/* * Copyright (C) 2012 Altera Corporation * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; static struct pl310_regs *const pl310 = (struct pl310_regs *)CONFIG_SYS_PL310_BASE; static struct socfpga_system_manager *sysmgr_regs = (struct socfpga_system_manager *)SOCFPGA_SYSMGR_ADDRESS; static struct socfpga_reset_manager *reset_manager_base = (struct socfpga_reset_manager *)SOCFPGA_RSTMGR_ADDRESS; static struct nic301_registers *nic301_regs = (struct nic301_registers *)SOCFPGA_L3REGS_ADDRESS; static struct scu_registers *scu_regs = (struct scu_registers *)SOCFPGA_MPUSCU_ADDRESS; int dram_init(void) { gd->ram_size = get_ram_size((long *)PHYS_SDRAM_1, PHYS_SDRAM_1_SIZE); return 0; } void enable_caches(void) { #ifndef CONFIG_SYS_ICACHE_OFF icache_enable(); #endif #ifndef CONFIG_SYS_DCACHE_OFF dcache_enable(); #endif } void v7_outer_cache_enable(void) { /* Disable the L2 cache */ clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN); /* enable BRESP, instruction and data prefetch, full line of zeroes */ setbits_le32(&pl310->pl310_aux_ctrl, L310_AUX_CTRL_DATA_PREFETCH_MASK | L310_AUX_CTRL_INST_PREFETCH_MASK | L310_SHARED_ATT_OVERRIDE_ENABLE); /* Enable the L2 cache */ setbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN); } void v7_outer_cache_disable(void) { /* Disable the L2 cache */ clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN); } /* * DesignWare Ethernet initialization */ #ifdef CONFIG_ETH_DESIGNWARE static void dwmac_deassert_reset(const unsigned int of_reset_id, const u32 phymode) { u32 physhift, reset; if (of_reset_id == EMAC0_RESET) { physhift = SYSMGR_EMACGRP_CTRL_PHYSEL0_LSB; reset = SOCFPGA_RESET(EMAC0); } else if (of_reset_id == EMAC1_RESET) { physhift = SYSMGR_EMACGRP_CTRL_PHYSEL1_LSB; reset = SOCFPGA_RESET(EMAC1); } else { printf("GMAC: Invalid reset ID (%i)!\n", of_reset_id); return; } /* Clearing emac0 PHY interface select to 0 */ clrbits_le32(&sysmgr_regs->emacgrp_ctrl, SYSMGR_EMACGRP_CTRL_PHYSEL_MASK << physhift); /* configure to PHY interface select choosed */ setbits_le32(&sysmgr_regs->emacgrp_ctrl, phymode << physhift); /* Release the EMAC controller from reset */ socfpga_per_reset(reset, 0); } static u32 dwmac_phymode_to_modereg(const char *phymode, u32 *modereg) { if (!phymode) return -EINVAL; if (!strcmp(phymode, "mii") || !strcmp(phymode, "gmii")) { *modereg = SYSMGR_EMACGRP_CTRL_PHYSEL_ENUM_GMII_MII; return 0; } if (!strcmp(phymode, "rgmii")) { *modereg = SYSMGR_EMACGRP_CTRL_PHYSEL_ENUM_RGMII; return 0; } if (!strcmp(phymode, "rmii")) { *modereg = SYSMGR_EMACGRP_CTRL_PHYSEL_ENUM_RMII; return 0; } return -EINVAL; } static int socfpga_eth_reset(void) { const void *fdt = gd->fdt_blob; struct fdtdec_phandle_args args; const char *phy_mode; u32 phy_modereg; int nodes[2]; /* Max. two GMACs */ int ret, count; int i, node; /* Put both GMACs into RESET state. */ socfpga_per_reset(SOCFPGA_RESET(EMAC0), 1); socfpga_per_reset(SOCFPGA_RESET(EMAC1), 1); count = fdtdec_find_aliases_for_id(fdt, "ethernet", COMPAT_ALTERA_SOCFPGA_DWMAC, nodes, ARRAY_SIZE(nodes)); for (i = 0; i < count; i++) { node = nodes[i]; if (node <= 0) continue; ret = fdtdec_parse_phandle_with_args(fdt, node, "resets", "#reset-cells", 1, 0, &args); if (ret || (args.args_count != 1)) { debug("GMAC%i: Failed to parse DT 'resets'!\n", i); continue; } phy_mode = fdt_getprop(fdt, node, "phy-mode", NULL); ret = dwmac_phymode_to_modereg(phy_mode, &phy_modereg); if (ret) { debug("GMAC%i: Failed to parse DT 'phy-mode'!