summaryrefslogtreecommitdiffstats
path: root/board/xilinx/common/xipif_v1_23_b.c
diff options
context:
space:
mode:
Diffstat (limited to 'board/xilinx/common/xipif_v1_23_b.c')
-rw-r--r--board/xilinx/common/xipif_v1_23_b.c331
1 files changed, 0 insertions, 331 deletions
diff --git a/board/xilinx/common/xipif_v1_23_b.c b/board/xilinx/common/xipif_v1_23_b.c
deleted file mode 100644
index c7311ab9be..0000000000
--- a/board/xilinx/common/xipif_v1_23_b.c
+++ /dev/null
@@ -1,331 +0,0 @@
-/* $Id: xipif_v1_23_b.c,v 1.1 2002/03/18 23:24:52 linnj Exp $ */
-/******************************************************************************
-*
-* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
-* AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
-* SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
-* OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
-* APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
-* THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
-* AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
-* FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
-* WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
-* IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
-* REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
-* INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
-* FOR A PARTICULAR PURPOSE.
-*
-* (c) Copyright 2002 Xilinx Inc.
-* All rights reserved.
-*
-******************************************************************************/
-/******************************************************************************
-*
-* FILENAME:
-*
-* xipif.c
-*
-* DESCRIPTION:
-*
-* This file contains the implementation of the XIpIf component. The
-* XIpIf component encapsulates the IPIF, which is the standard interface
-* that IP must adhere to when connecting to a bus. The purpose of this
-* component is to encapsulate the IPIF processing such that maintainability
-* is increased. This component does not provide a lot of abstraction from
-* from the details of the IPIF as it is considered a building block for
-* device drivers. A device driver designer must be familiar with the
-* details of the IPIF hardware to use this component.
-*
-* The IPIF hardware provides a building block for all hardware devices such
-* that each device does not need to reimplement these building blocks. The
-* IPIF contains other building blocks, such as FIFOs and DMA channels, which
-* are also common to many devices. These blocks are implemented as separate
-* hardware blocks and instantiated within the IPIF. The primary hardware of
-* the IPIF which is implemented by this software component is the interrupt
-* architecture. Since there are many blocks of a device which may generate
-* interrupts, all the interrupt processing is contained in the common part
-* of the device, the IPIF. This interrupt processing is for the device level
-* only and does not include any processing for the interrupt controller.
-*
-* A device is a mechanism such as an Ethernet MAC. The device is made
-* up of several parts which include an IPIF and the IP. The IPIF contains most
-* of the device infrastructure which is common to all devices, such as
-* interrupt processing, DMA channels, and FIFOs. The infrastructure may also
-* be referred to as IPIF internal blocks since they are part of the IPIF and
-* are separate blocks that can be selected based upon the needs of the device.
-* The IP of the device is the logic that is unique to the device and interfaces
-* to the IPIF of the device.
-*
-* In general, there are two levels of registers within the IPIF. The first
-* level, referred to as the device level, contains registers which are for the
-* entire device. The second level, referred to as the IP level, contains
-* registers which are specific to the IP of the device. The two levels of
-* registers are designed to be hierarchical such that the device level is
-* is a more general register set above the more specific registers of the IP.
-* The IP level of registers provides functionality which is typically common
-* across all devices and allows IP designers to focus on the unique aspects
-* of the IP.
-*
-* The interrupt registers of the IPIF are parameterizable such that the only
-* the number of bits necessary for the device are implemented. The functions
-* of this component do not attempt to validate that the passed in arguments are
-* valid based upon the number of implemented bits. This is necessary to
-* maintain the level of performance required for the common components. Bits
-* of the registers are assigned starting at the least significant bit of the
-* registers.
-*
-* Critical Sections
-*
-* It is the responsibility of the device driver designer to use critical
-* sections as necessary when calling functions of the IPIF. This component
-* does not use critical sections and it does access registers using
-* read-modify-write operations. Calls to IPIF functions from a main thread
-* and from an interrupt context could produce unpredictable behavior such that
-* the caller must provide the appropriate critical sections.
-*
-* Mutual Exclusion
-*
-* The functions of the IPIF are not thread safe such that the caller of all
-* functions is responsible for ensuring mutual exclusion for an IPIF. Mutual
-* exclusion across multiple IPIF components is not necessary.
-*
-* NOTES:
-*
-* None.
