp, data); /* re-enable interrupts if necessary */ if (flag) { enable_interrupts(); } return rc; }