/* I2cCore.c - MPC8220 PPC I2C Library */ /* Copyright 2004 Freescale Semiconductor, Inc. */ /* modification history -------------------- 01c,29jun04,tcl 1.3 removed CR. Added two bytes offset support. 01b,19jan04,tcl 1.2 removed i2cMsDelay and sysDecGet. renamed i2cMsDelay back to sysMsDelay 01a,19jan04,tcl 1.1 created and seperated from i2c.c */ /* DESCRIPTION This file contain I2C low level handling library functions */ #include #include #include #include #include #include #include #include /* BSP Includes */ #include "config.h" #include "mpc8220.h" #include "i2cCore.h" #ifdef DEBUG_I2CCORE int I2CCDbg = 0; #endif #define ABS(x) ((x < 0)? -x : x) char *I2CERR[16] = { "Transfer in Progress\n", /* 0 */ "Transfer complete\n", "Not Addressed\n", /* 2 */ "Addressed as a slave\n", "Bus is Idle\n", /* 4 */ "Bus is busy\n", "Arbitration Lost\n", /* 6 */ "Arbitration on Track\n", "Slave receive, master writing to slave\n", /* 8 */ "Slave transmit, master reading from slave\n", "Interrupt is pending\n", /* 10 */ "Interrupt complete\n", "Acknowledge received\n", /* 12 */ "No acknowledge received\n", "Unknown status\n", /* 14 */ "\n" }; /****************************************************************************** * * chk_status - Check I2C status bit * * RETURNS: OK, or ERROR if the bit encounter * */ STATUS chk_status (PSI2C pi2c, UINT8 sta_bit, UINT8 truefalse) { int i, status = 0; for (i = 0; i < I2C_POLL_COUNT; i++) { if ((pi2c->sr & sta_bit) == (truefalse ? sta_bit : 0)) return (OK); } I2CCDBG (L2, ("--- sr %x stabit %x truefalse %d\n", pi2c->sr, sta_bit, truefalse, 0, 0, 0)); if (i == I2C_POLL_COUNT) { switch (sta_bit) { case I2C_STA_CF: status = 0; break; case I2C_STA_AAS: status = 2; break; case I2C_STA_BB: status = 4; break; case I2C_STA_AL: status = 6; break; case I2C_STA_SRW: status = 8; break; case I2C_STA_IF: status = 10; break; case I2C_STA_RXAK: status = 12; break; default: status = 14; break; } if (!truefalse) status++; I2CCDBG (NO, ("--- status %d\n", status, 0, 0, 0, 0, 0)); I2CCDBG (NO, (I2CERR[status], 0, 0, 0, 0, 0, 0)); } return (ERROR); } /****************************************************************************** * * I2C Enable - Enable the I2C Controller * */ STATUS i2c_enable (SI2C * pi2c, PI2CSET pi2cSet) { int fdr = pi2cSet->bit_rate; UINT8 adr = pi2cSet->i2c_adr; I2CCDBG (L2, ("i2c_enable fdr %d adr %x\n", fdr, adr, 0, 0, 0, 0)); i2c_clear (pi2c); /* Clear FDR, ADR, SR and CR reg */ SetI2cFDR (pi2c, fdr); /* Frequency */ pi2c->adr = adr; pi2c->cr = I2C_CTL_EN; /* Set Enable */ /* The I2C bus should be in Idle state. If the bus is busy, clear the STA bit in control register */ if (chk_status (pi2c, I2C_STA_BB, 0) != OK) { if ((pi2c->cr & I2C_CTL_STA) == I2C_CTL_STA) pi2c->cr &= ~I2C_CTL_STA; /* Check again if it is still busy, return error if found */ if (chk_status (pi2c, I2C_STA_BB, 1) == OK) return ERROR; } return (OK); } /****************************************************************************** * * I2C