/* * Copyright (c) 2010-2014, NVIDIA CORPORATION. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include "cpu.h" int get_num_cpus(void) { struct apb_misc_gp_ctlr *gp; uint rev; gp = (struct apb_misc_gp_ctlr *)NV_PA_APB_MISC_GP_BASE; rev = (readl(&gp->hidrev) & HIDREV_CHIPID_MASK) >> HIDREV_CHIPID_SHIFT; switch (rev) { case CHIPID_TEGRA20: return 2; break; case CHIPID_TEGRA30: case CHIPID_TEGRA114: default: return 4; break; } } /* * Timing tables for each SOC for all four oscillator options. */ struct clk_pll_table tegra_pll_x_table[TEGRA_SOC_CNT][CLOCK_OSC_FREQ_COUNT] = { /* * T20: 1 GHz * * Register Field Bits Width * ------------------------------ * PLLX_BASE p 22:20 3 * PLLX_BASE n 17: 8 10 * PLLX_BASE m 4: 0 5 * PLLX_MISC cpcon 11: 8 4 */ { { .n = 1000, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */ { .n = 625, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 19.2 MHz */ { .n = 1000, .m = 12, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */ { .n = 1000, .m = 26, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */ }, /* * T25: 1.2 GHz * * Register Field Bits Width * ------------------------------ * PLLX_BASE p 22:20 3 * PLLX_BASE n 17: 8 10 * PLLX_BASE m 4: 0 5 * PLLX_MISC cpcon 11: 8 4 */ { { .n = 923, .m = 10, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */ { .n = 750, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 19.2 MHz */ { .n = 600, .m = 6, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */ { .n = 600, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */ }, /* * T30: 600 MHz * * Register Field Bits Width * ------------------------------ * PLLX_BASE p 22:20 3 * PLLX_BASE n 17: 8 10 * PLLX_BASE m 4: 0 5 * PLLX_MISC cpcon 11: 8 4 */ { { .n = 600, .m = 13, .p = 0, .cpcon = 8 }, /* OSC: 13.0 MHz */ { .n = 500, .m = 16, .p = 0, .cpcon = 8 }, /* OSC: 19.2 MHz */ { .n = 600, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 12.0 MHz */ { .n = 600, .m = 26, .p = 0, .cpcon = 8 }, /* OSC: 26.0 MHz */ }, /* * T114: 700 MHz * * Register Field Bits Width * ------------------------------ * PLLX_BASE p 23:20 4 * PLLX_BASE n 15: 8 8 * PLLX_BASE m 7: 0 8 */ { { .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */ { .n = 73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */ { .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */ { .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */ }, /* * T124: 700 MHz * * Register Field Bits Width * ------------------------------ * PLLX_BASE p 23:20 4 * PLLX_BASE n 15: 8 8 * PLLX_BASE m 7: 0 8 */ { { .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */ { .n = 73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */ { .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */ { .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */ }, }; static inline void pllx_set_iddq(void) { #if defined(CONFIG_TEGRA124) struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; u32 reg; /* Disable IDDQ */ reg = readl(&clkrst->crc_pllx_misc3); reg &= ~PLLX_IDDQ_MASK; writel(reg, &clkrst->crc_pllx_misc3); udelay(2); debug("%s: IDDQ: PLLX IDDQ = 0x%08X\n", __func__, readl(&clkrst->crc_pllx_misc3)); #endif } int pllx_set_rate(struct clk_pll_simple *pll , u32 divn, u32 divm, u32 divp, u32 cpcon) { int chip = tegra_get_chip(); u32 reg; /* If PLLX is already enabled, just return */ if (readl(&pll->pll_base) & PLL_ENABLE_MASK) { debug("pllx_set_rate: PLLX already enabled, returning\n"); return 0; } debug(" pllx_set_rate entry\n"); pllx_set_iddq(); /* Set BYPASS, m, n and p to PLLX_BASE */ reg = PLL_BYPASS_MASK | (divm << PLL_DIVM_SHIFT); reg |= ((divn << PLL_DIVN_SHIFT) | (divp << PLL_DIVP_SHIFT)); writel(reg, &pll->pll_base); /* Set cpcon to PLLX_MISC */ if (chip == CHIPID_TEGRA20 || chip == CHIPID_TEGRA30) reg = (cpcon << PLL_CPCON_SHIFT); else reg = 0; /* Set dccon to PLLX_MISC if freq > 600MHz */ if (divn > 600) reg |= (1 << PLL_DCCON_SHIFT); writel(reg, &pll->pll_misc); /* Disable BYPASS */ reg = readl(&pll->pll_base); reg &= ~PLL_BYPASS_MASK; writel(reg, &pll->pll_base); debug("pllx_set_rate: base = 0x%08X\n", reg); /* Set lock_enable to PLLX_MISC */ reg = readl(&pll->pll_misc); reg |= PLL_LOCK_ENABLE_MASK; writel(reg, &pll->pll_misc); debug("pllx_set_rate: misc = 0x%08X\n", reg); /* Enable PLLX last, once it's all configured */ reg = readl(&pll->pll_base); reg |= PLL_ENABLE_MASK; writel(reg, &pll->pll_base); debug("pllx_set_rate: base final = 0x%08X\n", reg); return 0; } void init_pllx(void) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; struct clk_pll_simple *pll = &clkrst->crc_pll_simple[SIMPLE_PLLX]; int soc_type, sku_info, chip_sku; enum clock_osc_freq osc; struct clk_pll_table *sel; debug("init_pllx entry\n"); /* get SOC (chip) type */ soc_type = tegra_get_chip(); debug(" init_pllx: SoC = 0x%02X\n", soc_type); /* get SKU info */ sku_info = tegra_get_sku_info(); debug(" init_pllx: SKU info byte = 0x%02X\n", sku_info); /* get chip SKU, combo of the above info */ chip_sku = tegra_get_chip_sku(); debug(" init_pllx: Chip SKU = %d\n", chip_sku); /* get osc freq */ osc = clock_get_osc_freq(); debug(" init_pllx: osc = %d\n", osc); /* set pllx */ sel = &tegra_pll_x_table[chip_sku][osc]; pllx_set_rate(pll, sel->n, sel->m, sel->p, sel->cpcon); } void enable_cpu_clock(int enable) { struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; u32 clk; /* * NOTE: * Regardless of whether the request is to enable or disable the CPU * clock, every processor in the CPU complex except the master (CPU 0) * will have it's clock stopped because the AVP only talks to the * master. */ if (enable) { /* Initialize PLLX */ init_pllx(); /* Wait until all clocks are stable */ udelay(PLL_STABILIZATION_DELAY); writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol); writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div); } /* * Read the register containing the individual CPU clock enables and * always stop the clocks to CPUs > 0. */ clk = readl(&clkrst->crc_clk_cpu_cmplx); clk |= 1 << CPU1_CLK_STP_SHIFT; if (get_num_cpus() == 4) clk |= (1 << CPU2_CLK_STP_SHIFT) + (1 << CPU3_CLK_STP_SHIFT); /* Stop/Unstop the CPU clock */ clk &= ~CPU0_CLK_STP_MASK; clk |= !enable << CPU0_CLK_STP_SHIFT; writel(clk, &clkrst->crc_clk_cpu_cmplx); clock_enable(PERIPH_ID_CPU); } static int is_cpu_powered(void) { struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE; return (readl(&pmc->pmc_pwrgate_status) & CPU_PWRED) ? 1 : 0; } static void remove_cpu_io_clamps(void) { struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE; u32 reg; /* Remove the clamps on the CPU I/O signals */ reg = readl(&pmc->pmc_remove_clamping); reg |= CPU_CLMP; writel(reg, &pmc->pmc_remove_clamping); /* Give I/O signals time to stabilize */ udelay(IO_STABILIZATION_DELAY); } void powerup_cpu(void) { struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE; u32 reg; int timeout = IO_STABILIZATION_DELAY; if (!is_cpu_powered()) { /* Toggle the CPU power state (OFF -> ON) */ reg = readl(&pmc->pmc_pwrgate_toggle); reg &= PARTID_CP; reg |= START_CP; writel(reg, &pmc->pmc_pwrgate_toggle); /* Wait for the power to come up */ while (!is_cpu_powered()) { if (timeout-- == 0) printf("CPU failed to power up!\n"); else udelay(10); } /* * Remove the I/O clamps from CPU power partition. * Recommended only on a Warm boot, if the CPU partition gets * power gated. Shouldn't cause any harm when called after a * cold boot according to HW, probably just redundant. */ remove_cpu_io_clamps(); } } void reset_A9_cpu(int reset) { /* * NOTE: Regardless of whether the request is to hold the CPU in reset * or take it out of reset, every processor in the CPU complex * except the master (CPU 0) will be held in reset because the * AVP only talks to the master. The AVP does not know that there * are multiple processors in the CPU complex. */ int mask = crc_rst_cpu | crc_rst_de | crc_rst_debug; int num_cpus = get_num_cpus(); int cpu; debug("reset_a9_cpu entry\n"); /* Hold CPUs 1 onwards in reset, and CPU 0 if asked */ for (cpu = 1; cpu < num_cpus; cpu++) reset_cmplx_set_enable(cpu, mask, 1); reset_cmplx_set_enable(0, mask, reset); /* Enable/Disable master CPU reset */ reset_set_enable(PERIPH_ID_CPU, reset); } void clock_enable_coresight(int enable) { u32 rst, src = 2; debug("clock_enable_coresight entry\n"); clock_set_enable(PERIPH_ID_CORESIGHT, enable); reset_set_enable(PERIPH_ID_CORESIGHT, !enable); if (enable) { /* * Put CoreSight on PLLP_OUT0 and divide it down as per * PLLP base frequency based on SoC type (T20/T30+). * Clock divider request would setup CSITE clock as 144MHz * for PLLP base 216MHz and 204MHz for PLLP base 408MHz */ src = CLK_DIVIDER(NVBL_PLLP_KHZ, CSITE_KHZ); clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src); /* Unlock the CPU CoreSight interfaces */ rst = CORESIGHT_UNLOCK; writel(rst, CSITE_CPU_DBG0_LAR); writel(rst, CSITE_CPU_DBG1_LAR); if (get_num_cpus() == 4) { writel(rst, CSITE_CPU_DBG2_LAR); writel(rst, CSITE_CPU_DBG3_LAR); } } } void halt_avp(void) { for (;;) { writel(HALT_COP_EVENT_JTAG | (FLOW_MODE_STOP << 29), FLOW_CTLR_HALT_COP_EVENTS); } }