\n", i); continue; } dwmac_deassert_reset(args.args[0], phy_modereg); } return 0; } #else static int socfpga_eth_reset(void) { return 0; }; #endif struct { const char *mode; const char *name; } bsel_str[] = { { "rsvd", "Reserved", }, { "fpga", "FPGA (HPS2FPGA Bridge)", }, { "nand", "NAND Flash (1.8V)", }, { "nand", "NAND Flash (3.0V)", }, { "sd", "SD/MMC External Transceiver (1.8V)", }, { "sd", "SD/MMC Internal Transceiver (3.0V)", }, { "qspi", "QSPI Flash (1.8V)", }, { "qspi", "QSPI Flash (3.0V)", }, }; static const struct { const u16 pn; const char *name; const char *var; } const socfpga_fpga_model[] = { /* Cyclone V E */ { 0x2b15, "Cyclone V, E/A2", "cv_e_a2" }, { 0x2b05, "Cyclone V, E/A4", "cv_e_a4" }, { 0x2b22, "Cyclone V, E/A5", "cv_e_a5" }, { 0x2b13, "Cyclone V, E/A7", "cv_e_a7" }, { 0x2b14, "Cyclone V, E/A9", "cv_e_a9" }, /* Cyclone V GX/GT */ { 0x2b01, "Cyclone V, GX/C3", "cv_gx_c3" }, { 0x2b12, "Cyclone V, GX/C4", "cv_gx_c4" }, { 0x2b02, "Cyclone V, GX/C5 or GT/D5", "cv_gx_c5" }, { 0x2b03, "Cyclone V, GX/C7 or GT/D7", "cv_gx_c7" }, { 0x2b04, "Cyclone V, GX/C9 or GT/D9", "cv_gx_c9" }, /* Cyclone V SE/SX/ST */ { 0x2d11, "Cyclone V, SE/A2 or SX/C2", "cv_se_a2" }, { 0x2d01, "Cyclone V, SE/A4 or SX/C4", "cv_se_a4" }, { 0x2d12, "Cyclone V, SE/A5 or SX/C5 or ST/D5", "cv_se_a5" }, { 0x2d02, "Cyclone V, SE/A6 or SX/C6 or ST/D6", "cv_se_a6" }, /* Arria V */ { 0x2d03, "Arria V, D5", "av_d5" }, }; static int socfpga_fpga_id(const bool print_id) { const u32 altera_mi = 0x6e; const u32 id = scan_mgr_get_fpga_id(); const u32 lsb = id & 0x00000001; const u32 mi = (id >> 1) & 0x000007ff; const u32 pn = (id >> 12) & 0x0000ffff; const u32 version = (id >> 28) & 0x0000000f; int i; if ((mi != altera_mi) || (lsb != 1)) { printf("FPGA: Not Altera chip ID\n"); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(socfpga_fpga_model); i++) if (pn == socfpga_fpga_model[i].pn) break; if (i == ARRAY_SIZE(socfpga_fpga_model)) { printf("FPGA: Unknown Altera chip, ID 0x%08x\n", id); return -EINVAL; } if (print_id) printf("FPGA: Altera %s, version 0x%01x\n", socfpga_fpga_model[i].name, version); return i; } /* * Print CPU information */ #if defined(CONFIG_DISPLAY_CPUINFO) int print_cpuinfo(void) { const u32 bsel = readl(&sysmgr_regs->bootinfo) & 0x7; puts("CPU: Altera SoCFPGA Platform\n"); socfpga_fpga_id(1); printf("BOOT: %s\n", bsel_str[bsel].name); return 0; } #endif #ifdef CONFIG_ARCH_MISC_INIT int arch_misc_init(void) { const u32 bsel = readl(&sysmgr_regs->bootinfo) & 0x7; const int fpga_id = socfpga_fpga_id(0); setenv("bootmode", bsel_str[bsel].mode); if (fpga_id >= 0) setenv("fpgatype", socfpga_fpga_model[fpga_id].var); return socfpga_eth_reset(); } #endif #if defined(CONFIG_SYS_CONSOLE_IS_IN_ENV) && \ defined(CONFIG_SYS_CONSOLE_OVERWRITE_ROUTINE) int overwrite_console(void) { return 0; } #endif #ifdef CONFIG_FPGA /* * FPGA programming support for SoC FPGA Cyclone V */ static Altera_desc altera_fpga[] = { { /* Family */ Altera_SoCFPGA, /* Interface type */ fast_passive_parallel, /* No limitation as additional data will be ignored */ -1, /* No device function table */ NULL, /* Base interface address specified in driver */ NULL, /* No cookie implementation */ 0 }, }; /* add device descriptor to FPGA device table */ static void socfpga_fpga_add(void) { int i; fpga_init(); for (i = 0; i < ARRAY_SIZE(altera_fpga); i++) fpga_add(fpga_altera, &altera_fpga[i]); } #else static inline void socfpga_fpga_add(void) {} #endif int arch_cpu_init(void) { #ifdef CONFIG_HW_WATCHDOG /* * In case the watchdog is enabled, make sure to (re-)configure it * so that the defined timeout is valid. Otherwise the SPL (Perloader) * timeout value is still active which might too short for Linux * booting. */ hw_watchdog_init(); #else /* * If the HW watchdog is NOT enabled, make sure it is not running, * for example because it was enabled in the preloader. This might * trigger a watchdog-triggered reboot of Linux