Disable - Disable the I2C Controller * */ STATUS i2c_disable (PSI2C pi2c) { i2c_clear (pi2c); pi2c->cr &= I2C_CTL_EN; /* Disable I2c */ if ((pi2c->cr & I2C_CTL_STA) == I2C_CTL_STA) pi2c->cr &= ~I2C_CTL_STA; if (chk_status (pi2c, I2C_STA_BB, 0) != OK) return ERROR; return (OK); } /****************************************************************************** * * I2C Clear - Clear the I2C Controller * */ STATUS i2c_clear (PSI2C pi2c) { pi2c->adr = 0; pi2c->fdr = 0; pi2c->cr = 0; pi2c->sr = 0; return (OK); } STATUS i2c_start (PSI2C pi2c, PI2CSET pi2cSet) { #ifdef TWOBYTES UINT16 ByteOffset = pi2cSet->str_adr; #else UINT8 ByteOffset = pi2cSet->str_adr; #endif #if 1 UINT8 tmp = 0; #endif UINT8 Addr = pi2cSet->slv_adr; pi2c->cr |= I2C_CTL_STA; /* Generate start signal */ if (chk_status (pi2c, I2C_STA_BB, 1) != OK) return ERROR; /* Write slave address */ if (i2c_writebyte (pi2c, &Addr) != OK) { i2c_stop (pi2c); /* Disable I2c */ return ERROR; } #ifdef TWOBYTES # if 0 /* Issue the offset to start */ if (i2c_write2byte (pi2c, &ByteOffset) != OK) { i2c_stop (pi2c); /* Disable I2c */ return ERROR; } #endif tmp = (ByteOffset >> 8) & 0xff; if (i2c_writebyte (pi2c, &tmp) != OK) { i2c_stop (pi2c); /* Disable I2c */ return ERROR; } tmp = ByteOffset & 0xff; if (i2c_writebyte (pi2c, &tmp) != OK) { i2c_stop (pi2c); /* Disable I2c */ return ERROR; } #else if (i2c_writebyte (pi2c, &ByteOffset) != OK) { i2c_stop (pi2c); /* Disable I2c */ return ERROR; } #endif return (OK); } STATUS i2c_stop (PSI2C pi2c) { pi2c->cr &= ~I2C_CTL_STA; /* Generate stop signal */ if (chk_status (pi2c, I2C_STA_BB, 0) != OK) return ERROR; return (OK); } /****************************************************************************** * * Read Len bytes to the location pointed to by *Data from the device * with address Addr. */ int i2c_readblock (SI2C * pi2c, PI2CSET pi2cSet, UINT8 * Data) { int i = 0; UINT8 Tmp; /* UINT8 ByteOffset = pi2cSet->str_adr; not used? */ UINT8 Addr = pi2cSet->slv_adr; int Length = pi2cSet->xfer_size; I2CCDBG (L1, ("i2c_readblock addr %x data 0x%08x len %d offset %d\n", Addr, (int) Data, Length, ByteOffset, 0, 0)); if (pi2c->sr & I2C_STA_AL) { /* Check if Arbitration lost */ I2CCDBG (FN, ("Arbitration lost\n", 0, 0, 0, 0, 0, 0)); pi2c->sr &= ~I2C_STA_AL; /* Clear Arbitration status bit */ return ERROR; } pi2c->cr |= I2C_CTL_TX; /* Enable the I2c for TX, Ack */ if (i2c_start (pi2c, pi2cSet) == ERROR) return ERROR; pi2c->cr |= I2C_CTL_RSTA; /* Repeat Start */ Tmp = Addr | 1; if (i2c_writebyte (pi2c, &Tmp) != OK) { i2c_stop (pi2c); /* Disable I2c */ return ERROR; } if (((pi2c->sr & 0x07) == 0x07) || (pi2c->sr & 0x01)) return ERROR; pi2c->cr &= ~I2C_CTL_TX; /* Set receive mode */ if (((pi2c->sr & 0x07) == 0x07) || (pi2c->sr & 0x01)) return ERROR; /* Dummy Read */ if (i2c_readbyte (pi2c, &Tmp, &i) != OK) { i2c_stop (pi2c); /* Disable I2c */ return ERROR; } i = 0; while (Length) { if (Length == 2) pi2c->cr |= I2C_CTL_TXAK; if (Length == 1) pi2c->cr &= ~I2C_CTL_STA; if (i2c_readbyte (pi2c, Data, &Length) != OK) { return i2c_stop (pi2c); } i++; Length--; Data++; } if (i2c_stop (pi2c) == ERROR) return ERROR; return i; } STATUS i2c_writeblock (SI2C * pi2c, PI2CSET pi2cSet, UINT8 * Data) { int Length = pi2cSet->xfer_size; #ifdef TWOBYTES UINT16 ByteOffset = pi2cSet->str_adr; #else UINT8 ByteOffset = pi2cSet->str_adr; #endif int j, k; I2CCDBG (L2, ("i2c_writeblock\n", 0, 0, 0, 0, 0, 0)); if (pi2c->sr & I2C_STA_AL) { /* Check if arbitration lost */ I2CCDBG (L2, ("Arbitration lost\n", 0, 0, 0, 0, 0, 0)); pi2c->sr &= ~I2C_STA_AL; /* Clear the condition */ return ERROR; } pi2c->cr |= I2C_CTL_TX; /* Enable the I2c for TX, Ack */ /* Do the not even offset first */ if ((ByteOffset % 8) != 0) { int remain; if (Length > 8) { remain = 8 - (ByteOffset % 8); Length -= remain; pi2cSet->str_adr = ByteOffset; if (i2c_start (pi2c, pi2cSet) == ERROR) return ERROR; for (j = ByteOffset; j < remain; j++) { if (i2c_writebyte (pi2c, Data++) != OK) return ERROR; } if (i2c_stop (pi2c) == ERROR) return ERROR; sysMsDelay (32); /* Update the new ByteOffset */ ByteOffset += remain; } } for (j = ByteOffset, k = 0; j < (Length + ByteOffset); j++) { if ((j % 8) == 0) { pi2cSet->str_adr = j; if (i2c_start (pi2c, pi2cSet) == ERROR) return ERROR; } k++; if (i2c_writebyte (pi2c, Data++) != OK) return ERROR; if ((j == (Length - 1)) || ((k % 8) == 0)) { if (i2c_stop (pi2c) == ERROR) return ERROR; sysMsDelay (50); } } return k; } STATUS i2c_readbyte (SI2C * pi2c, UINT8 * readb, int *index) { pi2c->sr &= ~I2C_STA_IF; /* Clear Interrupt Bit */ *readb = pi2c->dr; /* Read a byte */ /* Set I2C_CTRL_TXAK will cause Transfer pending and set I2C_CTRL_STA will cause Interrupt pending */ if (*index != 2) { if (chk_status (pi2c, I2C_STA_CF, 1) != OK) /* Transfer not complete? */ return ERROR; } if (*index != 1) { if (chk_status (pi2c, I2C_STA_IF, 1) != OK) return ERROR; } return (OK); } STATUS i2c_writebyte (SI2C * pi2c, UINT8 * writeb) { pi2c->sr &= ~I2C_STA_IF; /* Clear Interrupt */ pi2c->dr = *writeb; /* Write a byte */ if (chk_status (pi2c, I2C_STA_CF, 1) != OK) /* Transfer not complete? */ return ERROR; if (chk_status (pi2c, I2C_STA_IF, 1) != OK) return ERROR; return OK; } STATUS i2c_write2byte (SI2C * pi2c, UINT16 * writeb) { UINT8 data; data = (UINT8) ((*writeb >> 8) & 0xff); if (i2c_writebyte (pi2c, &data) != OK) return ERROR; data = (UINT8) (*writeb & 0xff); if (i2c_writebyte (pi2c, &data) != OK) return ERROR; return OK; } /* FDR table base on 33MHz - more detail please refer to Odini2c_dividers.xls FDR FDR scl sda scl2tap2 510 432 tap tap tap tap scl_per sda_hold I2C Freq 0 1 2 3 4 5 000 000 9 3 4 1 28 Clocks 9 Clocks 1190 KHz 0 0 0 0 0 0 000 001 9 3 4 2 44 Clocks 11 Clocks 758 KHz 0 0 1 0 0 0 000 010 9 3 6 4 80 Clocks 17 Clocks 417 KHz 0 0 0 1 0 0 000 011 9 3 6 8 144 Clocks 25 Clocks 231 KHz 0 0 1 