/* * (C) Copyright 2008-2011 * Graeme Russ, * * (C) Copyright 2002 * Daniel Engström, Omicron Ceti AB, * * (C) Copyright 2002 * Sysgo Real-Time Solutions, GmbH * Marius Groeger * * (C) Copyright 2002 * Sysgo Real-Time Solutions, GmbH * Alex Zuepke * * Part of this file is adapted from coreboot * src/arch/x86/lib/cpu.c * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; /* * Constructor for a conventional segment GDT (or LDT) entry * This is a macro so it can be used in initialisers */ #define GDT_ENTRY(flags, base, limit) \ ((((base) & 0xff000000ULL) << (56-24)) | \ (((flags) & 0x0000f0ffULL) << 40) | \ (((limit) & 0x000f0000ULL) << (48-16)) | \ (((base) & 0x00ffffffULL) << 16) | \ (((limit) & 0x0000ffffULL))) struct gdt_ptr { u16 len; u32 ptr; } __packed; struct cpu_device_id { unsigned vendor; unsigned device; }; struct cpuinfo_x86 { uint8_t x86; /* CPU family */ uint8_t x86_vendor; /* CPU vendor */ uint8_t x86_model; uint8_t x86_mask; }; /* * List of cpu vendor strings along with their normalized * id values. */ static struct { int vendor; const char *name; } x86_vendors[] = { { X86_VENDOR_INTEL, "GenuineIntel", }, { X86_VENDOR_CYRIX, "CyrixInstead", }, { X86_VENDOR_AMD, "AuthenticAMD", }, { X86_VENDOR_UMC, "UMC UMC UMC ", }, { X86_VENDOR_NEXGEN, "NexGenDriven", }, { X86_VENDOR_CENTAUR, "CentaurHauls", }, { X86_VENDOR_RISE, "RiseRiseRise", }, { X86_VENDOR_TRANSMETA, "GenuineTMx86", }, { X86_VENDOR_TRANSMETA, "TransmetaCPU", }, { X86_VENDOR_NSC, "Geode by NSC", }, { X86_VENDOR_SIS, "SiS SiS SiS ", }, }; static const char *const x86_vendor_name[] = { [X86_VENDOR_INTEL] = "Intel", [X86_VENDOR_CYRIX] = "Cyrix", [X86_VENDOR_AMD] = "AMD", [X86_VENDOR_UMC] = "UMC", [X86_VENDOR_NEXGEN] = "NexGen", [X86_VENDOR_CENTAUR] = "Centaur", [X86_VENDOR_RISE] = "Rise", [X86_VENDOR_TRANSMETA] = "Transmeta", [X86_VENDOR_NSC] = "NSC", [X86_VENDOR_SIS] = "SiS", }; static void load_ds(u32 segment) { asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE)); } static void load_es(u32 segment) { asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE)); } static void load_fs(u32 segment) { asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE)); } static void load_gs(u32 segment) { asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE)); } static void load_ss(u32 segment) { asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE)); } static void load_gdt(const u64 *boot_gdt, u16 num_entries) { struct gdt_ptr gdt; gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1; gdt.ptr = (u32)boot_gdt; asm volatile("lgdtl %0\n" : : "m" (gdt)); } void setup_gdt(gd_t *id, u64 *gdt_addr) { id->arch.gdt = gdt_addr; /* CS: code, read/execute, 4 GB, base 0 */ gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff); /* DS: data, read/write, 4 GB, base 0 */ gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff); /* FS: data, read/write, 4 GB, base (Global Data Pointer) */ id->arch.gd_addr = id; gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093, (ulong)&id->arch.gd_addr, 0xfffff); /* 16-bit CS: code, read/execute, 64 kB, base 0 */ gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff); /* 16-bit DS: data, read/write, 64 kB, base 0 */ gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff); gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff); gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff); load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES); load_ds(X86_GDT_ENTRY_32BIT_DS); load_es(X86_GDT_ENTRY_32BIT_DS); load_gs(X86_GDT_ENTRY_32BIT_DS); load_ss(X86_GDT_ENTRY_32BIT_DS); load_fs(X86_GDT_ENTRY_32BIT_FS); } int __weak x86_cleanup_before_linux(void) { #ifdef CONFIG_BOOTSTAGE_STASH bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR, CONFIG_BOOTSTAGE_STASH_SIZE); #endif return 0; } /* * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected * by the fact that they preserve the flags across the division of 5/2. * PII and PPro exhibit this behavior too, but they have cpuid available. */ /* * Perform the Cyrix 5/2 test. A Cyrix won't change * the flags, while other 486 chips will. */ static inline int test_cyrix_52div(void) { unsigned int test; __asm__ __volatile__( "sahf\n\t" /* clear flags (%eax = 