diff options
Diffstat (limited to 'arch/arm/cpu/armv7')
-rw-r--r-- | arch/arm/cpu/armv7/omap-common/Makefile | 1 | ||||
-rw-r--r-- | arch/arm/cpu/armv7/omap-common/utils.c | 57 | ||||
-rw-r--r-- | arch/arm/cpu/armv7/omap4/board.c | 9 | ||||
-rw-r--r-- | arch/arm/cpu/armv7/omap4/emif.c | 739 | ||||
-rw-r--r-- | arch/arm/cpu/armv7/omap4/sdram_elpida.c | 151 |
5 files changed, 953 insertions, 4 deletions
diff --git a/arch/arm/cpu/armv7/omap-common/Makefile b/arch/arm/cpu/armv7/omap-common/Makefile index dc01ee5d3c..8f698f841d 100644 --- a/arch/arm/cpu/armv7/omap-common/Makefile +++ b/arch/arm/cpu/armv7/omap-common/Makefile @@ -28,6 +28,7 @@ LIB = $(obj)libomap-common.o SOBJS := reset.o COBJS := timer.o +COBJS += utils.o SRCS := $(SOBJS:.o=.S) $(COBJS:.o=.c) OBJS := $(addprefix $(obj),$(SOBJS) $(COBJS)) diff --git a/arch/arm/cpu/armv7/omap-common/utils.c b/arch/arm/cpu/armv7/omap-common/utils.c new file mode 100644 index 0000000000..ea935da45b --- /dev/null +++ b/arch/arm/cpu/armv7/omap-common/utils.c @@ -0,0 +1,57 @@ +/* + * Copyright 2011 Linaro Limited + * Aneesh V <aneesh@ti.com> + * + * See file CREDITS for list of people who contributed to this + * project. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation; either version 2 of + * the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, + * MA 02111-1307 USA + */ +#include <common.h> +static void do_cancel_out(u32 *num, u32 *den, u32 factor) +{ + while (1) { + if (((*num)/factor*factor == (*num)) && + ((*den)/factor*factor == (*den))) { + (*num) /= factor; + (*den) /= factor; + } else + break; + } +} + +/* + * Cancel out the denominator and numerator of a fraction + * to get smaller numerator and denominator. + */ +void cancel_out(u32 *num, u32 *den, u32 den_limit) +{ + do_cancel_out(num, den, 2); + do_cancel_out(num, den, 3); + do_cancel_out(num, den, 5); + do_cancel_out(num, den, 7); + do_cancel_out(num, den, 11); + do_cancel_out(num, den, 13); + do_cancel_out(num, den, 17); + while ((*den) > den_limit) { + *num /= 2; + /* + * Round up the denominator so that the final fraction + * (num/den) is always <= the desired value + */ + *den = (*den + 1) / 2; + } +} diff --git a/arch/arm/cpu/armv7/omap4/board.c b/arch/arm/cpu/armv7/omap4/board.c index ca107f790f..786c239794 100644 --- a/arch/arm/cpu/armv7/omap4/board.c +++ b/arch/arm/cpu/armv7/omap4/board.c @@ -32,6 +32,7 @@ #include <asm/arch/cpu.h> #include <asm/arch/sys_proto.h> #include <asm/sizes.h> +#include <asm/arch/emif.h> #include "omap4_mux_data.h" DECLARE_GLOBAL_DATA_PTR; @@ -193,13 +194,13 @@ u32 omap4_sdram_size(void) { u32 section, i, total_size = 0, size, addr; for (i = 0; i < 4; i++) { - section = __raw_readl(DMM_LISA_MAP_BASE + i*4); - addr = section & DMM_LISA_MAP_SYS_ADDR_MASK; + section = __raw_readl(OMAP44XX_DMM_LISA_MAP_BASE + i*4); + addr = section & OMAP44XX_SYS_ADDR_MASK; /* See if the address is valid */ if ((addr >= OMAP44XX_DRAM_ADDR_SPACE_START) && (addr < OMAP44XX_DRAM_ADDR_SPACE_END)) { - size = ((section & DMM_LISA_MAP_SYS_SIZE_MASK) >> - DMM_LISA_MAP_SYS_SIZE_SHIFT); + size = ((section & OMAP44XX_SYS_SIZE_MASK) >> + OMAP44XX_SYS_SIZE_SHIFT); size = 1 << size; size *= SZ_16M; total_size += size; diff --git a/arch/arm/cpu/armv7/omap4/emif.c b/arch/arm/cpu/armv7/omap4/emif.c index b25c1ee8cd..ceead9eb02 100644 --- a/arch/arm/cpu/armv7/omap4/emif.c +++ b/arch/arm/cpu/armv7/omap4/emif.c @@ -170,6 +170,628 @@ static void emif_update_timings(u32 base, const struct emif_regs *regs) } } +#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS +#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg)) + +static u32 *const T_num = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_NUM; +static u32 *const T_den = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_DEN; +static u32 *const emif_sizes = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_SIZE; + +/* + * Organization and refresh requirements for LPDDR2 devices of different + * types and densities. Derived from JESD209-2 section 2.4 + */ +const struct lpddr2_addressing addressing_table[] = { + /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */ + {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */ + {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */ + {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */ + {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */ + {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */ + {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */ + {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */ + {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */ + {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */ + {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */ +}; + +static const u32 lpddr2_density_2_size_in_mbytes[] = { + 8, /* 64Mb */ + 16, /* 128Mb */ + 32, /* 256Mb */ + 64, /* 512Mb */ + 128, /* 1Gb */ + 256, /* 2Gb */ + 512, /* 4Gb */ + 1024, /* 8Gb */ + 2048, /* 16Gb */ + 4096 /* 32Gb */ +}; + +/* + * Calculate the period of DDR clock from frequency value and set the + * denominator and numerator in global variables for easy access later + */ +static void set_ddr_clk_period(u32 freq) +{ + /* + * period = 1/freq + * period_in_ns = 10^9/freq + */ + *T_num = 1000000000; + *T_den = freq; + cancel_out(T_num, T_den, 200); + +} + +/* + * Convert time in nano seconds to number of cycles of DDR clock + */ +static inline u32 ns_2_cycles(u32 ns) +{ + return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num); +} + +/* + * ns_2_cycles with the difference that the time passed is 2 times the actual + * value(to avoid fractions). The cycles returned is for the original value of + * the timing parameter + */ +static inline u32 ns_x2_2_cycles(u32 ns) +{ + return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2); +} + +/* + * Find addressing table index based on the device's type(S2 or S4) and + * density + */ +s8 addressing_table_index(u8 type, u8 density, u8 width) +{ + u8 index; + if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8)) + return -1; + + /* + * Look at the way ADDR_TABLE_INDEX* values have been defined + * in emif.h compared to LPDDR2_DENSITY_* values + * The table is layed out in the increasing order of density + * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed + * at the end + */ + if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb)) + index = ADDR_TABLE_INDEX1GS2; + else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb)) + index = ADDR_TABLE_INDEX2GS2; + else + index = density; + + debug("emif: addressing table index %d\n", index); + + return index; +} + +/* + * Find the the right timing table from the array of timing + * tables of the device using DDR clock frequency + */ +static const struct lpddr2_ac_timings *get_timings_table(const struct + lpddr2_ac_timings const *const *device_timings, + u32 freq) +{ + u32 i, temp, freq_nearest; + const struct lpddr2_ac_timings *timings = 0; + + emif_assert(freq <= MAX_LPDDR2_FREQ); + emif_assert(device_timings); + + /* + * Start with the maximum allowed frequency - that is always safe + */ + freq_nearest = MAX_LPDDR2_FREQ; + /* + * Find the timings table that has the max frequency value: + * i. Above or equal to the DDR frequency - safe + * ii. The lowest that satisfies condition (i) - optimal + */ + for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) { + temp = device_timings[i]->max_freq; + if ((temp >= freq) && (temp <= freq_nearest)) { + freq_nearest = temp; + timings = device_timings[i]; + } + } + debug("emif: timings table: %d\n", freq_nearest); + return timings; +} + +/* + * Finds the value of emif_sdram_config_reg + * All parameters are programmed based on the device on CS0. + * If there is a device on CS1, it will be same as that on CS0 or + * it will be NVM. We don't support NVM yet. + * If cs1_device pointer is NULL it is assumed that there is no device + * on CS1 + */ +static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device, + const struct lpddr2_device_details *cs1_device, + const struct lpddr2_addressing *addressing, + u8 RL) +{ + u32 config_reg = 0; + + config_reg |= (cs0_device->type + 4) << OMAP44XX_REG_SDRAM_TYPE_SHIFT; + config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING << + OMAP44XX_REG_IBANK_POS_SHIFT; + + config_reg |= cs0_device->io_width << OMAP44XX_REG_NARROW_MODE_SHIFT; + + config_reg |= RL << OMAP44XX_REG_CL_SHIFT; + + config_reg |= addressing->row_sz[cs0_device->io_width] << + OMAP44XX_REG_ROWSIZE_SHIFT; + + config_reg |= addressing->num_banks << OMAP44XX_REG_IBANK_SHIFT; + + config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) << + OMAP44XX_REG_EBANK_SHIFT; + + config_reg |= addressing->col_sz[cs0_device->io_width] << + OMAP44XX_REG_PAGESIZE_SHIFT; + + return config_reg; +} + +static u32 get_sdram_ref_ctrl(u32 freq, + const struct lpddr2_addressing *addressing) +{ + u32 ref_ctrl = 0, val = 0, freq_khz; + freq_khz = freq / 1000; + /* + * refresh rate to be set is 'tREFI * freq in MHz + * division by 10000 to account for khz and x10 in t_REFI_us_x10 + */ + val = addressing->t_REFI_us_x10 * freq_khz / 10000; + ref_ctrl |= val << OMAP44XX_REG_REFRESH_RATE_SHIFT; + + return ref_ctrl; +} + +static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings, + const struct lpddr2_min_tck *min_tck, + const struct lpddr2_addressing *addressing) +{ + u32 tim1 = 0, val = 0; + val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1; + tim1 |= val << OMAP44XX_REG_T_WTR_SHIFT; + + if (addressing->num_banks == BANKS8) + val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) / + (4 * (*T_num)) - 1; + else + val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1; + + tim1 |= val << OMAP44XX_REG_T_RRD_SHIFT; + + val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1; + tim1 |= val << OMAP44XX_REG_T_RC_SHIFT; + + val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1; + tim1 |= val << OMAP44XX_REG_T_RAS_SHIFT; + + val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1; + tim1 |= val << OMAP44XX_REG_T_WR_SHIFT; + + val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1; + tim1 |= val << OMAP44XX_REG_T_RCD_SHIFT; + + val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1; + tim1 |= val << OMAP44XX_REG_T_RP_SHIFT; + + return tim1; +} + +static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings, + const struct lpddr2_min_tck *min_tck) +{ + u32 tim2 = 0, val = 0; + val = max(min_tck->tCKE, timings->tCKE) - 1; + tim2 |= val << OMAP44XX_REG_T_CKE_SHIFT; + + val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1; + tim2 |= val << OMAP44XX_REG_T_RTP_SHIFT; + + /* + * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the + * same value + */ + val = ns_2_cycles(timings->tXSR) - 1; + tim2 |= val << OMAP44XX_REG_T_XSRD_SHIFT; + tim2 |= val << OMAP44XX_REG_T_XSNR_SHIFT; + + val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1; + tim2 |= val << OMAP44XX_REG_T_XP_SHIFT; + + return tim2; +} + +static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings, + const struct lpddr2_min_tck *min_tck, + const struct lpddr2_addressing *addressing) +{ + u32 tim3 = 0, val = 0; + val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF); + tim3 |= val << OMAP44XX_REG_T_RAS_MAX_SHIFT; + + val = ns_2_cycles(timings->tRFCab) - 1; + tim3 |= val << OMAP44XX_REG_T_RFC_SHIFT; + + val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1; + tim3 |= val << OMAP44XX_REG_T_TDQSCKMAX_SHIFT; + + val = ns_2_cycles(timings->tZQCS) - 1; + tim3 |= val << OMAP44XX_REG_ZQ_ZQCS_SHIFT; + + val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1; + tim3 |= val << OMAP44XX_REG_T_CKESR_SHIFT; + + return tim3; +} + +static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device, + const struct lpddr2_addressing *addressing, + u8 volt_ramp) +{ + u32 zq = 0, val = 0; + if (volt_ramp) + val = + EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 / + addressing->t_REFI_us_x10; + else + val = + EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 / + addressing->t_REFI_us_x10; + zq |= val << OMAP44XX_REG_ZQ_REFINTERVAL_SHIFT; + + zq |= (REG_ZQ_ZQCL_MULT - 1) << OMAP44XX_REG_ZQ_ZQCL_MULT_SHIFT; + + zq |= (REG_ZQ_ZQINIT_MULT - 1) << OMAP44XX_REG_ZQ_ZQINIT_MULT_SHIFT; + + zq |= REG_ZQ_SFEXITEN_ENABLE << OMAP44XX_REG_ZQ_SFEXITEN_SHIFT; + + /* + * Assuming that two chipselects have a single calibration resistor + * If there are indeed two calibration resistors, then this flag should + * be enabled to take advantage of dual calibration feature. + * This data should ideally come from board files. But considering + * that none of the boards today have calibration resistors per CS, + * it would be an unnecessary overhead. + */ + zq |= REG_ZQ_DUALCALEN_DISABLE << OMAP44XX_REG_ZQ_DUALCALEN_SHIFT; + + zq |= REG_ZQ_CS0EN_ENABLE << OMAP44XX_REG_ZQ_CS0EN_SHIFT; + + zq |= (cs1_device ? 1 : 0) << OMAP44XX_REG_ZQ_CS1EN_SHIFT; + + return zq; +} + +static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device, + const struct lpddr2_addressing *addressing, + u8 is_derated) +{ + u32 alert = 0, interval; + interval = + TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10; + if (is_derated) + interval *= 4; + alert |= interval << OMAP44XX_REG_TA_REFINTERVAL_SHIFT; + + alert |= TEMP_ALERT_CONFIG_DEVCT_1 << OMAP44XX_REG_TA_DEVCNT_SHIFT; + + alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << OMAP44XX_REG_TA_DEVWDT_SHIFT; + + alert |= 1 << OMAP44XX_REG_TA_SFEXITEN_SHIFT; + + alert |= 1 << OMAP44XX_REG_TA_CS0EN_SHIFT; + + alert |= (cs1_device ? 1 : 0) << OMAP44XX_REG_TA_CS1EN_SHIFT; + + return alert; +} + +static u32 get_read_idle_ctrl_reg(u8 volt_ramp) +{ + u32 idle = 0, val = 0; + if (volt_ramp) + val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 + 1; + else + /*Maximum value in normal conditions - suggested by hw team */ + val = 0x1FF; + idle |= val << OMAP44XX_REG_READ_IDLE_INTERVAL_SHIFT; + + idle |= EMIF_REG_READ_IDLE_LEN_VAL << OMAP44XX_REG_READ_IDLE_LEN_SHIFT; + + return idle; +} + +static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL) +{ + u32 phy = 0, val = 0; + + phy |= (RL + 2) << OMAP44XX_REG_READ_LATENCY_SHIFT; + + if (freq <= 100000000) + val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS; + else if (freq <= 200000000) + val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ; + else + val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ; + phy |= val << OMAP44XX_REG_DLL_SLAVE_DLY_CTRL_SHIFT; + + /* Other fields are constant magic values. Hardcode them together */ + phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL << + OMAP44XX_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT; + + return phy; +} + +static u32 get_emif_mem_size(struct emif_device_details *devices) +{ + u32 size_mbytes = 0, temp; + + if (!devices) + return 0; + + if (devices->cs0_device_details) { + temp = devices->cs0_device_details->density; + size_mbytes += lpddr2_density_2_size_in_mbytes[temp]; + } + + if (devices->cs1_device_details) { + temp = devices->cs1_device_details->density; + size_mbytes += lpddr2_density_2_size_in_mbytes[temp]; + } + /* convert to bytes */ + return size_mbytes << 20; +} + +/* Gets the encoding corresponding to a given DMM section size */ +u32 get_dmm_section_size_map(u32 section_size) +{ + /* + * Section size mapping: + * 0x0: 16-MiB section + * 0x1: 32-MiB section + * 0x2: 64-MiB section + * 0x3: 128-MiB section + * 0x4: 256-MiB section + * 0x5: 512-MiB section + * 0x6: 1-GiB section + * 0x7: 2-GiB section + */ + section_size >>= 24; /* divide by 16 MB */ + return log_2_n_round_down(section_size); +} + +static void emif_calculate_regs( + const struct emif_device_details *emif_dev_details, + u32 freq, struct emif_regs *regs) +{ + u32 temp, sys_freq; + const struct lpddr2_addressing *addressing; + const struct lpddr2_ac_timings *timings; + const struct lpddr2_min_tck *min_tck; + const struct lpddr2_device_details *cs0_dev_details = + emif_dev_details->cs0_device_details; + const struct lpddr2_device_details *cs1_dev_details = + emif_dev_details->cs1_device_details; + const struct lpddr2_device_timings *cs0_dev_timings = + emif_dev_details->cs0_device_timings; + + emif_assert(emif_dev_details); + emif_assert(regs); + /* + * You can not have a device on CS1 without one on CS0 + * So configuring EMIF without a device on CS0 doesn't + * make sense + */ + emif_assert(cs0_dev_details); + emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM); + /* + * If there is a device on CS1 it should be same type as CS0 + * (or NVM. But NVM is not supported in this driver yet) + */ + emif_assert((cs1_dev_details == NULL) || + (cs1_dev_details->type == LPDDR2_TYPE_NVM) || + (cs0_dev_details->type == cs1_dev_details->type)); + emif_assert(freq <= MAX_LPDDR2_FREQ); + + set_ddr_clk_period(freq); + + /* + * The device on CS0 is used for all timing calculations + * There is only one set of registers for timings per EMIF. So, if the + * second CS(CS1) has a device, it should have the same timings as the + * device on CS0 + */ + timings = get_timings_table(cs0_dev_timings->ac_timings, freq); + emif_assert(timings); + min_tck = cs0_dev_timings->min_tck; + + temp = addressing_table_index(cs0_dev_details->type, + cs0_dev_details->density, + cs0_dev_details->io_width); + + emif_assert((temp >= 0)); + addressing = &(addressing_table[temp]); + emif_assert(addressing); + + sys_freq = get_sys_clk_freq(); + + regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details, + cs1_dev_details, + addressing, RL_BOOT); + + regs->sdram_config = get_sdram_config_reg(cs0_dev_details, + cs1_dev_details, + addressing, RL_FINAL); + + regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing); + + regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing); + + regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck); + + regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing); + + regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE); + + regs->temp_alert_config = + get_temp_alert_config(cs1_dev_details, addressing, 0); + + regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing, + LPDDR2_VOLTAGE_STABLE); + + regs->emif_ddr_phy_ctlr_1_init = + get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT); + + regs->emif_ddr_phy_ctlr_1 = + get_ddr_phy_ctrl_1(freq, RL_FINAL); + + regs->freq = freq; + + print_timing_reg(regs->sdram_config_init); + print_timing_reg(regs->sdram_config); + print_timing_reg(regs->ref_ctrl); + print_timing_reg(regs->sdram_tim1); + print_timing_reg(regs->sdram_tim2); + print_timing_reg(regs->sdram_tim3); + print_timing_reg(regs->read_idle_ctrl); + print_timing_reg(regs->temp_alert_config); + print_timing_reg(regs->zq_config); + print_timing_reg(regs->emif_ddr_phy_ctlr_1); + print_timing_reg(regs->emif_ddr_phy_ctlr_1_init); +} +#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */ + +#ifdef CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS +/* Base AC Timing values specified by JESD209-2 for 400MHz operation */ +static const struct lpddr2_ac_timings timings_jedec_400_mhz = { + .max_freq = 400000000, + .RL = 6, + .tRPab = 21, + .tRCD = 18, + .tWR = 15, + .tRASmin = 42, + .tRRD = 10, + .tWTRx2 = 15, + .tXSR = 140, + .tXPx2 = 15, + .tRFCab = 130, + .tRTPx2 = 15, + .tCKE = 3, + .tCKESR = 15, + .tZQCS = 90, + .tZQCL = 360, + .tZQINIT = 1000, + .tDQSCKMAXx2 = 11, + .tRASmax = 70, + .tFAW = 50 +}; + +/* Base AC Timing values specified by JESD209-2 for 333 MHz operation */ +static const struct lpddr2_ac_timings timings_jedec_333_mhz = { + .max_freq = 333000000, + .RL = 5, + .tRPab = 21, + .tRCD = 18, + .tWR = 15, + .tRASmin = 42, + .tRRD = 10, + .tWTRx2 = 15, + .tXSR = 140, + .tXPx2 = 15, + .tRFCab = 130, + .tRTPx2 = 15, + .tCKE = 3, + .tCKESR = 15, + .tZQCS = 90, + .tZQCL = 360, + .tZQINIT = 1000, + .tDQSCKMAXx2 = 11, + .tRASmax = 70, + .tFAW = 50 +}; + +/* Base AC Timing values specified by JESD209-2 for 200 MHz operation */ +static const struct lpddr2_ac_timings timings_jedec_200_mhz = { + .max_freq = 200000000, + .RL = 3, + .tRPab = 21, + .tRCD = 18, + .tWR = 15, + .tRASmin = 42, + .tRRD = 10, + .tWTRx2 = 20, + .tXSR = 140, + .tXPx2 = 15, + .tRFCab = 130, + .tRTPx2 = 15, + .tCKE = 3, + .tCKESR = 15, + .tZQCS = 90, + .tZQCL = 360, + .tZQINIT = 1000, + .tDQSCKMAXx2 = 11, + .tRASmax = 70, + .tFAW = 50 +}; + +/* + * Min tCK values specified by JESD209-2 + * Min tCK specifies the minimum duration of some AC timing parameters in terms + * of the number of cycles. If the calculated number of cycles based on the + * absolute time value is less than the min tCK value, min tCK value should + * be used instead. This typically happens at low frequencies. + */ +static const struct lpddr2_min_tck min_tck_jedec = { + .tRL = 3, + .tRP_AB = 3, + .tRCD = 3, + .tWR = 3, + .tRAS_MIN = 3, + .tRRD = 2, + .tWTR = 2, + .tXP = 2, + .tRTP = 2, + .tCKE = 3, + .tCKESR = 3, + .tFAW = 8 +}; + +static const struct lpddr2_ac_timings const* + jedec_ac_timings[MAX_NUM_SPEEDBINS] = { + &timings_jedec_200_mhz, + &timings_jedec_333_mhz, + &timings_jedec_400_mhz +}; + +static const struct lpddr2_device_timings jedec_default_timings = { + .ac_timings = jedec_ac_timings, + .min_tck = &min_tck_jedec +}; + +void emif_get_device_timings(u32 emif_nr, + const struct lpddr2_device_timings **cs0_device_timings, + const struct lpddr2_device_timings **cs1_device_timings) +{ + /* Assume Identical devices on EMIF1 & EMIF2 */ + *cs0_device_timings = &jedec_default_timings; + *cs1_device_timings = &jedec_default_timings; +} +#endif /* CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS */ + static void do_sdram_init(u32 base) { const struct emif_regs *regs; @@ -180,11 +802,54 @@ static void do_sdram_init(u32 base) in_sdram = running_from_sdram(); emif_nr = (base == OMAP44XX_EMIF1) ? 1 : 2; +#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS emif_get_reg_dump(emif_nr, ®s); if (!regs) { debug("EMIF: reg dump not provided\n"); return; } +#else + /* + * The user has not provided the register values. We need to + * calculate it based on the timings and the DDR frequency + */ + struct emif_device_details dev_details; + struct emif_regs calculated_regs; + + /* + * Get device details: + * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set + * - Obtained from user otherwise + */ + struct lpddr2_device_details cs0_dev_details, cs1_dev_details; + emif_get_device_details(emif_nr, &cs0_dev_details, + &cs1_dev_details); + dev_details.cs0_device_details = &cs0_dev_details; + dev_details.cs1_device_details = &cs1_dev_details; + + /* Return