1 0 0 000 100 9 3 14 16 288 Clocks 49 Clocks 116 KHz 0 0 0 0 1 0 000 101 9 3 30 32 576 Clocks 97 Clocks 58 KHz 0 0 1 0 1 0 000 110 9 3 62 64 1152 Clocks 193 Clocks 29 KHz 0 0 0 1 1 0 000 111 9 3 126 128 2304 Clocks 385 Clocks 14 KHz 0 0 1 1 1 0 001 000 10 3 4 1 30 Clocks 9 Clocks 1111 KHz1 0 0 0 0 0 001 001 10 3 4 2 48 Clocks 11 Clocks 694 KHz 1 0 1 0 0 0 001 010 10 3 6 4 88 Clocks 17 Clocks 379 KHz 1 0 0 1 0 0 001 011 10 3 6 8 160 Clocks 25 Clocks 208 KHz 1 0 1 1 0 0 001 100 10 3 14 16 320 Clocks 49 Clocks 104 KHz 1 0 0 0 1 0 001 101 10 3 30 32 640 Clocks 97 Clocks 52 KHz 1 0 1 0 1 0 001 110 10 3 62 64 1280 Clocks 193 Clocks 26 KHz 1 0 0 1 1 0 001 111 10 3 126 128 2560 Clocks 385 Clocks 13 KHz 1 0 1 1 1 0 010 000 12 4 4 1 34 Clocks 10 Clocks 980 KHz 0 1 0 0 0 0 010 001 12 4 4 2 56 Clocks 13 Clocks 595 KHz 0 1 1 0 0 0 010 010 12 4 6 4 104 Clocks 21 Clocks 321 KHz 0 1 0 1 0 0 010 011 12 4 6 8 192 Clocks 33 Clocks 174 KHz 0 1 1 1 0 0 010 100 12 4 14 16 384 Clocks 65 Clocks 87 KHz 0 1 0 0 1 0 010 101 12 4 30 32 768 Clocks 129 Clocks 43 KHz 0 1 1 0 1 0 010 110 12 4 62 64 1536 Clocks 257 Clocks 22 KHz 0 1 0 1 1 0 010 111 12 4 126 128 3072 Clocks 513 Clocks 11 KHz 0 1 1 1 1 0 011 000 15 4 4 1 40 Clocks 10 Clocks 833 KHz 1 1 0 0 0 0 011 001 15 4 4 2 68 Clocks 13 Clocks 490 KHz 1 1 1 0 0 0 011 010 15 4 6 4 128 Clocks 21 Clocks 260 KHz 1 1 0 1 0 0 011 011 15 4 6 8 240 Clocks 33 Clocks 139 KHz 1 1 1 1 0 0 011 100 15 4 14 16 480 Clocks 65 Clocks 69 KHz 1 1 0 0 1 0 011 101 15 4 30 32 960 Clocks 129 Clocks 35 KHz 1 1 1 0 1 0 011 110 15 4 62 64 1920 Clocks 257 Clocks 17 KHz 1 1 0 1 1 0 011 111 15 4 126 128 3840 Clocks 513 Clocks 9 KHz 1 1 1 1 1 0 100 000 5 1 4 1 20 Clocks 7 Clocks 1667 KHz 0 0 0 0 0 1 100 001 5 1 4 2 28 Clocks 7 Clocks 1190 KHz 0 0 1 0 0 1 100 010 5 1 6 4 48 Clocks 9 Clocks 694 KHz 0 0 0 1 0 1 100 011 5 1 6 8 80 Clocks 9 Clocks 417 KHz 0 0 1 1 0 1 100 100 5 1 14 16 160 Clocks 17 Clocks 208 KHz 0 0 0 0 1 1 100 101 5 1 30 32 320 Clocks 33 Clocks 104 KHz 0 0 1 0 1 1 100 110 5 1 62 64 640 Clocks 65 Clocks 52 KHz 0 0 0 1 1 1 100 111 5 1 126 128 1280 Clocks 129 Clocks 26 KHz 0 0 1 1 1 1 101 000 6 1 4 1 22 Clocks 7 Clocks 1515 KHz 1 0 0 0 0 1 101 001 6 1 4 2 32 Clocks 7 Clocks 1042 KHz 1 0 1 0 0 1 101 010 6 1 6 4 56 Clocks 9 Clocks 595 KHz 1 0 0 1 0 1 101 011 6 1 6 8 96 Clocks 9 Clocks 347 KHz 1 0 1 1 0 1 101 100 6 1 14 16 192 Clocks 17 Clocks 174 KHz 1 0 0 0 1 1 101 101 6 1 30 32 384 Clocks 33 Clocks 87 KHz 1 0 1 0 1 1 101 110 6 1 62 64 768 Clocks 65 Clocks 43 KHz 1 0 0 1 1 1 101 111 6 1 126 128 1536 Clocks 129 Clocks 22 KHz 1 0 1 1 1 1 110 000 7 2 4 1 24 Clocks 8 Clocks 1389 KHz 0 1 0 0 0 1 110 001 7 2 4 2 36 Clocks 9 Clocks 926 KHz 0 1 1 0 0 1 110 010 7 2 6 4 64 Clocks 13 Clocks 521 KHz 0 1 0 1 0 1 110 011 7 2 6 8 112 Clocks 17 Clocks 298 KHz 0 1 1 1 0 1 110 100 7 2 14 16 224 Clocks 33 Clocks 149 KHz 0 1 0 0 1 1 110 101 7 2 30 32 448 Clocks 65 Clocks 74 KHz 0 1 1 0 1 1 110 110 7 2 62 64 896 