0x0005) */ "div %b2\n\t" /* divide 5 by 2 */ "lahf" /* store flags into %ah */ : "=a" (test) : "0" (5), "q" (2) : "cc"); /* AH is 0x02 on Cyrix after the divide.. */ return (unsigned char) (test >> 8) == 0x02; } /* * Detect a NexGen CPU running without BIOS hypercode new enough * to have CPUID. (Thanks to Herbert Oppmann) */ static int deep_magic_nexgen_probe(void) { int ret; __asm__ __volatile__ ( " movw $0x5555, %%ax\n" " xorw %%dx,%%dx\n" " movw $2, %%cx\n" " divw %%cx\n" " movl $0, %%eax\n" " jnz 1f\n" " movl $1, %%eax\n" "1:\n" : "=a" (ret) : : "cx", "dx"); return ret; } static bool has_cpuid(void) { return flag_is_changeable_p(X86_EFLAGS_ID); } static bool has_mtrr(void) { return cpuid_edx(0x00000001) & (1 << 12) ? true : false; } static int build_vendor_name(char *vendor_name) { struct cpuid_result result; result = cpuid(0x00000000); unsigned int *name_as_ints = (unsigned int *)vendor_name; name_as_ints[0] = result.ebx; name_as_ints[1] = result.edx; name_as_ints[2] = result.ecx; return result.eax; } static void identify_cpu(struct cpu_device_id *cpu) { char vendor_name[16]; int i; vendor_name[0] = '\0'; /* Unset */ cpu->device = 0; /* fix gcc 4.4.4 warning */ /* Find the id and vendor_name */ if (!has_cpuid()) { /* Its a 486 if we can modify the AC flag */ if (flag_is_changeable_p(X86_EFLAGS_AC)) cpu->device = 0x00000400; /* 486 */ else cpu->device = 0x00000300; /* 386 */ if ((cpu->device == 0x00000400) && test_cyrix_52div()) { memcpy(vendor_name, "CyrixInstead", 13); /* If we ever care we can enable cpuid here */ } /* Detect NexGen with old hypercode */ else if (deep_magic_nexgen_probe()) memcpy(vendor_name, "NexGenDriven", 13); } if (has_cpuid()) { int cpuid_level; cpuid_level = build_vendor_name(vendor_name); vendor_name[12] = '\0'; /* Intel-defined flags: level 0x00000001 */ if (cpuid_level >= 0x00000001) { cpu->device = cpuid_eax(0x00000001); } else { /* Have CPUID level 0 only unheard of */ cpu->device = 0x00000400; } } cpu->vendor = X86_VENDOR_UNKNOWN; for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) { if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) { cpu->vendor = x86_vendors[i].vendor; break; } } } static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms) { c->x86 = (tfms >> 8) & 0xf; c->x86_model = (tfms >> 4) & 0xf; c->x86_mask = tfms & 0xf; if (c->x86 == 0xf) c->x86 += (tfms >> 20) & 0xff; if (c->x86 >= 0x6) c->x86_model += ((tfms >> 16) & 0xF) << 4; } int x86_cpu_init_f(void) { const u32 em_rst = ~X86_CR0_EM; const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE; /* initialize FPU, reset EM, set MP and NE */ asm ("fninit\n" \ "movl %%cr0, %%eax\n" \ "andl %0, %%eax\n" \ "orl %1, %%eax\n" \ "movl %%eax, %%cr0\n" \ : : "i" (em_rst), "i" (mp_ne_set) : "eax"); /* identify CPU via cpuid and store the decoded info into gd->arch */ if (has_cpuid()) { struct cpu_device_id cpu; struct cpuinfo_x86 c; identify_cpu(&cpu); get_fms(&c, cpu.device); gd->arch.x86 = c.x86; gd->arch.x86_vendor = cpu.vendor; gd->arch.x86_model = c.x86_model; gd->arch.x86_mask = c.x86_mask; gd->arch.x86_device = cpu.device; gd->arch.has_mtrr = has_mtrr(); } return 0; } void x86_enable_caches(void) { unsigned long cr0; cr0 = read_cr0(); cr0 &= ~(X86_CR0_NW | X86_CR0_CD); write_cr0(cr0); wbinvd(); } void enable_caches(void) __attribute__((weak, alias("x86_enable_caches"))); void x86_disable_caches(void) { unsigned long cr0; cr0 = read_cr0(); cr0 |= X86_CR0_NW | X86_CR0_CD; wbinvd(); write_cr0(cr0); wbinvd(); } void disable_caches(void) __attribute__((weak, alias("x86_disable_caches"))); int x86_init_cache(void) { enable_caches(); return 0; } int init_cache(void) __attribute__((weak, alias("x86_init_cache"))); int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { printf("resetting ...\n"); /* wait 50 ms */ udelay(50000); disable_interrupts(); reset_cpu(0); /*NOTREACHED*/ return 0; } void flush_cache(unsigned long dummy1, unsigned long dummy2) { asm("wbinvd\n"); } __weak void reset_cpu(ulong addr) { /* Do a hard reset through the chipset's reset control register */ outb(SYS_RST | RST_CPU, PORT_RESET); for (;;) cpu_hlt(); } void x86_full_reset(void) { outb(FULL_RST | SYS_RST | RST_CPU, PORT_RESET); } int dcache_status(void) { return !