/* * Keystone2: DDR3 initialization * * (C) Copyright 2012-2014 * Texas Instruments Incorporated, * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #define DDR3_EDMA_BLK_SIZE_SHIFT 10 #define DDR3_EDMA_BLK_SIZE (1 << DDR3_EDMA_BLK_SIZE_SHIFT) #define DDR3_EDMA_BCNT 0x8000 #define DDR3_EDMA_CCNT 1 #define DDR3_EDMA_XF_SIZE (DDR3_EDMA_BLK_SIZE * DDR3_EDMA_BCNT) #define DDR3_EDMA_SLOT_NUM 1 void ddr3_init_ddrphy(u32 base, struct ddr3_phy_config *phy_cfg) { unsigned int tmp; while ((__raw_readl(base + KS2_DDRPHY_PGSR0_OFFSET) & 0x00000001) != 0x00000001) ; __raw_writel(phy_cfg->pllcr, base + KS2_DDRPHY_PLLCR_OFFSET); tmp = __raw_readl(base + KS2_DDRPHY_PGCR1_OFFSET); tmp &= ~(phy_cfg->pgcr1_mask); tmp |= phy_cfg->pgcr1_val; __raw_writel(tmp, base + KS2_DDRPHY_PGCR1_OFFSET); __raw_writel(phy_cfg->ptr0, base + KS2_DDRPHY_PTR0_OFFSET); __raw_writel(phy_cfg->ptr1, base + KS2_DDRPHY_PTR1_OFFSET); __raw_writel(phy_cfg->ptr3, base + KS2_DDRPHY_PTR3_OFFSET); __raw_writel(phy_cfg->ptr4, base + KS2_DDRPHY_PTR4_OFFSET); tmp = __raw_readl(base + KS2_DDRPHY_DCR_OFFSET); tmp &= ~(phy_cfg->dcr_mask); tmp |= phy_cfg->dcr_val; __raw_writel(tmp, base + KS2_DDRPHY_DCR_OFFSET); __raw_writel(phy_cfg->dtpr0, base + KS2_DDRPHY_DTPR0_OFFSET); __raw_writel(phy_cfg->dtpr1, base + KS2_DDRPHY_DTPR1_OFFSET); __raw_writel(phy_cfg->dtpr2, base + KS2_DDRPHY_DTPR2_OFFSET); __raw_writel(phy_cfg->mr0, base + KS2_DDRPHY_MR0_OFFSET); __raw_writel(phy_cfg->mr1, base + KS2_DDRPHY_MR1_OFFSET); __raw_writel(phy_cfg->mr2, base + KS2_DDRPHY_MR2_OFFSET); __raw_writel(phy_cfg->dtcr, base + KS2_DDRPHY_DTCR_OFFSET); __raw_writel(phy_cfg->pgcr2, base + KS2_DDRPHY_PGCR2_OFFSET); __raw_writel(phy_cfg->zq0cr1, base + KS2_DDRPHY_ZQ0CR1_OFFSET); __raw_writel(phy_cfg->zq1cr1, base + KS2_DDRPHY_ZQ1CR1_OFFSET); __raw_writel(phy_cfg->zq2cr1, base + KS2_DDRPHY_ZQ2CR1_OFFSET); __raw_writel(phy_cfg->pir_v1, base + KS2_DDRPHY_PIR_OFFSET); while ((__raw_readl(base + KS2_DDRPHY_PGSR0_OFFSET) & 0x1) != 0x1) ; __raw_writel(phy_cfg->pir_v2, base + KS2_DDRPHY_PIR_OFFSET); while ((__raw_readl(base + KS2_DDRPHY_PGSR0_OFFSET) & 0x1) != 0x1) ; } void ddr3_init_ddremif(u32 base, struct ddr3_emif_config *emif_cfg) { __raw_writel(emif_cfg->sdcfg, base + KS2_DDR3_SDCFG_OFFSET); __raw_writel(emif_cfg->sdtim1, base + KS2_DDR3_SDTIM1_OFFSET); __raw_writel(emif_cfg->sdtim2, base + KS2_DDR3_SDTIM2_OFFSET); __raw_writel(emif_cfg->sdtim3, base + KS2_DDR3_SDTIM3_OFFSET); __raw_writel(emif_cfg->sdtim4, base + KS2_DDR3_SDTIM4_OFFSET); __raw_writel(emif_cfg->zqcfg, base + KS2_DDR3_ZQCFG_OFFSET); __raw_writel(emif_cfg->sdrfc, base + KS2_DDR3_SDRFC_OFFSET); } int ddr3_ecc_support_rmw(u32 base) { u32 