/* * TNETV107X: Clock management APIs * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #define CLOCK_BASE TNETV107X_CLOCK_CONTROL_BASE #define PSC_BASE TNETV107X_PSC_BASE #define BIT(x) (1 << (x)) #define MAX_PREDIV 64 #define MAX_POSTDIV 8 #define MAX_MULT 512 #define MAX_DIV (MAX_PREDIV * MAX_POSTDIV) /* LPSC registers */ #define PSC_PTCMD 0x120 #define PSC_PTSTAT 0x128 #define PSC_MDSTAT(n) (0x800 + (n) * 4) #define PSC_MDCTL(n) (0xA00 + (n) * 4) #define PSC_MDCTL_LRSTZ BIT(8) #define psc_reg_read(reg) __raw_readl((u32 *)(PSC_BASE + (reg))) #define psc_reg_write(reg, val) __raw_writel(val, (u32 *)(PSC_BASE + (reg))) /* SSPLL registers */ struct sspll_regs { u32 modes; u32 postdiv; u32 prediv; u32 mult_factor; u32 divider_range; u32 bw_divider; u32 spr_amount; u32 spr_rate_div; u32 diag; }; /* SSPLL base addresses */ static struct sspll_regs *sspll_regs[] = { (struct sspll_regs *)(CLOCK_BASE + 0x040), (struct sspll_regs *)(CLOCK_BASE + 0x080), (struct sspll_regs *)(CLOCK_BASE + 0x0c0), }; #define sspll_reg(pll, reg) (&(sspll_regs[pll]->reg)) #define sspll_reg_read(pll, reg) __raw_readl(sspll_reg(pll, reg)) #define sspll_reg_write(pll, reg, val) __raw_writel(val, sspll_reg(pll, reg)) /* PLL Control Registers */ struct pllctl_regs { u32 ctl; /* 00 */ u32 ocsel; /* 04 */ u32 secctl; /* 08 */ u32 __pad0; u32 mult; /* 10 */ u32 prediv; /* 14 */ u32 div1; /* 18 */ u32 div2; /* 1c */ u32 div3; /* 20 */ u32 oscdiv1; /* 24 */ u32 postdiv; /* 28 */ u32 bpdiv; /* 2c */ u32 wakeup; /* 30 */ u32 __pad1; u32 cmd; /* 38 */ u32 stat; /* 3c */ u32 alnctl; /* 40 */ u32 dchange; /* 44 */ u32 cken; /* 48 */ u32 ckstat; /* 4c */ u32 systat; /* 50 */ u32 ckctl; /* 54 */ u32 __pad2[2]; u32 div4; /* 60 */ u32 div5; /* 64 */ u32 div6; /* 68 */ u32 div7; /* 6c */ u32 div8; /* 70 */ }; struct lpsc_map { int pll, div; }; static struct pllctl_regs *pllctl_regs[] = { (struct pllctl_regs *)(CLOCK_BASE + 0x700), (struct pllctl_regs *)(CLOCK_BASE + 0x300), (struct pllctl_regs *)(CLOCK_BASE + 0x500), }; #define pllctl_reg(pll, reg) (&(pllctl_regs[pll]->reg)) #define pllctl_reg_read(pll, reg) __raw_readl(pllctl_reg(pll, reg)) #define pllctl_reg_write(pll, reg, val) __raw_writel(val, pllctl_reg(pll, reg)) #define pllctl_reg_rmw(pll, reg, mask, val) \ pllctl_reg_write(pll, reg, \ (pllctl_reg_read(pll, reg) & ~(mask)) | val) #define pllctl_reg_setbits(pll, reg, mask) \ pllctl_reg_rmw(pll, reg, 0, mask) #define pllctl_reg_clrbits(pll, reg, mask) \ pllctl_reg_rmw(pll, reg, mask, 0) /* PLLCTL Bits */ #define PLLCTL_CLKMODE BIT(8) #define PLLCTL_PLLSELB BIT(7) #define PLLCTL_PLLENSRC BIT(5) #define PLLCTL_PLLDIS BIT(4) #define PLLCTL_PLLRST BIT(3) #define PLLCTL_PLLPWRDN