(read_cr0() & 0x40000000); } /* Define these functions to allow ehch-hcd to function */ void flush_dcache_range(unsigned long start, unsigned long stop) { } void invalidate_dcache_range(unsigned long start, unsigned long stop) { } void dcache_enable(void) { enable_caches(); } void dcache_disable(void) { disable_caches(); } void icache_enable(void) { } void icache_disable(void) { } int icache_status(void) { return 1; } void cpu_enable_paging_pae(ulong cr3) { __asm__ __volatile__( /* Load the page table address */ "movl %0, %%cr3\n" /* Enable pae */ "movl %%cr4, %%eax\n" "orl $0x00000020, %%eax\n" "movl %%eax, %%cr4\n" /* Enable paging */ "movl %%cr0, %%eax\n" "orl $0x80000000, %%eax\n" "movl %%eax, %%cr0\n" : : "r" (cr3) : "eax"); } void cpu_disable_paging_pae(void) { /* Turn off paging */ __asm__ __volatile__ ( /* Disable paging */ "movl %%cr0, %%eax\n" "andl $0x7fffffff, %%eax\n" "movl %%eax, %%cr0\n" /* Disable pae */ "movl %%cr4, %%eax\n" "andl $0xffffffdf, %%eax\n" "movl %%eax, %%cr4\n" : : : "eax"); } static bool can_detect_long_mode(void) { return cpuid_eax(0x80000000) > 0x80000000UL; } static bool has_long_mode(void) { return cpuid_edx(0x80000001) & (1 << 29) ? true : false; } int cpu_has_64bit(void) { return has_cpuid() && can_detect_long_mode() && has_long_mode(); } const char *cpu_vendor_name(int vendor) { const char *name; name = ""; if ((vendor < (ARRAY_SIZE(x86_vendor_name))) && (x86_vendor_name[vendor] != 0)) name = x86_vendor_name[vendor]; return name; } char *cpu_get_name(char *name) { unsigned int *name_as_ints = (unsigned int *)name; struct cpuid_result regs; char *ptr; int i; /* This bit adds up to 48 bytes */ for (i = 0; i < 3; i++) { regs = cpuid(0x80000002 + i); name_as_ints[i * 4 + 0] = regs.eax; name_as_ints[i * 4 + 1] = regs.ebx; name_as_ints[i * 4 + 2] = regs.ecx; name_as_ints[i * 4 + 3] = regs.edx; } name[CPU_MAX_NAME_LEN - 1] = '\0'; /* Skip leading spaces. */ ptr = name; while (*ptr == ' ') ptr++; return ptr; } int x86_cpu_get_desc(struct udevice *dev, char *buf, int size) { if (size < CPU_MAX_NAME_LEN) return -ENOSPC; cpu_get_name(buf); return 0; } int default_print_cpuinfo(void) { printf("CPU: %s, vendor %s, device %xh\n", cpu_has_64bit() ? "x86_64" : "x86", cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device); return 0; } #define PAGETABLE_SIZE (6 * 4096) /** * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode * * @pgtable: Pointer to a 24iKB block of memory */ static void build_pagetable(uint32_t *pgtable) { uint i; memset(pgtable, '\0', PAGETABLE_SIZE); /* Level 4 needs a single entry */ pgtable[0] = (uint32_t)&pgtable[1024] + 7; /* Level 3 has one 64-bit entry for each GiB of memory */ for (i = 0; i < 4; i++) { pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] + 0x1000 * i + 7; } /* Level 2 has 2048 64-bit entries, each repesenting 2MiB */ for (i = 0; i < 2048; i++) pgtable[2048 + i * 2] = 0x183 + (i << 21UL); } int cpu_jump_to_64bit(ulong setup_base, ulong target) { uint32_t *pgtable; pgtable = memalign(4096, PAGETABLE_SIZE); if (!pgtable) return -ENOMEM; build_pagetable(pgtable); cpu_call64((ulong)pgtable, setup_base, target); free(pgtable); return -EFAULT; } void show_boot_progress(int val) { #if MIN_PORT80_KCLOCKS_DELAY /* * Scale the time counter reading to avoid using 64 bit arithmetics. * Can't use get_timer() here becuase it could be not yet * initialized or even implemented. */ if (!gd->arch.tsc_prev) { gd->arch.tsc_base_kclocks = rdtsc() / 1000; gd->arch.tsc_prev = 0; } else { uint32_t now; do { now = rdtsc() / 1000 - gd->arch.tsc_base_kclocks; } while (now < (gd->arch.tsc_prev + MIN_PORT80_KCLOCKS_DELAY)); gd->arch.tsc_prev = now; } #endif outb(val, POST_PORT); } #ifndef CONFIG_SYS_COREBOOT int last_stage_init(void) { write_tables(); return 0; } #endif __weak int x86_init_cpus(void) { return 0; } int cpu_init_r(void) { return x86_init_cpus(); } static const struct cpu_ops cpu_x86_ops = { .get_desc = x86_cpu_get_desc, }; static const struct udevice_id cpu_x86_ids[] = { { .compatible = "cpu-x86" }, { } }; U_BOOT_DRIVER(cpu_x86_drv) = { .name = "cpu_x86", .id = UCLASS_CPU, .of_match = cpu_x86_ids, .ops = &cpu_x86_ops, };