/* * Keystone2: pll initialization * * (C) Copyright 2012-2014 * Texas Instruments Incorporated, * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include /* DEV and ARM speed definitions as specified in DEVSPEED register */ int __weak speeds[DEVSPEED_NUMSPDS] = { SPD1000, SPD1200, SPD1350, SPD1400, SPD1500, SPD1400, SPD1350, SPD1200, SPD1000, SPD800, }; const struct keystone_pll_regs keystone_pll_regs[] = { [CORE_PLL] = {KS2_MAINPLLCTL0, KS2_MAINPLLCTL1}, [PASS_PLL] = {KS2_PASSPLLCTL0, KS2_PASSPLLCTL1}, [TETRIS_PLL] = {KS2_ARMPLLCTL0, KS2_ARMPLLCTL1}, [DDR3A_PLL] = {KS2_DDR3APLLCTL0, KS2_DDR3APLLCTL1}, [DDR3B_PLL] = {KS2_DDR3BPLLCTL0, KS2_DDR3BPLLCTL1}, [UART_PLL] = {KS2_UARTPLLCTL0, KS2_UARTPLLCTL1}, }; inline void pll_pa_clk_sel(void) { setbits_le32(keystone_pll_regs[PASS_PLL].reg1, CFG_PLLCTL1_PAPLL_MASK); } static void wait_for_completion(const struct pll_init_data *data) { int i; for (i = 0; i < 100; i++) { sdelay(450); if (!(pllctl_reg_read(data->pll, stat) & PLLSTAT_GOSTAT_MASK)) break; } } static inline void bypass_main_pll(const struct pll_init_data *data) { pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLENSRC_MASK | PLLCTL_PLLEN_MASK); /* 4 cycles of reference clock CLKIN*/ sdelay(340); } static void configure_mult_div(const struct pll_init_data *data) { u32 pllm, plld, bwadj; pllm = data->pll_m - 1; plld = (data->pll_d - 1) & CFG_PLLCTL0_PLLD_MASK; /* Program Multiplier */ if (data->pll == MAIN_PLL) pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK); clrsetbits_le32(keystone_pll_regs[data->pll].reg0, CFG_PLLCTL0_PLLM_MASK, pllm << CFG_PLLCTL0_PLLM_SHIFT); /* Program BWADJ */ bwadj = (data->pll_m - 1) >> 1; /* Divide pllm by 2 */ clrsetbits_le32(keystone_pll_regs[data->pll].reg0, CFG_PLLCTL0_BWADJ_MASK, (bwadj << CFG_PLLCTL0_BWADJ_SHIFT) & CFG_PLLCTL0_BWADJ_MASK); bwadj = bwadj >> CFG_PLLCTL0_BWADJ_BITS; clrsetbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_BWADJ_MASK, bwadj); /* Program Divider */ clrsetbits_le32(keystone_pll_regs[data->pll].reg0, CFG_PLLCTL0_PLLD_MASK, plld); } void configure_main_pll(const struct pll_init_data *data) { u32 tmp, pllod, i, alnctl_val = 0; u32 *offset; pllod = data->pll_od - 1; /* 100 micro sec for stabilization */ sdelay(210000); tmp = pllctl_reg_read(data->pll, secctl); /* Check for Bypass */ if (tmp & SECCTL_BYPASS_MASK) { setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_ENSAT_MASK); bypass_main_pll(data); /* Powerdown and powerup Main Pll */ pllctl_reg_setbits(data->pll, secctl, SECCTL_BYPASS_MASK); pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK); /* 5 micro sec */ sdelay(21000); pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK); } else { bypass_main_pll(data); } configure_mult_div(data); /* Program Output Divider */ pllctl_reg_rmw(data->pll, secctl, SECCTL_OP_DIV_MASK, ((pllod << SECCTL_OP_DIV_SHIFT) & SECCTL_OP_DIV_MASK)); /* Program PLLDIVn */ wait_for_completion(data); for (i = 0; i < PLLDIV_MAX; i++) { if (i < 3) offset = pllctl_reg(data->pll, div1) + i; else offset = pllctl_reg(data->pll, div4) + (i - 3); if (divn_val[i] != -1) { __raw_writel(divn_val[i] | PLLDIV_ENABLE_MASK, offset); alnctl_val |= BIT(i); } } if (alnctl_val) { pllctl_reg_setbits(data->pll, alnctl, alnctl_val); /* * Set GOSET bit in PLLCMD to initiate the GO operation * to change the divide */ pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GOSTAT_MASK); wait_for_completion(data); } /* Reset PLL */ pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST_MASK); sdelay(21000); /* Wait for a minimum of 7 us*/ pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST_MASK); sdelay(105000); /* Wait for PLL Lock time (min 50 us) */ /* Enable PLL */ pllctl_reg_clrbits(data->pll, secctl, SECCTL_BYPASS_MASK); pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN_MASK); } void configure_secondary_pll(const struct pll_init_data *data) { int pllod = data->pll_od - 1; /* Enable Bypass mode */ setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_ENSAT_MASK); setbits_le32(keystone_pll_regs[data->pll].reg0, CFG_PLLCTL0_BYPASS_MASK); /* Enable Glitch free bypass for ARM PLL */ if (cpu_is_k2hk() && data->pll == TETRIS_PLL) clrbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN); configure_mult_div(data); /* Program Output Divider */ clrsetbits_le32(keystone_pll_regs[data->pll].reg0, CFG_PLLCTL0_CLKOD_MASK, (pllod << CFG_PLLCTL0_CLKOD_SHIFT) & CFG_PLLCTL0_CLKOD_MASK); /* Reset PLL */ setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK); /* Wait for 5 micro seconds */ sdelay(21000); /* Select the Output of PASS PLL as input to PASS */ if (data->pll == PASS_PLL && cpu_is_k2hk()) pll_pa_clk_sel(); /* Select the Output of ARM PLL as input to ARM */ if (data->pll == TETRIS_PLL) setbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN); clrbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK); /* Wait for 500 * REFCLK cucles * (PLLD + 1) */ sdelay(105000); /* Switch to PLL mode */ clrbits_le32(keystone_pll_regs[data->pll].reg0, CFG_PLLCTL0_BYPASS_MASK); } void init_pll(const struct pll_init_data *data) { if (data->pll == MAIN_PLL) configure_main_pll(data); else configure_secondary_pll(data); /* * This is required to provide a delay between multiple * consequent PPL configurations */ sdelay(210000); } void init_plls(void) { struct pll_init_data *data; int pll; for (pll = MAIN_PLL; pll < MAX_PLL_COUNT; pll++) { data = get_pll_init_data(pll); if (data) init_pll(data); } } static int get_max_speed(u32 val, u32 speed_supported, int *spds) { int speed; /* Left most setbit gives the speed */ for (speed = DEVSPEED_NUMSPDS; speed >= 0; speed--) { if ((val & BIT(speed)) & speed_supported) return spds[speed]; } /* If no bit is set, return minimum speed */ if (cpu_is_k2g()) return SPD200; else return SPD800; } static inline u32 read_efuse_bootrom(void) { if (cpu_is_k2hk() && (cpu_revision() <= 1)) return __raw_readl(KS2_REV1_DEVSPEED); else return __raw_readl(KS2_EFUSE_BOOTROM); } int get_max_arm_speed(int *spds) { u32 armspeed = read_efuse_bootrom(); armspeed = (armspeed & DEVSPEED_ARMSPEED_MASK) >> DEVSPEED_ARMSPEED_SHIFT; return get_max_speed(armspeed, ARM_SUPPORTED_SPEEDS, spds); } int get_max_dev_speed(int *spds) { u32 devspeed = read_efuse_bootrom(); devspeed = (devspeed & DEVSPEED_DEVSPEED_MASK) >> DEVSPEED_DEVSPEED_SHIFT; return get_max_speed(devspeed, DEV_SUPPORTED_SPEEDS, spds); } /** * pll_freq_get - get pll frequency * @pll: pll identifier */ static unsigned long pll_freq_get(int pll) { unsigned long mult = 1, prediv = 1, output_div = 2; unsigned long ret; u32 tmp, reg; if (pll == MAIN_PLL) { ret = external_clk[sys_clk]; if (pllctl_reg_read(pll, ctl) & PLLCTL_PLLEN_MASK) { /* PLL mode */ tmp = __raw_readl(KS2_MAINPLLCTL0); prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1; mult = ((tmp & CFG_PLLCTL0_PLLM_HI_MASK) >> CFG_PLLCTL0_PLLM_SHIFT | (pllctl_reg_read(pll, mult) & PLLM_MULT_LO_MASK)) + 1; output_div = ((pllctl_reg_read(pll, secctl) & SECCTL_OP_DIV_MASK) >> SECCTL_OP_DIV_SHIFT) + 1; ret = ret / prediv / output_div * mult; } } else { switch (pll) { case PASS_PLL: ret = external_clk[pa_clk]; reg = KS2_PASSPLLCTL0; break; case TETRIS_PLL: ret = external_clk[tetris_clk]; reg = KS2_ARMPLLCTL0; break; case DDR3A_PLL: ret = external_clk[ddr3a_clk]; reg = KS2_DDR3APLLCTL0; break; case DDR3B_PLL: ret = external_clk[ddr3b_clk]; reg = KS2_DDR3BPLLCTL0; break; case UART_PLL: ret = external_clk[uart_clk]; reg = KS2_UARTPLLCTL0; break; default: return 0; } tmp = __raw_readl(reg); if (!(tmp & CFG_PLLCTL0_BYPASS_MASK)) { /* Bypass disabled */ prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1; mult = ((tmp & CFG_PLLCTL0_PLLM_MASK) >> CFG_PLLCTL0_PLLM_SHIFT) + 1; output_div = ((tmp & CFG_PLLCTL0_CLKOD_MASK) >> CFG_PLLCTL0_CLKOD_SHIFT) + 1; ret = ((ret / prediv) * mult) / output_div; } } return ret; } unsigned long clk_get_rate(unsigned int clk) { unsigned long freq = 0; switch (clk) { case core_pll_clk: freq = pll_freq_get(CORE_PLL); break; case pass_pll_clk: freq = pll_freq_get(PASS_PLL); break; case tetris_pll_clk: if (!cpu_is_k2e()) freq = pll_freq_get(TETRIS_PLL); break; case ddr3a_pll_clk: freq = pll_freq_get(DDR3A_PLL); break; case ddr3b_pll_clk: if (cpu_is_k2hk()) freq = pll_freq_get(DDR3B_PLL); break; case uart_pll_clk: if (cpu_is_k2g()) freq = pll_freq_get(UART_PLL); break; case sys_clk0_1_clk: case sys_clk0_clk: freq = pll_freq_get(CORE_PLL) / pll0div_read(1); break; case sys_clk1_clk: return pll_freq_get(CORE_PLL) / pll0div_read(2); break; case sys_clk2_clk: freq = pll_freq_get(CORE_PLL) / pll0div_read(3); break; case sys_clk3_clk: freq = pll_freq_get(CORE_PLL) / pll0div_read(4); break; case sys_clk0_2_clk: freq = clk_get_rate(sys_clk0_clk) / 2; break; case sys_clk0_3_clk: freq = clk_get_rate(sys_clk0_clk) / 3; break; case sys_clk0_4_clk: freq = clk_get_rate(sys_clk0_clk) / 4; break; case sys_clk0_6_clk: freq = clk_get_rate(sys_clk0_clk) / 6; break; case sys_clk0_8_clk: freq = clk_get_rate(sys_clk0_clk) / 8; break; case sys_clk0_12_clk: freq = clk_get_rate(sys_clk0_clk) / 12; break; case sys_clk0_24_clk: freq = clk_get_rate(sys_clk0_clk) / 24; break; case sys_clk1_3_clk: freq = clk_get_rate(sys_clk1_clk) / 3; break; case sys_clk1_4_clk: freq = clk_get_rate(sys_clk1_clk) / 4; break; case sys_clk1_6_clk: freq = clk_get_rate(sys_clk1_clk) / 6; break; case sys_clk1_12_clk: freq = clk_get_rate(sys_clk1_clk) / 12; break; default: break; } return freq; }