BIT(1) #define PLLCTL_PLLEN BIT(0) #define PLLDIV_ENABLE BIT(15) static int pll_div_offset[] = { #define div_offset(reg) offsetof(struct pllctl_regs, reg) div_offset(div1), div_offset(div2), div_offset(div3), div_offset(div4), div_offset(div5), div_offset(div6), div_offset(div7), div_offset(div8), }; static unsigned long pll_bypass_mask[] = { 1, 4, 2 }; static unsigned long pll_div_mask[] = { 0x01ff, 0x00ff, 0x00ff }; /* Mappings from PLL+DIV to subsystem clocks */ #define sys_arm1176_clk {SYS_PLL, 0} #define sys_dsp_clk {SYS_PLL, 1} #define sys_ddr_clk {SYS_PLL, 2} #define sys_full_clk {SYS_PLL, 3} #define sys_lcd_clk {SYS_PLL, 4} #define sys_vlynq_ref_clk {SYS_PLL, 5} #define sys_tsc_clk {SYS_PLL, 6} #define sys_half_clk {SYS_PLL, 7} #define eth_clk_5 {ETH_PLL, 0} #define eth_clk_50 {ETH_PLL, 1} #define eth_clk_125 {ETH_PLL, 2} #define eth_clk_250 {ETH_PLL, 3} #define eth_clk_25 {ETH_PLL, 4} #define tdm_clk {TDM_PLL, 0} #define tdm_extra_clk {TDM_PLL, 1} #define tdm1_clk {TDM_PLL, 2} static const struct lpsc_map lpsc_clk_map[] = { [TNETV107X_LPSC_ARM] = sys_arm1176_clk, [TNETV107X_LPSC_GEM] = sys_dsp_clk, [TNETV107X_LPSC_DDR2_PHY] = sys_ddr_clk, [TNETV107X_LPSC_TPCC] = sys_full_clk, [TNETV107X_LPSC_TPTC0] = sys_full_clk, [TNETV107X_LPSC_TPTC1] = sys_full_clk, [TNETV107X_LPSC_RAM] = sys_full_clk, [TNETV107X_LPSC_MBX_LITE] = sys_arm1176_clk, [TNETV107X_LPSC_LCD] = sys_lcd_clk, [TNETV107X_LPSC_ETHSS] = eth_clk_125, [TNETV107X_LPSC_AEMIF] = sys_full_clk, [TNETV107X_LPSC_CHIP_CFG] = sys_half_clk, [TNETV107X_LPSC_TSC] = sys_tsc_clk, [TNETV107X_LPSC_ROM] = sys_half_clk, [TNETV107X_LPSC_UART2] = sys_half_clk, [TNETV107X_LPSC_PKTSEC] = sys_half_clk, [TNETV107X_LPSC_SECCTL] = sys_half_clk, [TNETV107X_LPSC_KEYMGR] = sys_half_clk, [TNETV107X_LPSC_KEYPAD] = sys_half_clk, [TNETV107X_LPSC_GPIO] = sys_half_clk, [TNETV107X_LPSC_MDIO] = sys_half_clk, [TNETV107X_LPSC_SDIO0] = sys_half_clk, [TNETV107X_LPSC_UART0] = sys_half_clk, [TNETV107X_LPSC_UART1] = sys_half_clk, [TNETV107X_LPSC_TIMER0] = sys_half_clk, [TNETV107X_LPSC_TIMER1] = sys_half_clk, [TNETV107X_LPSC_WDT_ARM] = sys_half_clk, [TNETV107X_LPSC_WDT_DSP] = sys_half_clk, [TNETV107X_LPSC_SSP] = sys_half_clk, [TNETV107X_LPSC_TDM0] = tdm_clk, [TNETV107X_LPSC_VLYNQ] = sys_vlynq_ref_clk, [TNETV107X_LPSC_MCDMA] = sys_half_clk, [TNETV107X_LPSC_USB0] = sys_half_clk, [TNETV107X_LPSC_TDM1] = tdm1_clk, [TNETV107X_LPSC_DEBUGSS] = sys_half_clk, [TNETV107X_LPSC_ETHSS_RGMII] = eth_clk_250, [TNETV107X_LPSC_SYSTEM] = sys_half_clk, [TNETV107X_LPSC_IMCOP] = sys_dsp_clk, [TNETV107X_LPSC_SPARE] = sys_half_clk, [TNETV107X_LPSC_SDIO1] = sys_half_clk, [TNETV107X_LPSC_USB1] = sys_half_clk, [TNETV107X_LPSC_USBSS] = sys_half_clk, [TNETV107X_LPSC_DDR2_EMIF1_VRST] = sys_ddr_clk, [TNETV107X_LPSC_DDR2_EMIF2_VCTL_RST] = sys_ddr_clk, }; static