-*
-* MODIFICATION HISTORY:
-*
-* Ver Who Date Changes
-* ----- ---- -------- -----------------------------------------------
-* 1.23b jhl 02/27/01 Repartioned to reduce size
-*
-******************************************************************************/
-
-/***************************** Include Files *********************************/
-
-#include "xipif_v1_23_b.h"
-#include "xio.h"
-
-/************************** Constant Definitions *****************************/
-
-/* the following constant is used to generate bit masks for register testing
- * in the self test functions, it defines the starting bit mask that is to be
- * shifted from the LSB to MSB in creating a register test mask
- */
-#define XIIF_V123B_FIRST_BIT_MASK 1UL
-
-/**************************** Type Definitions *******************************/
-
-/***************** Macros (Inline Functions) Definitions *********************/
-
-/************************** Variable Definitions *****************************/
-
-/************************** Function Prototypes ******************************/
-
-static XStatus IpIntrSelfTest(u32 RegBaseAddress, u32 IpRegistersWidth);
-
-/******************************************************************************
-*
-* FUNCTION:
-*
-* XIpIf_SelfTest
-*
-* DESCRIPTION:
-*
-* This function performs a self test on the specified IPIF component. Many
-* of the registers in the IPIF are tested to ensure proper operation. This
-* function is destructive because the IPIF is reset at the start of the test
-* and at the end of the test to ensure predictable results. The IPIF reset
-* also resets the entire device that uses the IPIF. This function exits with
-* all interrupts for the device disabled.
-*
-* ARGUMENTS:
-*
-* InstancePtr points to the XIpIf to operate on.
-*
-* DeviceRegistersWidth contains the number of bits in the device interrupt
-* registers. The hardware is parameterizable such that only the number of bits
-* necessary to support a device are implemented. This value must be between 0
-* and 32 with 0 indicating there are no device interrupt registers used.
-*
-* IpRegistersWidth contains the number of bits in the IP interrupt registers
-* of the device. The hardware is parameterizable such that only the number of
-* bits necessary to support a device are implemented. This value must be
-* between 0 and 32 with 0 indicating there are no IP interrupt registers used.
-*
-* RETURN VALUE:
-*
-* A value of XST_SUCCESS indicates the test was successful with no errors.
-* Any one of the following error values may also be returned.
-*
-* XST_IPIF_RESET_REGISTER_ERROR The value of a register at reset was
-* not valid
-* XST_IPIF_IP_STATUS_ERROR A write to the IP interrupt status
-* register did not read back correctly
-* XST_IPIF_IP_ACK_ERROR One or more bits in the IP interrupt
-* status register did not reset when acked
-* XST_IPIF_IP_ENABLE_ERROR The IP interrupt enable register
-* did not read back correctly based upon
-* what was written to it
-*
-* NOTES:
-*
-* None.
-*
-******************************************************************************/
-
-/* the following constant defines the maximum number of bits which may be
- * used in the registers at the device and IP levels, this is based upon the
- * number of bits available in the registers
- */
-#define XIIF_V123B_MAX_REG_BIT_COUNT 32
-
-XStatus
-XIpIfV123b_SelfTest(u32 RegBaseAddress, u8 IpRegistersWidth)
-{
- XStatus Status;
-
- /* assert to verify arguments are valid */
-
- XASSERT_NONVOID(IpRegistersWidth <= XIIF_V123B_MAX_REG_BIT_COUNT);
-
- /* reset the IPIF such that it's in a known state before the test
- * and interrupts are globally disabled
- */
- XIIF_V123B_RESET(RegBaseAddress);
-
- /* perform the self test on the IP interrupt registers, if
- * it is not successful exit with the status
- */
- Status = IpIntrSelfTest(RegBaseAddress, IpRegistersWidth);
- if (Status != XST_SUCCESS) {
- return Status;
- }
-
- /* reset the IPIF such that it's in a known state before exiting test */
-
- XIIF_V123B_RESET(RegBaseAddress);
-
- /* reaching this point means there were no errors, return success */
-
- return XST_SUCCESS;
-}
-
-/******************************************************************************
-*
-* FUNCTION:
-*
-* IpIntrSelfTest
-*
-* DESCRIPTION:
-*
-* Perform a self test on the IP interrupt registers of the IPIF. This
-* function modifies registers of the IPIF such that they are not guaranteed
-* to be in the same state when it returns. Any bits in the IP interrupt
-* status register which are set are assumed to be set by default after a reset
-* and are not tested in the test.