value = __raw_readl(base + KS2_DDR3_MIDR_OFFSET); /* Check the DDR3 controller ID reg if the controllers supports ECC RMW or not */ if (value == 0x40461C02) return 1; return 0; } static void ddr3_ecc_config(u32 base, u32 value) { u32 data; __raw_writel(value, base + KS2_DDR3_ECC_CTRL_OFFSET); udelay(100000); /* delay required to synchronize across clock domains */ if (value & KS2_DDR3_ECC_EN) { /* Clear the 1-bit error count */ data = __raw_readl(base + KS2_DDR3_ONE_BIT_ECC_ERR_CNT_OFFSET); __raw_writel(data, base + KS2_DDR3_ONE_BIT_ECC_ERR_CNT_OFFSET); /* enable the ECC interrupt */ __raw_writel(KS2_DDR3_1B_ECC_ERR_SYS | KS2_DDR3_2B_ECC_ERR_SYS | KS2_DDR3_WR_ECC_ERR_SYS, base + KS2_DDR3_ECC_INT_ENABLE_SET_SYS_OFFSET); /* Clear the ECC error interrupt status */ __raw_writel(KS2_DDR3_1B_ECC_ERR_SYS | KS2_DDR3_2B_ECC_ERR_SYS | KS2_DDR3_WR_ECC_ERR_SYS, base + KS2_DDR3_ECC_INT_STATUS_OFFSET); } } static void ddr3_reset_data(u32 base, u32 ddr3_size) { u32 mpax[2]; u32 seg_num; u32 seg, blks, dst, edma_blks; struct edma3_slot_config slot; struct edma3_channel_config edma_channel; u32 edma_src[DDR3_EDMA_BLK_SIZE/4] __aligned(16) = {0, }; /* Setup an edma to copy the 1k block to the entire DDR */ puts("\nClear entire DDR3 memory to enable ECC\n"); /* save the SES MPAX regs */ msmc_get_ses_mpax(8, 0, mpax); /* setup edma slot 1 configuration */ slot.opt = EDMA3_SLOPT_TRANS_COMP_INT_ENB | EDMA3_SLOPT_COMP_CODE(0) | EDMA3_SLOPT_STATIC | EDMA3_SLOPT_AB_SYNC; slot.bcnt = DDR3_EDMA_BCNT; slot.acnt = DDR3_EDMA_BLK_SIZE; slot.ccnt = DDR3_EDMA_CCNT; slot.src_bidx = 0; slot.dst_bidx = DDR3_EDMA_BLK_SIZE; slot.src_cidx = 0; slot.dst_cidx = 0; slot.link = EDMA3_PARSET_NULL_LINK; slot.bcntrld = 0; edma3_slot_configure(KS2_EDMA0_BASE, DDR3_EDMA_SLOT_NUM, &slot); /* configure quik edma channel */ edma_channel.slot = DDR3_EDMA_SLOT_NUM; edma_channel.chnum = 0; edma_channel.complete_code = 0; /* event trigger after dst update */ edma_channel.trigger_slot_word = EDMA3_TWORD(dst); qedma3_start(KS2_EDMA0_BASE, &edma_channel); /* DDR3 size in segments (4KB seg size) */ seg_num = ddr3_size << (30 - KS2_MSMC_SEG_SIZE_SHIFT); for (seg = 0; seg < seg_num; seg += KS2_MSMC_MAP_SEG_NUM) { /* map 2GB 36-bit DDR address to 32-bit DDR address in EMIF access slave interface so that edma driver can access */ msmc_map_ses_segment(8, 0, base >> KS2_MSMC_SEG_SIZE_SHIFT, KS2_MSMC_DST_SEG_BASE + seg, MPAX_SEG_2G); if ((seg_num - seg) > KS2_MSMC_MAP_SEG_NUM) edma_blks = KS2_MSMC_MAP_SEG_NUM << (KS2_MSMC_SEG_SIZE_SHIFT - DDR3_EDMA_BLK_SIZE_SHIFT); else edma_blks = (seg_num - seg) << (KS2_MSMC_SEG_SIZE_SHIFT - DDR3_EDMA_BLK_SIZE_SHIFT); /* Use edma driver to scrub 2GB