/* * (C) Copyright 2002 * Hyperion Entertainment, ThomasF@hyperion-entertainment.com * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include "memio.h" #include "articiaS.h" #include "smbus.h" #include "via686.h" #undef DEBUG struct dimm_bank { uint8 used; /* Bank is populated */ uint32 rows; /* Number of row addresses */ uint32 columns; /* Number of column addresses */ uint8 registered; /* SIMM is registered */ uint8 ecc; /* SIMM has ecc */ uint8 burst_len; /* Supported burst lengths */ uint32 cas_lat; /* Supported CAS latencies */ uint32 cas_used; /* CAS to use (not set by user) */ uint32 trcd; /* RAS to CAS latency */ uint32 trp; /* Precharge latency */ uint32 tclk_hi; /* SDRAM cycle time (highest CAS latency) */ uint32 tclk_2hi; /* SDRAM second highest CAS latency */ uint32 size; /* Size of bank in bytes */ uint8 auto_refresh; /* Module supports auto refresh */ uint32 refresh_time; /* Refresh time (in ns) */ }; /* ** Based in part on the evb64260 code */ /* * translate ns.ns/10 coding of SPD timing values * into 10 ps unit values */ static inline unsigned short NS10to10PS (unsigned char spd_byte) { unsigned short ns, ns10; /* isolate upper nibble */ ns = (spd_byte >> 4) & 0x0F; /* isolate lower nibble */ ns10 = (spd_byte & 0x0F); return (ns * 100 + ns10 * 10); } /* * translate ns coding of SPD timing values * into 10 ps unit values */ static inline unsigned short NSto10PS (unsigned char spd_byte) { return (spd_byte * 100); } long detect_sdram (uint8 * rom, int dimmNum, struct dimm_bank *banks) { DECLARE_GLOBAL_DATA_PTR; int dimm_address = (dimmNum == 0) ? SM_DIMM0_ADDR : SM_DIMM1_ADDR; uint32 busclock = gd->bus_clk; uint32 memclock = busclock; uint32 tmemclock = 1000000000 / (memclock / 100); uint32 datawidth; if (sm_get_data (rom, dimm_address) == 0) { /* Nothing in slot, make both banks empty */ debug ("Slot %d: vacant\n", dimmNum); banks[0].used = 0; banks[1].used = 0; return 0; } if (rom[2] != 0x04) { debug ("Slot %d: No SDRAM\n", dimmNum); banks[0].used = 0; banks[1].used = 0; return 0; } /* Determine number of banks/rows */ if (rom[5] == 1) { banks[0].used = 1; banks[1].used = 0; } else { banks[0].used = 1; banks[1].used = 1; } /* Determine number of row addresses */ if (rom[3] & 0xf0) { /* Different banks sizes */ banks[0].rows = rom[3] & 0x0f; banks[1].rows = (rom[3] & 0xf0) >> 4; } else { /* Equal sized banks */ banks[0].rows = rom[3] & 0x0f; banks[1].rows = banks[0].rows; } /* Determine number of column addresses */ if (rom[4] & 0xf0) { /* Different bank sizes */ banks[0].columns = rom[4] & 0x0f; banks[1].columns = (rom[4] & 0xf0) >> 4; } else { banks[0].columns = rom[4] & 0x0f; banks[1].columns = banks[0].columns; } /* Check Jedec revision, and modify row/column accordingly */ if (rom[62] > 0x10) { if (banks[0].rows <= 3) banks[0].rows += 15; if (banks[1].rows <= 3) banks[1].rows += 15; if (banks[0].columns <= 3) banks[0].columns += 15; if (banks[0].columns <= 3) banks[0].columns += 15; } /* Check registered/unregisterd */ if (rom[21] & 0x12) { banks[0].registered = 1; banks[1].registered = 1; } else { banks[0].registered = 0; banks[1].registered = 0; } #ifdef CONFIG_ECC /* Check parity/ECC */ banks[0].ecc = (rom[11] == 0x02); banks[1].ecc = (rom[11] == 0x02); #endif /* Find burst lengths supported */ banks[0].burst_len = rom[16] & 0x8f; banks[1].burst_len = rom[16] & 0x8f; /* Find possible cas latencies */ banks[0].cas_lat = rom[18] & 0x7F; banks[1].cas_lat = rom[18] & 0x7F; /* RAS/CAS latency */ banks[0].trcd = (NSto10PS (rom[29]) + (tmemclock - 1)) / tmemclock; banks[1].trcd = (NSto10PS (rom[29]) + (tmemclock - 1)) / tmemclock; /* Precharge latency */ banks[0].trp = (NSto10PS (rom[27]) + (tmemclock - 1)) / tmemclock; banks[1].trp = (NSto10PS (rom[27]) + (tmemclock - 1)) / tmemclock; /* highest CAS latency */ banks[0].tclk_hi = NS10to10PS (rom[9]); banks[1].tclk_hi = NS10to10PS (rom[9]); /* second highest CAS latency */ banks[0].tclk_2hi = NS10to10PS (rom[23]); banks[1].tclk_2hi = NS10to10PS (rom[23]); /* bank sizes */ datawidth = rom[13] & 0x7f; banks[0].size = (1L << (banks[0].rows + banks[0].columns)) * /* FIXME datawidth */ 8 * rom[17]; if (rom[13] & 0x80) banks[1].size = 2 * banks[0].size; else banks[1].size = (1L << (banks[1].rows + banks[1].columns)) * /* FIXME datawidth */ 8 * rom[17]; /* Refresh */ if (rom[12] & 0x80) { banks[0].auto_refresh = 1; banks[1].auto_refresh = 1; } else { banks[0].auto_refresh = 0; banks[1].auto_refresh = 0; } switch (rom[12] & 0x7f) { case 0: banks[0].refresh_time = (1562500 + (tmemclock - 1)) / tmemclock; banks[1].refresh_time = (1562500 + (tmemclock - 1)) / tmemclock; break; case 1: banks[0].refresh_time = (390600 + (tmemclock - 1)) / tmemclock; banks[1].refresh_time = (390600 + (tmemclock - 1)) / tmemclock; break; case 2: banks[0].refresh_time = (781200 + (tmemclock - 1)) / tmemclock; banks[1].refresh_time = (781200 + (tmemclock - 1)) / tmemclock; break; case 3: banks[0].refresh_time = (3125000 + (tmemclock - 1)) / tmemclock; banks[1].refresh_time = (3125000 + (tmemclock - 1)) / tmemclock; break; case 4: banks[0].refresh_time = (6250000 + (tmemclock - 1)) / tmemclock; banks[1].refresh_time = (6250000 + (tmemclock - 1)) / tmemclock; break; case 5: banks[0].refresh_time = (12500000 + (tmemclock - 1)) / tmemclock; banks[1].refresh_time = (12500000 + (tmemclock - 1)) / tmemclock; break; default: banks[0].refresh_time = 0x100; /* Default of Articia S */ banks[1].refresh_time = 0x100; break; } #ifdef DEBUG printf ("\nInformation for SIMM bank %ld:\n", dimmNum); printf ("Number of banks: %ld\n", banks[0].used + banks[1].used); printf ("Number of row addresses: %ld\n", banks[0].rows); printf ("Number of coumns addresses: %ld\n", banks[0].columns); printf ("SIMM is %sregistered\n", banks[0].registered == 0 ? "not " : ""); #ifdef CONFIG_ECC printf ("SIMM %s ECC\n", banks[0].ecc == 1 ? "supports" : "doesn't support"); #endif printf ("Supported burst lenghts: %s %s %s %s %s\n", banks[0].burst_len & 0x08 ? "8" : " ", banks[0].burst_len & 0x04 ? "4" : " ", banks[0].burst_len & 0x02 ? "2" : " ", banks[0].burst_len & 0x01 ? "1" : " ", banks[0].burst_len & 0x80 ? "PAGE" : " "); printf ("Supported CAS latencies: %s %s %s\n", banks[0].cas_lat & 0x04 ? "CAS 3" : " ", banks[0].cas_lat & 0x02 ? "CAS 2" : " ", banks[0].cas_lat & 0x01 ? "CAS 1" : " "); printf ("RAS to CAS latency: %ld\n", banks[0].trcd); printf ("Precharge latency: %ld\n", banks[0].trp); printf ("SDRAM highest CAS latency: %ld\n", banks[0].tclk_hi); printf ("SDRAM 2nd highest CAS latency: %ld\n", banks[0].tclk_2hi); printf ("SDRAM data width: %ld\n", datawidth); printf ("Auto Refresh %ssupported\n", banks[0].auto_refresh ? "" : "not "); printf ("Refresh time: %ld clocks\n", banks[0].refresh_time); if (banks[0].used) printf ("Bank 0 size: %ld MB\n", banks[0].size / 1024 / 1024); if (banks[1].used) printf ("Bank 1 size: %ld MB\n", banks[1].size / 1024 / 1024); printf ("\n"); #endif sm_term (); return 1; } void select_cas (struct dimm_bank *banks, uint8 fast) { if (!banks[0].used) { banks[0].cas_used = 0; banks[0].cas_used = 0; return; } if (fast) { /* Search for fast CAS */ uint32 i; uint32 c = 0x01; for (i = 1; i < 5; i++) { if (banks[0].cas_lat & c) { banks[0].cas_used = i; banks[1].cas_used = i; debug ("Using CAS %d (fast)\n", i); return; } c <<= 1; } /* Default to CAS 3 */ banks[0].cas_used = 3; banks[1].cas_used = 3; debug ("Using CAS 3 (fast)\n"); return; } else { /* Search for slow cas */ uint32 i; uint32 c = 0x08; for (i = 4; i > 1; i--) { if (banks[0].cas_lat & c) { banks[0].cas_used = i; banks[1].cas_used = i; debug ("Using CAS %d (slow)\n", i); return; } c >>= 1; } /* Default to CAS 3 */ banks[0].cas_used = 3; banks[1].cas_used = 3; debug ("Using CAS 3 (slow)\n"); return; } banks[0].cas_used = 3; banks[1].cas_used = 3; debug ("Using CAS 3\n"); return; } uint32 get_reg_setting (uint32 banks, uint32 rows, uint32 columns, uint32 size) { uint32 i; struct RowColumnSize { uint32 banks; uint32 rows; uint32 columns; uint32 size; uint32 register_value; }; struct RowColumnSize rcs_map[] = { /* Sbk Radr Cadr MB Value */ {1, 11, 8, 8, 0x00840f00}, {1, 11, 9, 16, 0x00925f00}, {1, 11, 10, 32, 0x00a64f00}, {2, 12, 8, 32, 0x00c55f00}, {2, 12, 9, 64, 0x00d66f00}, {2, 12, 10, 128, 0x00e77f00}, {2, 12, 11, 256, 0x00ff8f00}, {2, 13, 11, 512, 0x00ff9f00}, {0, 0, 0, 0, 0x00000000} }; i = 0; while (rcs_map[i].banks != 0) { if (rows == rcs_map[i].rows && columns == rcs_map[i].columns && (size / 1024 / 1024) == rcs_map[i].size) return rcs_map[i].register_value; i++; } return 0; } uint32 burst_to_len (uint32 support) { if (support & 0x80) return 0x7; else if (support & 0x8) return 0x3; else if (support & 0x4) return 0x2; else if (support & 0x2) return 0x1; else if (support & 0x1) return 0x0; return 0; } long articiaS_ram_init (void) { DECLARE_GLOBAL_DATA_PTR; register uint32 i; register uint32 value1; register uint32 value2; uint8 rom[128]; uint32 burst_len; uint32 burst_support; uint32 total_ram = 0; struct dimm_bank banks[4]; /* FIXME: Move to initram */ uint32 busclock = gd->bus_clk; uint32 memclock = busclock; uint32 reg32; uint32 refresh_clocks; uint8 auto_refresh; memset (banks, 0, sizeof (struct dimm_bank) * 4); detect_sdram (rom, 0, &banks[0]); detect_sdram (rom, 1, &banks[2]); for (i = 0; i < 4; i++) { total_ram = total_ram + (banks[i].used * banks[i].size); } pci_write_cfg_long (0, 0, GLOBALINFO0, 0x117430c0); pci_write_cfg_long (0, 0, HBUSACR0, 0x1f0100b0); pci_write_cfg_long (0, 0, SRAM_CR, 0x00f12000); /* Note: Might also try 0x00f10000 (original: 0x00f12000) */ pci_write_cfg_byte (0, 0, DRAM_RAS_CTL0, 0x3f); pci_write_cfg_byte (0, 0, DRAM_RAS_CTL1, 0x00); /* was: 0x04); */ pci_write_cfg_word (0, 0, DRAM_ECC0, 0x2020); /* was: 0x2400); No ECC yet */ /* FIXME: Move this stuff to seperate function, like setup_dimm_bank */ if (banks[0].used) { value1 = get_reg_setting (banks[0].used + banks[1].used, banks[0].rows, banks[0].columns, banks[0].size); } else { value1 = 0; } if (banks[1].used) { value2 = get_reg_setting (banks[0].used + banks[1].used, banks[1].rows, banks[1].columns, banks[1].size); } else { value2 = 0; } pci_write_cfg_long (0, 0, DIMM0_B0_SCR0, value1); pci_write_cfg_long (0, 0, DIMM0_B1_SCR0, value2); debug ("DIMM0_B0_SCR0 = 0x%08x\n", value1); debug ("DIMM0_B1_SCR0 = 0x%08x\n", value2); if (banks[2].used) { value1 = get_reg_setting (banks[2].used + banks[3].used, banks[2].rows, banks[2].columns, banks[2].size); } else { value1 = 0; } if (banks[3].used) { value2 = get_reg_setting (banks[2].used + banks[3].used, banks[3].rows, banks[3].columns, banks[3].size); } else { value2 = 0; } pci_write_cfg_long (0, 0, DIMM1_B2_SCR0, value1); pci_write_cfg_long (0, 0, DIMM1_B3_SCR0, value2); debug ("DIMM0_B2_SCR0 = 0x%08x\n", value1); debug ("DIMM0_B3_SCR0 = 0x%08x\n", value2); pci_write_cfg_long (0, 0, DIMM2_B4_SCR0, 0); pci_write_cfg_long (0, 0, DIMM2_B5_SCR0, 0); pci_write_cfg_long (0, 0, DIMM3_B6_SCR0, 0); pci_write_cfg_long (0, 0, DIMM3_B7_SCR0, 0); /* Determine timing */ select_cas (&banks[0], 0); select_cas (&banks[2], 0); /* FIXME: What about write recovery */ /* Auto refresh Precharge */ #if 0 reg32 = (0x3 << 13) | (0x7 << 10) | ((banks[0].trp - 2) << 8) | /* Write recovery CAS Latency */ (0x1 << 6) | (banks[0].cas_used << 4) | /* RAS/CAS latency */ ((banks[0].trcd - 1) << 0); reg32 |= ((0x3 << 13) | (0x7 << 10) | ((banks[2].trp - 2) << 8) | (0x1 << 6) | (banks[2].cas_used << 4) | ((banks[2].trcd - 1) << 0)) << 16; #else if (100000000 == gd->bus_clk) reg32 = 0x71737173; else reg32 = 0x69736973; #endif pci_write_cfg_long (0, 0, DIMM0_TCR0, reg32); debug ("DIMM0_TCR0 = 0x%08x\n", reg32); /* Write default in DIMM2/3 (not used on A1) */ pci_write_cfg_long (0, 0, DIMM2_TCR0, 0x7d737d73); /* Determine buffered/unbuffered mode for each SIMM. Uses first bank as reference (second, if present, uses the same) */ reg32 = pci_read_cfg_long (0, 0, DRAM_GCR0); reg32 &= 0xFF00FFFF; #if 0 if (banks[0].used && banks[0].registered) reg32 |= 0x1 << 16; if (banks[2].used && banks[2].registered) reg32 |= 0x1 << 18; #else if (banks[0].registered || banks[2].registered) reg32 |= 0x55 << 16; #endif pci_write_cfg_long (0, 0, DRAM_GCR0, reg32); debug ("DRAM_GCR0 = 0x%08x\n", reg32); /* Determine refresh */ refresh_clocks = 0xffffffff; auto_refresh = 1; for (i = 0; i < 4; i++) { if (banks[i].used) { if (banks[i].auto_refresh == 0) auto_refresh = 0; if (banks[i].refresh_time < refresh_clocks) refresh_clocks = banks[i].refresh_time; } } #if 1 /* It seems this is suggested by the ArticiaS data book */ if (100000000 == gd->bus_clk) refresh_clocks = 1561; else refresh_clocks = 2083; #endif debug ("Refresh set to %ld clocks, auto refresh %s\n", refresh_clocks, auto_refresh ? "on" : "off"); pci_write_cfg_long (0, 0, DRAM_REFRESH0, (1 << 16) | (1 << 15) | (auto_refresh << 12) | (refresh_clocks)); debug ("DRAM_REFRESH0 = 0x%08x\n", (1 << 16) | (1 << 15) | (auto_refresh << 12) | (refresh_clocks)); /* pci_write_cfg_long(0, 0, DRAM_REFRESH0, 0x00019400); */ /* Set mode registers */ /* FIXME: For now, set same burst len for all modules. Dunno if that's necessary */ /* Find a common burst