Clocks 129 Clocks 37 KHz 0 1 0 1 1 1 110 111 7 2 126 128 1792 Clocks 257 Clocks 19 KHz 0 1 1 1 1 1 111 000 8 2 4 1 26 Clocks 8 Clocks 1282 KHz 1 1 0 0 0 1 111 001 8 2 4 2 40 Clocks 9 Clocks 833 KHz 1 1 1 0 0 1 111 010 8 2 6 4 72 Clocks 13 Clocks 463 KHz 1 1 0 1 0 1 111 011 8 2 6 8 128 Clocks 17 Clocks 260 KHz 1 1 1 1 0 1 111 100 8 2 14 16 256 Clocks 33 Clocks 130 KHz 1 1 0 0 1 1 111 101 8 2 30 32 512 Clocks 65 Clocks 65 KHz 1 1 1 0 1 1 111 110 8 2 62 64 1024 Clocks 129 Clocks 33 KHz 1 1 0 1 1 1 111 111 8 2 126 128 2048 Clocks 257 Clocks 16 KHz 1 1 1 1 1 1 */ STATUS SetI2cFDR (PSI2C pi2cRegs, int bitrate) { /* Constants */ const UINT8 div_hold[8][3] = { {9, 3}, {10, 3}, {12, 4}, {15, 4}, {5, 1}, {6, 1}, {7, 2}, {8, 2} }; const UINT8 scl_tap[8][2] = { {4, 1}, {4, 2}, {6, 4}, {6, 8}, {14, 16}, {30, 32}, {62, 64}, {126, 128} }; UINT8 mfdr_bits; int i = 0; int j = 0; int Diff, min; int WhichFreq, iRec, jRec; int SCL_Period; int SCL_Hold; int I2C_Freq; I2CCDBG (L2, ("Entering getBitRate: bitrate %d pi2cRegs 0x%08x\n", bitrate, (int) pi2cRegs, 0, 0, 0, 0)); if (bitrate < 0) { I2CCDBG (NO, ("Invalid bitrate\n", 0, 0, 0, 0, 0, 0)); return ERROR; } /* Initialize */ mfdr_bits = 0; min = 0x7fffffff; WhichFreq = iRec = jRec = 0; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { /* SCL Period = 2 * (scl2tap + [(SCL_Tap - 1) * tap2tap] + 2) * SCL Hold = scl2tap + ((SDA_Tap - 1) * tap2tap) + 3 * Bit Rate (I2C Freq) = System Freq / SCL Period */ SCL_Period = 2 * (scl_tap[i][0] + ((div_hold[j][0] - 1) * scl_tap[i][1]) + 2); /* Now get the I2C Freq */ I2C_Freq = DEV_CLOCK_FREQ / SCL_Period; /* Take equal or slower */ if (I2C_Freq > bitrate) continue; /* Take the differences */ Diff = I2C_Freq - bitrate; Diff = ABS (Diff); /* Find the closer value */ if (Diff < min) { min = Diff; WhichFreq = I2C_Freq; iRec = i; jRec = j; } I2CCDBG (L2, ("--- (%d,%d) I2C_Freq %d minDiff %d min %d\n", i, j, I2C_Freq, Diff, min, 0)); } } SCL_Period = 2 * (scl_tap[iRec][0] + ((div_hold[jRec][0] - 1) * scl_tap[iRec][1]) + 2); I2CCDBG (L2, ("\nmin %d WhichFreq %d iRec %d jRec %d\n", min, WhichFreq, iRec, jRec, 0, 0)); I2CCDBG (L2, ("--- scl2tap %d SCL_Tap %d tap2tap %d\n", scl_tap[iRec][0], div_hold[jRec][0], scl_tap[iRec][1], 0, 0, 0)); /* This may no require */ SCL_Hold = scl_tap[iRec][0] + ((div_hold[jRec][1] - 1) * scl_tap[iRec][1]) + 3; I2CCDBG (L2, ("--- SCL_Period %d SCL_Hold %d\n", SCL_Period, SCL_Hold, 0, 0, 0, 0)); I2CCDBG (L2, ("--- mfdr_bits %x\n", mfdr_bits, 0, 0, 0, 0, 0)); /* FDR 4,3,2 */ if ((iRec & 1) == 1) mfdr_bits |= 0x04; /* FDR 2 */ if ((iRec & 2) == 2) mfdr_bits |= 0x08; /* FDR 3 */ if ((iRec & 4) == 4) mfdr_bits |= 0x10; /* FDR 4 */ /* FDR 5,1,0 */ if ((jRec & 1) == 1) mfdr_bits |= 0x01; /* FDR 0 */ if ((jRec & 2) == 2) mfdr_bits |= 0x02; /* FDR 1 */ if ((jRec & 4) == 4) mfdr_bits |= 0x20; /* FDR 5 */ I2CCDBG (L2, ("--- mfdr_bits %x\n", mfdr_bits, 0, 0, 0, 0, 0)); pi2cRegs->fdr = mfdr_bits; return OK; }