/* * (C) Copyright 2010-2014 * NVIDIA Corporation * * SPDX-License-Identifier: GPL-2.0+ */ /* Tegra AP (Application Processor) code */ #include #include #include #include #include #include #include #include #include #include int tegra_get_chip(void) { int rev; struct apb_misc_gp_ctlr *gp = (struct apb_misc_gp_ctlr *)NV_PA_APB_MISC_GP_BASE; /* * This is undocumented, Chip ID is bits 15:8 of the register * APB_MISC + 0x804, and has value 0x20 for Tegra20, 0x30 for * Tegra30, 0x35 for T114, and 0x40 for Tegra124. */ rev = (readl(&gp->hidrev) & HIDREV_CHIPID_MASK) >> HIDREV_CHIPID_SHIFT; debug("%s: CHIPID is 0x%02X\n", __func__, rev); return rev; } int tegra_get_sku_info(void) { int sku_id; struct fuse_regs *fuse = (struct fuse_regs *)NV_PA_FUSE_BASE; sku_id = readl(&fuse->sku_info) & 0xff; debug("%s: SKU info byte is 0x%02X\n", __func__, sku_id); return sku_id; } int tegra_get_chip_sku(void) { uint sku_id, chip_id; chip_id = tegra_get_chip(); sku_id = tegra_get_sku_info(); switch (chip_id) { case CHIPID_TEGRA20: switch (sku_id) { case SKU_ID_T20_7: case SKU_ID_T20: return TEGRA_SOC_T20; case SKU_ID_T25SE: case SKU_ID_AP25: case SKU_ID_T25: case SKU_ID_AP25E: case SKU_ID_T25E: return TEGRA_SOC_T25; } break; case CHIPID_TEGRA30: switch (sku_id) { case SKU_ID_T33: case SKU_ID_T30: case SKU_ID_TM30MQS_P_A3: default: return TEGRA_SOC_T30; } break; case CHIPID_TEGRA114: switch (sku_id) { case SKU_ID_T114_ENG: case SKU_ID_T114_1: default: return TEGRA_SOC_T114; } break; case CHIPID_TEGRA124: switch (sku_id) { case SKU_ID_T124_ENG: default: return TEGRA_SOC_T124; } break; } /* unknown chip/sku id */ printf("%s: ERROR: UNKNOWN CHIP/SKU ID COMBO (0x%02X/0x%02X)\n", __func__, chip_id, sku_id); return TEGRA_SOC_UNKNOWN; } static void enable_scu(void) { struct scu_ctlr *scu = (struct scu_ctlr *)NV_PA_ARM_PERIPHBASE; u32 reg; /* Only enable the SCU on T20/T25 */ if (tegra_get_chip() != CHIPID_TEGRA20) return; /* If SCU already setup/enabled, return */ if (readl(&scu->scu_ctrl) & SCU_CTRL_ENABLE) return; /* Invalidate all ways for all processors */ writel(0xFFFF, &scu->scu_inv_all); /* Enable SCU - bit 0 */ reg = readl(&scu->scu_ctrl); reg |= SCU_CTRL_ENABLE; writel(reg, &scu->scu_ctrl); } static u32 get_odmdata(void) { /* * ODMDATA is stored in the BCT in IRAM by the BootROM. * The BCT start and size are stored in the BIT in IRAM. * Read the data @ bct_start + (bct_size - 12). This works * on BCTs for currently supported SoCs, which are locked down. * If this changes in new chips, we can revisit this algorithm. */ u32 bct_start, odmdata; bct_start = readl(NV_PA_BASE_SRAM + NVBOOTINFOTABLE_BCTPTR); odmdata = readl(bct_start + BCT_ODMDATA_OFFSET); return odmdata; } static void init_pmc_scratch(void) { struct pmc_ctlr *const pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE; u32 odmdata; int i; /* SCRATCH0 is initialized by the boot ROM and shouldn't be cleared */ for (i = 0; i < 23; i++) writel(0, &pmc->pmc_scratch1+i); /* ODMDATA is for kernel use to determine RAM size, LP config, etc. */ odmdata = get_odmdata(); writel(odmdata, &pmc->pmc_scratch20); } void s_init(void) { /* Init PMC scratch memory */ init_pmc_scratch(); enable_scu(); /* init the cache */ config_cache(); /* init vpr */ config_vpr(); }