len */ burst_support = 0xff; if (banks[0].used) burst_support = banks[0].burst_len; if (banks[1].used) burst_support = banks[1].burst_len; if (banks[2].used) burst_support = banks[2].burst_len; if (banks[3].used) burst_support = banks[3].burst_len; /* ** Mode register: ** Bits Use ** 0-2 Burst len ** 3 Burst type (0 = sequential, 1 = interleave) ** 4-6 CAS latency ** 7-8 Operation mode (0 = default, all others invalid) ** 9 Write burst ** 10-11 Reserved ** ** Mode register burst table: ** A2 A1 A0 lenght ** 0 0 0 1 ** 0 0 1 2 ** 0 1 0 4 ** 0 1 1 8 ** 1 0 0 invalid ** 1 0 1 invalid ** 1 1 0 invalid ** 1 1 1 page (only valid for non-interleaved) */ burst_len = burst_to_len (burst_support); burst_len = 2; /* FIXME */ if (banks[0].used) { pci_write_cfg_word (0, 0, DRAM_PCR0, 0x8000 | burst_len | (banks[0].cas_used << 4)); debug ("Mode bank 0: 0x%08x\n", 0x8000 | burst_len | (banks[0].cas_used << 4)); } else { /* Seems to be needed to disable the bank */ pci_write_cfg_word (0, 0, DRAM_PCR0, 0x0000 | 0x032); } if (banks[1].used) { pci_write_cfg_word (0, 0, DRAM_PCR0, 0x9000 | burst_len | (banks[1].cas_used << 4)); debug ("Mode bank 1: 0x%08x\n", 0x8000 | burst_len | (banks[1].cas_used << 4)); } else { /* Seems to be needed to disable the bank */ pci_write_cfg_word (0, 0, DRAM_PCR0, 0x1000 | 0x032); } if (banks[2].used) { pci_write_cfg_word (0, 0, DRAM_PCR0, 0xa000 | burst_len | (banks[2].cas_used << 4)); debug ("Mode bank 2: 0x%08x\n", 0x8000 | burst_len | (banks[2].cas_used << 4)); } else { /* Seems to be needed to disable the bank */ pci_write_cfg_word (0, 0, DRAM_PCR0, 0x2000 | 0x032); } if (banks[3].used) { pci_write_cfg_word (0, 0, DRAM_PCR0, 0xb000 | burst_len | (banks[3].cas_used << 4)); debug ("Mode bank 3: 0x%08x\n", 0x8000 | burst_len | (banks[3].cas_used << 4)); } else { /* Seems to be needed to disable the bank */ pci_write_cfg_word (0, 0, DRAM_PCR0, 0x3000 | 0x032); } pci_write_cfg_word (0, 0, 0xba, 0x00); return total_ram; } extern int drv_isa_kbd_init (void); int last_stage_init (void) { drv_isa_kbd_init (); return 0; } int overwrite_console (void) { return (0); } #define in_8 read_byte #define out_8 write_byte static __inline__ unsigned long get_msr (void) { unsigned long msr; asm volatile ("mfmsr %0":"=r" (msr):); return msr; } static __inline__ void set_msr (unsigned long msr) { asm volatile ("mtmsr %0"::"r" (msr)); } int board_pre_init (void) { unsigned char c_value = 0; unsigned long msr; /* Basic init of PS/2 keyboard (needed for some reason)... */ /* Ripped from John's code */ while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0); out_8 ((unsigned char *) 0xfe000064, 0xaa); while ((in_8 ((unsigned char *) 0xfe000064) & 0x01) == 0); c_value = in_8 ((unsigned char *) 0xfe000060); while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0); out_8 ((unsigned char *) 0xfe000064, 0xab); while ((in_8 ((unsigned char *) 0xfe000064) & 0x01) == 0); c_value = in_8 ((unsigned char *) 0xfe000060); while ((in_8 ((unsigned char *) 0xfe000064) & 0x02) != 0); out_8 ((unsigned char *) 0xfe000064, 0xae); /* while ((in_8((unsigned char *)0xfe000064) & 0x01) == 0); */ /* c_value = in_8((unsigned char *)0xfe000060); */ /* Enable FPU */ msr = get_msr (); set_msr (msr | MSR_FP); via_calibrate_bus_freq (); return 0; }