DDR memory */ for (dst = base, blks = 0; blks < edma_blks; blks += DDR3_EDMA_BCNT, dst += DDR3_EDMA_XF_SIZE) { edma3_set_src_addr(KS2_EDMA0_BASE, edma_channel.slot, (u32)edma_src); edma3_set_dest_addr(KS2_EDMA0_BASE, edma_channel.slot, (u32)dst); while (edma3_check_for_transfer(KS2_EDMA0_BASE, &edma_channel)) udelay(10); } } qedma3_stop(KS2_EDMA0_BASE, &edma_channel); /* restore the SES MPAX regs */ msmc_set_ses_mpax(8, 0, mpax); } static void ddr3_ecc_init_range(u32 base) { u32 ecc_val = KS2_DDR3_ECC_EN; u32 rmw = ddr3_ecc_support_rmw(base); if (rmw) ecc_val |= KS2_DDR3_ECC_RMW_EN; __raw_writel(0, base + KS2_DDR3_ECC_ADDR_RANGE1_OFFSET); ddr3_ecc_config(base, ecc_val); } void ddr3_enable_ecc(u32 base, int test) { u32 ecc_val = KS2_DDR3_ECC_ENABLE; u32 rmw = ddr3_ecc_support_rmw(base); if (test) ecc_val |= KS2_DDR3_ECC_ADDR_RNG_1_EN; if (!rmw) { if (!test) /* by default, disable ecc when rmw = 0 and no ecc test */ ecc_val = 0; } else { ecc_val |= KS2_DDR3_ECC_RMW_EN; } ddr3_ecc_config(base, ecc_val); } void ddr3_disable_ecc(u32 base) { ddr3_ecc_config(base, 0); } #if defined(CONFIG_SOC_K2HK) || defined(CONFIG_SOC_K2L) static void cic_init(u32 base) { /* Disable CIC global interrupts */ __raw_writel(0, base + KS2_CIC_GLOBAL_ENABLE); /* Set to normal mode, no nesting, no priority hold */ __raw_writel(0, base + KS2_CIC_CTRL); __raw_writel(0, base + KS2_CIC_HOST_CTRL); /* Enable CIC global interrupts */ __raw_writel(1, base + KS2_CIC_GLOBAL_ENABLE); } static void cic_map_cic_to_gic(u32 base, u32 chan_num, u32 irq_num) { /* Map the system interrupt to a CIC channel */ __raw_writeb(chan_num, base + KS2_CIC_CHAN_MAP(0) + irq_num); /* Enable CIC system interrupt */ __raw_writel(irq_num, base + KS2_CIC_SYS_ENABLE_IDX_SET); /* Enable CIC Host interrupt */ __raw_writel(chan_num, base + KS2_CIC_HOST_ENABLE_IDX_SET); } static void ddr3_map_ecc_cic2_irq(u32 base) { cic_init(base); cic_map_cic_to_gic(base, KS2_CIC2_DDR3_ECC_CHAN_NUM, KS2_CIC2_DDR3_ECC_IRQ_NUM); } #endif void ddr3_init_ecc(u32 base, u32 ddr3_size) { if (!ddr3_ecc_support_rmw(base)) { ddr3_disable_ecc(base); return; } ddr3_ecc_init_range(base); ddr3_reset_data(CONFIG_SYS_SDRAM_BASE, ddr3_size); /* mapping DDR3 ECC system interrupt from CIC2 to GIC */ #if defined(CONFIG_SOC_K2HK) || defined(CONFIG_SOC_K2L) ddr3_map_ecc_cic2_irq(KS2_CIC2_BASE); #endif ddr3_enable_ecc(base, 0); } void ddr3_check_ecc_int(u32 base) { char *env; int ecc_test = 0; u32 value = __raw_readl(base + KS2_DDR3_ECC_INT_STATUS_OFFSET); env = getenv("ecc_test"); if (env) ecc_test = simple_strtol(env, NULL, 0); if (value & KS2_DDR3_WR_ECC_ERR_SYS) puts("DDR3 ECC write error interrupted\n"); if (value & KS2_DDR3_2B_ECC_ERR_SYS) { puts("DDR3 ECC 2-bit error interrupted\n"); if (!ecc_test) { puts("Reseting the device ...