-*
-* ARGUMENTS:
-*
-* InstancePtr points to the XIpIf to operate on.
-*
-* IpRegistersWidth contains the number of bits in the IP interrupt registers
-* of the device. The hardware is parameterizable such that only the number of
-* bits necessary to support a device are implemented. This value must be
-* between 0 and 32 with 0 indicating there are no IP interrupt registers used.
-*
-* RETURN VALUE:
-*
-* A status indicating XST_SUCCESS if the test was successful. Otherwise, one
-* of the following values is returned.
-*
-* XST_IPIF_RESET_REGISTER_ERROR The value of a register at reset was
-* not valid
-* XST_IPIF_IP_STATUS_ERROR A write to the IP interrupt status
-* register did not read back correctly
-* XST_IPIF_IP_ACK_ERROR One or more bits in the IP status
-* register did not reset when acked
-* XST_IPIF_IP_ENABLE_ERROR The IP interrupt enable register
-* did not read back correctly based upon
-* what was written to it
-* NOTES:
-*
-* None.
-*
-******************************************************************************/
-static XStatus
-IpIntrSelfTest(u32 RegBaseAddress, u32 IpRegistersWidth)
-{
- /* ensure that the IP interrupt interrupt enable register is zero
- * as it should be at reset, the interrupt status is dependent upon the
- * IP such that it's reset value is not known
- */
- if (XIIF_V123B_READ_IIER(RegBaseAddress) != 0) {
- return XST_IPIF_RESET_REGISTER_ERROR;
- }
-
- /* if there are any used IP interrupts, then test all of the interrupt
- * bits in all testable registers
- */
- if (IpRegistersWidth > 0) {
- u32 BitCount;
- u32 IpInterruptMask = XIIF_V123B_FIRST_BIT_MASK;
- u32 Mask = XIIF_V123B_FIRST_BIT_MASK; /* bits assigned MSB to LSB */
- u32 InterruptStatus;
-
- /* generate the register masks to be used for IP register tests, the
- * number of bits supported by the hardware is parameterizable such
- * that only that number of bits are implemented in the registers, the
- * bits are allocated starting at the MSB of the registers
- */
- for (BitCount = 1; BitCount < IpRegistersWidth; BitCount++) {
- Mask = Mask << 1;
- IpInterruptMask |= Mask;
- }
-
- /* get the current IP interrupt status register contents, any bits
- * already set must default to 1 at reset in the device and these
- * bits can't be tested in the following test, remove these bits from
- * the mask that was generated for the test
- */
- InterruptStatus = XIIF_V123B_READ_IISR(RegBaseAddress);
- IpInterruptMask &= ~InterruptStatus;
-
- /* set the bits in the device status register and verify them by reading
- * the register again, all bits of the register are latched
- */
- XIIF_V123B_WRITE_IISR(RegBaseAddress, IpInterruptMask);
- InterruptStatus = XIIF_V123B_READ_IISR(RegBaseAddress);
- if ((InterruptStatus & IpInterruptMask) != IpInterruptMask)
- {
- return XST_IPIF_IP_STATUS_ERROR;
- }
-
- /* test to ensure that the bits set in the IP interrupt status register
- * can be cleared by acknowledging them in the IP interrupt status
- * register then read it again and verify it was cleared
- */
- XIIF_V123B_WRITE_IISR(RegBaseAddress, IpInterruptMask);
- InterruptStatus = XIIF_V123B_READ_IISR(RegBaseAddress);
- if ((InterruptStatus & IpInterruptMask) != 0) {
- return XST_IPIF_IP_ACK_ERROR;
- }
-
- /* set the IP interrupt enable set register and then read the IP
- * interrupt enable register and verify the interrupts were enabled
- */
- XIIF_V123B_WRITE_IIER(RegBaseAddress, IpInterruptMask);
- if (XIIF_V123B_READ_IIER(RegBaseAddress) != IpInterruptMask) {
- return XST_IPIF_IP_ENABLE_ERROR;
- }
-
- /* clear the IP interrupt enable register and then read the
- * IP interrupt enable register and verify the interrupts were disabled
- */
- XIIF_V123B_WRITE_IIER(RegBaseAddress, 0);
- if (XIIF_V123B_READ_IIER(RegBaseAddress) != 0) {
- return XST_IPIF_IP_ENABLE_ERROR;
- }
- }
- return XST_SUCCESS;
-}
OpenPOWER on IntegriCloud