kernel later. * Toggle watchdog reset, so watchdog in not running state. */ socfpga_per_reset(SOCFPGA_RESET(L4WD0), 1); socfpga_per_reset(SOCFPGA_RESET(L4WD0), 0); #endif return 0; } /* * Convert all NIC-301 AMBA slaves from secure to non-secure */ static void socfpga_nic301_slave_ns(void) { writel(0x1, &nic301_regs->lwhps2fpgaregs); writel(0x1, &nic301_regs->hps2fpgaregs); writel(0x1, &nic301_regs->acp); writel(0x1, &nic301_regs->rom); writel(0x1, &nic301_regs->ocram); writel(0x1, &nic301_regs->sdrdata); } static uint32_t iswgrp_handoff[8]; int arch_early_init_r(void) { int i; /* * Write magic value into magic register to unlock support for * issuing warm reset. The ancient kernel code expects this * value to be written into the register by the bootloader, so * to support that old code, we write it here instead of in the * reset_cpu() function just before reseting the CPU. */ writel(0xae9efebc, &sysmgr_regs->romcodegrp_warmramgrp_enable); for (i = 0; i < 8; i++) /* Cache initial SW setting regs */ iswgrp_handoff[i] = readl(&sysmgr_regs->iswgrp_handoff[i]); socfpga_bridges_reset(1); socfpga_nic301_slave_ns(); /* * Private components security: * U-Boot : configure private timer, global timer and cpu component * access as non secure for kernel stage (as required by Linux) */ setbits_le32(&scu_regs->sacr, 0xfff); /* Configure the L2 controller to make SDRAM start at 0 */ #ifdef CONFIG_SOCFPGA_VIRTUAL_TARGET writel(0x2, &nic301_regs->remap); #else writel(0x1, &nic301_regs->remap); /* remap.mpuzero */ writel(0x1, &pl310->pl310_addr_filter_start); #endif /* Add device descriptor to FPGA device table */ socfpga_fpga_add(); #ifdef CONFIG_DESIGNWARE_SPI /* Get Designware SPI controller out of reset */ socfpga_per_reset(SOCFPGA_RESET(SPIM0), 0); socfpga_per_reset(SOCFPGA_RESET(SPIM1), 0); #endif #ifdef CONFIG_NAND_DENALI socfpga_per_reset(SOCFPGA_RESET(NAND), 0); #endif return 0; } static void socfpga_sdram_apply_static_cfg(void) { const uint32_t staticcfg = SOCFPGA_SDR_ADDRESS + 0x505c; const uint32_t applymask = 0x8; uint32_t val = readl(staticcfg) | applymask; /* * SDRAM staticcfg register specific: * When applying the register setting, the CPU must not access * SDRAM. Luckily for us, we can abuse i-cache here to help us * circumvent the SDRAM access issue. The idea is to make sure * that the code is in one full i-cache line by branching past * it and back. Once it is in the i-cache, we execute the core * of the code and apply the register settings. * * The code below uses 7 instructions, while the Cortex-A9 has * 32-byte cachelines, thus the limit is 8 instructions total. */ asm volatile( ".align 5 \n" " b 2f \n" "1: str %0, [%1] \n" " dsb \n" " isb \n" " b 3f \n" "2: b 1b \n" "3: nop \n" : : "r"(val), "r"(staticcfg) : "memory", "cc"); } int do_bridge(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { if (argc != 2) return CMD_RET_USAGE; argv++; switch (*argv[0]) { case 'e': /* Enable */ writel(iswgrp_handoff[2], &sysmgr_regs->fpgaintfgrp_module); socfpga_sdram_apply_static_cfg(); writel(iswgrp_handoff[3], SOCFPGA_SDR_ADDRESS + 0x5080); writel(iswgrp_handoff[0], &reset_manager_base->brg_mod_reset); writel(iswgrp_handoff[1], &nic301_regs->remap); break; case 'd': /* Disable */ writel(0, &sysmgr_regs->fpgaintfgrp_module); writel(0, SOCFPGA_SDR_ADDRESS + 0x5080); socfpga_sdram_apply_static_cfg(); writel(0, &reset_manager_base->brg_mod_reset); writel(1, &nic301_regs->remap); break; default: return CMD_RET_USAGE; } return 0; } U_BOOT_CMD( bridge, 2, 1, do_bridge, "SoCFPGA HPS FPGA bridge control", "enable - Enable HPS-to-FPGA, FPGA-to-HPS, LWHPS-to-FPGA bridges\n" "bridge disable - Enable HPS-to-FPGA, FPGA-to-HPS, LWHPS-to-FPGA bridges\n" "" );