\n"); reset_cpu(0); } } value = __raw_readl(base + KS2_DDR3_ONE_BIT_ECC_ERR_CNT_OFFSET); if (value) { printf("1-bit ECC err count: 0x%x\n", value); value = __raw_readl(base + KS2_DDR3_ONE_BIT_ECC_ERR_ADDR_LOG_OFFSET); printf("1-bit ECC err address log: 0x%x\n", value); } } void ddr3_reset_ddrphy(void) { u32 tmp; /* Assert DDR3A PHY reset */ tmp = readl(KS2_DDR3APLLCTL1); tmp |= KS2_DDR3_PLLCTRL_PHY_RESET; writel(tmp, KS2_DDR3APLLCTL1); /* wait 10us to catch the reset */ udelay(10); /* Release DDR3A PHY reset */ tmp = readl(KS2_DDR3APLLCTL1); tmp &= ~KS2_DDR3_PLLCTRL_PHY_RESET; __raw_writel(tmp, KS2_DDR3APLLCTL1); } #ifdef CONFIG_SOC_K2HK /** * ddr3_reset_workaround - reset workaround in case if leveling error * detected for PG 1.0 and 1.1 k2hk SoCs */ void ddr3_err_reset_workaround(void) { unsigned int tmp; unsigned int tmp_a; unsigned int tmp_b; /* * Check for PGSR0 error bits of DDR3 PHY. * Check for WLERR, QSGERR, WLAERR, * RDERR, WDERR, REERR, WEERR error to see if they are set or not */ tmp_a = __raw_readl(KS2_DDR3A_DDRPHYC + KS2_DDRPHY_PGSR0_OFFSET); tmp_b = __raw_readl(KS2_DDR3B_DDRPHYC + KS2_DDRPHY_PGSR0_OFFSET); if (((tmp_a & 0x0FE00000) != 0) || ((tmp_b & 0x0FE00000) != 0)) { printf("DDR Leveling Error Detected!\n"); printf("DDR3A PGSR0 = 0x%x\n", tmp_a); printf("DDR3B PGSR0 = 0x%x\n", tmp_b); /* * Write Keys to KICK registers to enable writes to registers * in boot config space */ __raw_writel(KS2_KICK0_MAGIC, KS2_KICK0); __raw_writel(KS2_KICK1_MAGIC, KS2_KICK1); /* * Move DDR3A Module out of reset isolation by setting * MDCTL23[12] = 0 */ tmp_a = __raw_readl(KS2_PSC_BASE + PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3A)); tmp_a = PSC_REG_MDCTL_SET_RESET_ISO(tmp_a, 0); __raw_writel(tmp_a, KS2_PSC_BASE + PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3A)); /* * Move DDR3B Module out of reset isolation by setting * MDCTL24[12] = 0 */ tmp_b = __raw_readl(KS2_PSC_BASE + PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3B)); tmp_b = PSC_REG_MDCTL_SET_RESET_ISO(tmp_b, 0); __raw_writel(tmp_b, KS2_PSC_BASE + PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3B)); /* * Write 0x5A69 Key to RSTCTRL[15:0] to unlock writes * to RSTCTRL and RSTCFG */ tmp = __raw_readl(KS2_RSTCTRL); tmp &= KS2_RSTCTRL_MASK; tmp |= KS2_RSTCTRL_KEY; __raw_writel(tmp, KS2_RSTCTRL); /* * Set PLL Controller to drive hard reset on SW trigger by * setting RSTCFG[13] = 0 */ tmp = __raw_readl(KS2_RSTCTRL_RSCFG); tmp &= ~KS2_RSTYPE_PLL_SOFT; __raw_writel(tmp, KS2_RSTCTRL_RSCFG); reset_cpu(0); } } #endif