const unsigned long pll_ext_freq[] = { [SYS_PLL] = CONFIG_PLL_SYS_EXT_FREQ, [ETH_PLL] = CONFIG_PLL_ETH_EXT_FREQ, [TDM_PLL] = CONFIG_PLL_TDM_EXT_FREQ, }; static unsigned long pll_freq_get(int pll) { unsigned long mult = 1, prediv = 1, postdiv = 1; unsigned long ref = CONFIG_SYS_INT_OSC_FREQ; unsigned long ret; u32 bypass; bypass = __raw_readl((u32 *)(CLOCK_BASE)); if (!(bypass & pll_bypass_mask[pll])) { mult = sspll_reg_read(pll, mult_factor); prediv = sspll_reg_read(pll, prediv) + 1; postdiv = sspll_reg_read(pll, postdiv) + 1; } if (pllctl_reg_read(pll, ctl) & PLLCTL_CLKMODE) ref = pll_ext_freq[pll]; if (!(pllctl_reg_read(pll, ctl) & PLLCTL_PLLEN)) return ref; ret = (unsigned long)(ref + ((unsigned long long)ref * mult) / 256); ret /= (prediv * postdiv); return ret; } static unsigned long __pll_div_freq_get(int pll, unsigned int fpll, int div) { int divider = 1; unsigned long divreg; divreg = __raw_readl((void *)pllctl_regs[pll] + pll_div_offset[div]); if (divreg & PLLDIV_ENABLE) divider = (divreg & pll_div_mask[pll]) + 1; return fpll / divider; } static unsigned long pll_div_freq_get(int pll, int div) { unsigned int fpll = pll_freq_get(pll); return __pll_div_freq_get(pll, fpll, div); } static void __pll_div_freq_set(int pll, unsigned int fpll, int div, unsigned long hz) { int divider = (fpll / hz - 1); divider &= pll_div_mask[pll]; divider |= PLLDIV_ENABLE; __raw_writel(divider, (void *)pllctl_regs[pll] + pll_div_offset[div]); pllctl_reg_setbits(pll, alnctl, (1 << div)); pllctl_reg_setbits(pll, dchange, (1 << div)); } static unsigned long pll_div_freq_set(int pll, int div, unsigned long hz) { unsigned int fpll = pll_freq_get(pll); __pll_div_freq_set(pll, fpll, div, hz); pllctl_reg_write(pll, cmd, 1); /* Wait until new divider takes effect */ while (pllctl_reg_read(pll, stat) & 0x01); return __pll_div_freq_get(pll, fpll, div); } unsigned long clk_get_rate(unsigned int clk) { return pll_div_freq_get(lpsc_clk_map[clk].pll, lpsc_clk_map[clk].div); } unsigned long clk_round_rate(unsigned int clk, unsigned long hz) { unsigned long fpll, divider, pll; pll = lpsc_clk_map[clk].pll; fpll = pll_freq_get(pll); divider = (fpll / hz - 1); divider &= pll_div_mask[pll]; return fpll / (divider + 1); } int clk_set_rate(unsigned int clk, unsigned long _hz) { unsigned long hz; hz = clk_round_rate(clk, _hz); if (hz != _hz) return -EINVAL; /* Cannot set to target freq */ pll_div_freq_set(lpsc_clk_map[clk].pll, lpsc_clk_map[clk].div, hz); return 0; } void lpsc_control(int mod, unsigned long state, int lrstz) { u32 mdctl; mdctl = psc_reg_read(PSC_MDCTL(mod)); mdctl &= ~0x1f; mdctl |= state; if (lrstz == 0) mdctl &= ~PSC_MDCTL_LRSTZ; else if (lrstz == 1) mdctl |= PSC_MDCTL_LRSTZ; psc_reg_write(PSC_MDCTL(mod), mdctl); psc_reg_write(PSC_PTCMD, 1); /* wait for power domain transition to end */ while (psc_reg_read(PSC_PTSTAT) & 1); /* Wait for module state change */ while ((psc_reg_read(PSC_MDSTAT(mod)) & 0x1f) != state); } int lpsc_status(unsigned int id) { return psc_reg_read(PSC_MDSTAT(id)) & 0x1f; } static void init_pll(const struct pll_init_data *data) { unsigned long fpll; unsigned long best_pre = 0, best_post = 0, best_mult = 0; unsigned long div, prediv, postdiv, mult; unsigned long delta, actual; long best_delta = -1; int i; u32 tmp; if (data->pll == SYS_PLL) return; /* cannot reconfigure system pll on the fly */ tmp = pllctl_reg_read(data->pll, ctl); if (data->internal_osc) { tmp &= ~PLLCTL_CLKMODE; fpll = CONFIG_SYS_INT_OSC_FREQ; } else { tmp |= PLLCTL_CLKMODE; fpll = pll_ext_freq[data->pll]; } pllctl_reg_write(data->pll, ctl, tmp); mult = data->pll_freq / fpll; for (mult = MAX(mult, 1); mult <= MAX_MULT; mult++) { div = (fpll * mult) / data->pll_freq; if (div < 1 || div > MAX_DIV) continue; for (postdiv = 1; postdiv <= min(div, MAX_POSTDIV); postdiv++) { prediv = div / postdiv; if (prediv < 1 || prediv > MAX_PREDIV) continue; actual = (fpll / prediv) * (mult / postdiv); delta = (actual - data->pll_freq); if (delta < 0) delta = -delta; if ((delta < best_delta) || (best_delta == -1)) { best_delta = delta; best_mult = mult; best_pre = prediv; best_post = postdiv; if (delta == 0) goto done; } } } done: if (best_delta == -1) { printf("pll cannot derive %lu from %lu\n", data->pll_freq, fpll); return; } fpll = fpll * best_mult; fpll /= best_pre * best_post; pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLENSRC); pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLEN); pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST); pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN); pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLDIS); sspll_reg_write(data->pll, mult_factor, (best_mult - 1) << 8); sspll_reg_write(data->pll, prediv, best_pre - 1); sspll_reg_write(data->pll, postdiv, best_post - 1); for (i = 0; i < 10; i++) if (data->div_freq[i]) __pll_div_freq_set(data->pll, fpll, i, data->div_freq[i]); pllctl_reg_write(data->pll, cmd, 1); /* Wait until pll "go" operation completes */ while (pllctl_reg_read(data->pll, stat) & 0x01); pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST); pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN); } void init_plls(int num_pll, struct pll_init_data *config) { int i; for (i = 0; i < num_pll; i++) init_pll(&config[i]); }