if no devices on this EMIF */ + if (!dev_details.cs0_device_details && + !dev_details.cs1_device_details) { + emif_sizes[emif_nr - 1] = 0; + return; + } + + if (!in_sdram) + emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details); + + /* + * Get device timings: + * - Default timings specified by JESD209-2 if + * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set + * - Obtained from user otherwise + */ + emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings, + &dev_details.cs1_device_timings); + + /* Calculate the register values */ + emif_calculate_regs(&dev_details, omap4_ddr_clk(), &calculated_regs); + regs = &calculated_regs; +#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */ /* * Initializing the LPDDR2 device can not happen from SDRAM. @@ -242,8 +907,82 @@ static void dmm_init(u32 base) { const struct dmm_lisa_map_regs *lisa_map_regs; +#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS emif_get_dmm_regs(&lisa_map_regs); +#else + u32 emif1_size, emif2_size, mapped_size, section_map = 0; + u32 section_cnt, sys_addr; + struct dmm_lisa_map_regs lis_map_regs_calculated = {0}; + + mapped_size = 0; + section_cnt = 3; + sys_addr = CONFIG_SYS_SDRAM_BASE; + emif1_size = emif_sizes[0]; + emif2_size = emif_sizes[1]; + debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size); + + if (!emif1_size && !emif2_size) + return; + + /* symmetric interleaved section */ + if (emif1_size && emif2_size) { + mapped_size = min(emif1_size, emif2_size); + section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL; + section_map |= 0 << OMAP44XX_SDRC_ADDR_SHIFT; + /* only MSB */ + section_map |= (sys_addr >> 24) << + OMAP44XX_SYS_ADDR_SHIFT; + section_map |= get_dmm_section_size_map(mapped_size * 2) + << OMAP44XX_SYS_SIZE_SHIFT; + lis_map_regs_calculated.dmm_lisa_map_3 = section_map; + emif1_size -= mapped_size; + emif2_size -= mapped_size; + sys_addr += (mapped_size * 2); + section_cnt--; + } + + /* + * Single EMIF section(we can have a maximum of 1 single EMIF + * section- either EMIF1 or EMIF2 or none, but not both) + */ + if (emif1_size) { + section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL; + section_map |= get_dmm_section_size_map(emif1_size) + << OMAP44XX_SYS_SIZE_SHIFT; + /* only MSB */ + section_map |= (mapped_size >> 24) << + OMAP44XX_SDRC_ADDR_SHIFT; + /* only MSB */ + section_map |= (sys_addr >> 24) << OMAP44XX_SYS_ADDR_SHIFT; + section_cnt--; + } + if (emif2_size) { + section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL; + section_map |= get_dmm_section_size_map(emif2_size) << + OMAP44XX_SYS_SIZE_SHIFT; + /* only MSB */ + section_map |= mapped_size >> 24 << OMAP44XX_SDRC_ADDR_SHIFT; + /* only MSB */ + section_map |= sys_addr >> 24 << OMAP44XX_SYS_ADDR_SHIFT; + section_cnt--; + } + + if (section_cnt == 2) { + /* Only 1 section - either symmetric or single EMIF */ + lis_map_regs_calculated.dmm_lisa_map_3 = section_map; + lis_map_regs_calculated.dmm_lisa_map_2 = 0; + lis_map_regs_calculated.dmm_lisa_map_1 = 0; + } else { + /* 2 sections - 1 symmetric, 1 single EMIF */ + lis_map_regs_calculated.dmm_lisa_map_2 = section_map; + lis_map_regs_calculated.dmm_lisa_map_1 = 0; + } + + /* TRAP for invalid TILER mappings in section 0 */ + lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP; + lisa_map_regs = &lis_map_regs_calculated; +#endif struct dmm_lisa_map_regs *hw_lisa_map_regs = (struct dmm_lisa_map_regs *)base; diff --git a/arch/arm/cpu/armv7/omap4/sdram_elpida.c b/arch/arm/cpu/armv7/omap4/sdram_elpida.c index c950c87446..7757aad2ba 100644 --- a/arch/arm/cpu/armv7/omap4/sdram_elpida.c +++ b/arch/arm/cpu/armv7/omap4/sdram_elpida.c @@ -46,6 +46,8 @@ * - emif_get_device_timings() */ +#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS + static const struct emif_regs emif_regs_elpida_200_mhz_2cs = { .sdram_config_init = 0x80000eb9, .sdram_config = 0x80001ab9, @@ -129,3 +131,152 @@ static void emif_get_dmm_regs_sdp(const struct dmm_lisa_map_regs void emif_get_dmm_regs(const struct dmm_lisa_map_regs **dmm_lisa_regs) __attribute__((weak, alias("emif_get_dmm_regs_sdp"))); + +#else + +static const struct lpddr2_device_details elpida_2G_S4_details = { + .type = LPDDR2_TYPE_S4, + .density = LPDDR2_DENSITY_2Gb, + .io_width = LPDDR2_IO_WIDTH_32, + .manufacturer = LPDDR2_MANUFACTURER_ELPIDA +}; + +static void emif_get_device_details_sdp(u32 emif_nr, + struct lpddr2_device_details *cs0_device_details, + struct lpddr2_device_details *cs1_device_details) +{ + u32 omap_rev = omap_revision(); + + /* EMIF1 & EMIF2 have identical configuration */ + *cs0_device_details = elpida_2G_S4_details; + + if (omap_rev == OMAP4430_ES1_0) + cs1_device_details = NULL; + else + *cs1_device_details = elpida_2G_S4_details; +} + +void emif_get_device_details(u32 emif_nr, + struct lpddr2_device_details *cs0_device_details, + struct lpddr2_device_details *cs1_device_details) + __attribute__((weak, alias("emif_get_device_details_sdp"))); + +#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */ + +#ifndef CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS +static const struct lpddr2_ac_timings timings_elpida_400_mhz = { + .max_freq = 400000000, + .RL = 6, + .tRPab = 21, + .tRCD = 18, + .tWR = 15, + .tRASmin = 42, + .tRRD = 10, + .tWTRx2 = 15, + .tXSR = 140, + .tXPx2 = 15, + .tRFCab = 130, + .tRTPx2 = 15, + .tCKE = 3, + .tCKESR = 15, + .tZQCS = 90, + .tZQCL = 360, + .tZQINIT = 1000, + .tDQSCKMAXx2 = 11, + .tRASmax = 70, + .tFAW = 50 +}; + +static const struct lpddr2_ac_timings timings_elpida_333_mhz = { + .max_freq = 333000000, + .RL = 5, + .tRPab = 21, + .tRCD = 18, + .tWR = 15, + .tRASmin = 42, + .tRRD = 10, + .tWTRx2 = 15, + .tXSR = 140, + .tXPx2 = 15, + .tRFCab = 130, + .tRTPx2 = 15, + .tCKE = 3, + .tCKESR = 15, + .tZQCS = 90, + .tZQCL = 360, + .tZQINIT = 1000, + .tDQSCKMAXx2 = 11, + .tRASmax = 70, + .tFAW = 50 +}; + +static const struct lpddr2_ac_timings timings_elpida_200_mhz = { + .max_freq = 200000000, + .RL = 3, + .tRPab = 21, + .tRCD = 18, + .tWR = 15, + .tRASmin = 42, + .tRRD = 10, + .tWTRx2 = 20, + .tXSR = 140, + .tXPx2 = 15, + .tRFCab = 130, + .tRTPx2 = 15, + .tCKE = 3, + .tCKESR = 15, + .tZQCS = 90, + .tZQCL = 360, + .tZQINIT = 1000, + .tDQSCKMAXx2 = 11, + .tRASmax = 70, + .tFAW = 50 +}; + +static const struct lpddr2_min_tck min_tck_elpida = { + .tRL = 3, + .tRP_AB = 3, + .tRCD = 3, + .tWR = 3, + .tRAS_MIN = 3, + .tRRD = 2, + .tWTR = 2, + .tXP = 2, + .tRTP = 2, + .tCKE = 3, + .tCKESR = 3, + .tFAW = 8 +}; + +static const struct lpddr2_ac_timings *elpida_ac_timings[MAX_NUM_SPEEDBINS] = { + &timings_elpida_200_mhz, + &timings_elpida_333_mhz, + &timings_elpida_400_mhz +}; + +static const struct lpddr2_device_timings elpida_2G_S4_timings = { + .ac_timings = elpida_ac_timings, + .min_tck = &min_tck_elpida, +}; + +void emif_get_device_timings_sdp(u32 emif_nr, + const struct lpddr2_device_timings **cs0_device_timings, + const struct lpddr2_device_timings **cs1_device_timings) +{ + u32 omap_rev = omap_revision(); + + /* Identical devices on EMIF1 & EMIF2 */ + *cs0_device_timings = &elpida_2G_S4_timings; + + if (omap_rev == OMAP4430_ES1_0) + *cs1_device_timings = NULL; + else + *cs1_device_timings = &elpida_2G_S4_timings; +} + +void emif_get_device_timings(u32 emif_nr, + const struct lpddr2_device_timings **cs0_device_timings, + const struct lpddr2_device_timings **cs1_device_timings) + __attribute__((weak, alias("emif_get_device_timings_sdp"))); + +#endif /* CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS */ |