summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/crypto/crc32c-vpmsum_asm.S
blob: dc640b212299cc92920a183dd381d7706bd9c674 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
/*
 * Calculate the checksum of data that is 16 byte aligned and a multiple of
 * 16 bytes.
 *
 * The first step is to reduce it to 1024 bits. We do this in 8 parallel
 * chunks in order to mask the latency of the vpmsum instructions. If we
 * have more than 32 kB of data to checksum we repeat this step multiple
 * times, passing in the previous 1024 bits.
 *
 * The next step is to reduce the 1024 bits to 64 bits. This step adds
 * 32 bits of 0s to the end - this matches what a CRC does. We just
 * calculate constants that land the data in this 32 bits.
 *
 * We then use fixed point Barrett reduction to compute a mod n over GF(2)
 * for n = CRC using POWER8 instructions. We use x = 32.
 *
 * http://en.wikipedia.org/wiki/Barrett_reduction
 *
 * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
#include <asm/ppc_asm.h>
#include <asm/ppc-opcode.h>

	.section	.rodata
.balign 16

.byteswap_constant:
	/* byte reverse permute constant */
	.octa 0x0F0E0D0C0B0A09080706050403020100

#define MAX_SIZE	32768
.constants:

	/* Reduce 262144 kbits to 1024 bits */
	/* x^261120 mod p(x)` << 1, x^261184 mod p(x)` << 1 */
	.octa 0x00000000b6ca9e20000000009c37c408

	/* x^260096 mod p(x)` << 1, x^260160 mod p(x)` << 1 */
	.octa 0x00000000350249a800000001b51df26c

	/* x^259072 mod p(x)` << 1, x^259136 mod p(x)` << 1 */
	.octa 0x00000001862dac54000000000724b9d0

	/* x^258048 mod p(x)` << 1, x^258112 mod p(x)` << 1 */
	.octa 0x00000001d87fb48c00000001c00532fe

	/* x^257024 mod p(x)` << 1, x^257088 mod p(x)` << 1 */
	.octa 0x00000001f39b699e00000000f05a9362

	/* x^256000 mod p(x)` << 1, x^256064 mod p(x)` << 1 */
	.octa 0x0000000101da11b400000001e1007970

	/* x^254976 mod p(x)` << 1, x^255040 mod p(x)` << 1 */
	.octa 0x00000001cab571e000000000a57366ee

	/* x^253952 mod p(x)` << 1, x^254016 mod p(x)` << 1 */
	.octa 0x00000000c7020cfe0000000192011284

	/* x^252928 mod p(x)` << 1, x^252992 mod p(x)` << 1 */
	.octa 0x00000000cdaed1ae0000000162716d9a

	/* x^251904 mod p(x)` << 1, x^251968 mod p(x)` << 1 */
	.octa 0x00000001e804effc00000000cd97ecde

	/* x^250880 mod p(x)` << 1, x^250944 mod p(x)` << 1 */
	.octa 0x0000000077c3ea3a0000000058812bc0

	/* x^249856 mod p(x)` << 1, x^249920 mod p(x)` << 1 */
	.octa 0x0000000068df31b40000000088b8c12e

	/* x^248832 mod p(x)` << 1, x^248896 mod p(x)` << 1 */
	.octa 0x00000000b059b6c200000001230b234c

	/* x^247808 mod p(x)` << 1, x^247872 mod p(x)` << 1 */
	.octa 0x0000000145fb8ed800000001120b416e

	/* x^246784 mod p(x)` << 1, x^246848 mod p(x)` << 1 */
	.octa 0x00000000cbc0916800000001974aecb0

	/* x^245760 mod p(x)` << 1, x^245824 mod p(x)` << 1 */
	.octa 0x000000005ceeedc2000000008ee3f226

	/* x^244736 mod p(x)` << 1, x^244800 mod p(x)` << 1 */
	.octa 0x0000000047d74e8600000001089aba9a

	/* x^243712 mod p(x)` << 1, x^243776 mod p(x)` << 1 */
	.octa 0x00000001407e9e220000000065113872

	/* x^242688 mod p(x)` << 1, x^242752 mod p(x)` << 1 */
	.octa 0x00000001da967bda000000005c07ec10

	/* x^241664 mod p(x)` << 1, x^241728 mod p(x)` << 1 */
	.octa 0x000000006c8983680000000187590924

	/* x^240640 mod p(x)` << 1, x^240704 mod p(x)` << 1 */
	.octa 0x00000000f2d14c9800000000e35da7c6

	/* x^239616 mod p(x)` << 1, x^239680 mod p(x)` << 1 */
	.octa 0x00000001993c6ad4000000000415855a

	/* x^238592 mod p(x)` << 1, x^238656 mod p(x)` << 1 */
	.octa 0x000000014683d1ac0000000073617758

	/* x^237568 mod p(x)` << 1, x^237632 mod p(x)` << 1 */
	.octa 0x00000001a7c93e6c0000000176021d28

	/* x^236544 mod p(x)` << 1, x^236608 mod p(x)` << 1 */
	.octa 0x000000010211e90a00000001c358fd0a

	/* x^235520 mod p(x)` << 1, x^235584 mod p(x)` << 1 */
	.octa 0x000000001119403e00000001ff7a2c18

	/* x^234496 mod p(x)` << 1, x^234560 mod p(x)` << 1 */
	.octa 0x000000001c3261aa00000000f2d9f7e4

	/* x^233472 mod p(x)` << 1, x^233536 mod p(x)` << 1 */
	.octa 0x000000014e37a634000000016cf1f9c8

	/* x^232448 mod p(x)` << 1, x^232512 mod p(x)` << 1 */
	.octa 0x0000000073786c0c000000010af9279a

	/* x^231424 mod p(x)` << 1, x^231488 mod p(x)` << 1 */
	.octa 0x000000011dc037f80000000004f101e8

	/* x^230400 mod p(x)` << 1, x^230464 mod p(x)` << 1 */
	.octa 0x0000000031433dfc0000000070bcf184

	/* x^229376 mod p(x)` << 1, x^229440 mod p(x)` << 1 */
	.octa 0x000000009cde8348000000000a8de642

	/* x^228352 mod p(x)` << 1, x^228416 mod p(x)` << 1 */
	.octa 0x0000000038d3c2a60000000062ea130c

	/* x^227328 mod p(x)` << 1, x^227392 mod p(x)` << 1 */
	.octa 0x000000011b25f26000000001eb31cbb2

	/* x^226304 mod p(x)` << 1, x^226368 mod p(x)` << 1 */
	.octa 0x000000001629e6f00000000170783448

	/* x^225280 mod p(x)` << 1, x^225344 mod p(x)` << 1 */
	.octa 0x0000000160838b4c00000001a684b4c6

	/* x^224256 mod p(x)` << 1, x^224320 mod p(x)` << 1 */
	.octa 0x000000007a44011c00000000253ca5b4

	/* x^223232 mod p(x)` << 1, x^223296 mod p(x)` << 1 */
	.octa 0x00000000226f417a0000000057b4b1e2

	/* x^222208 mod p(x)` << 1, x^222272 mod p(x)` << 1 */
	.octa 0x0000000045eb2eb400000000b6bd084c

	/* x^221184 mod p(x)` << 1, x^221248 mod p(x)` << 1 */
	.octa 0x000000014459d70c0000000123c2d592

	/* x^220160 mod p(x)` << 1, x^220224 mod p(x)` << 1 */
	.octa 0x00000001d406ed8200000000159dafce

	/* x^219136 mod p(x)` << 1, x^219200 mod p(x)` << 1 */
	.octa 0x0000000160c8e1a80000000127e1a64e

	/* x^218112 mod p(x)` << 1, x^218176 mod p(x)` << 1 */
	.octa 0x0000000027ba80980000000056860754

	/* x^217088 mod p(x)` << 1, x^217152 mod p(x)` << 1 */
	.octa 0x000000006d92d01800000001e661aae8

	/* x^216064 mod p(x)` << 1, x^216128 mod p(x)` << 1 */
	.octa 0x000000012ed7e3f200000000f82c6166

	/* x^215040 mod p(x)` << 1, x^215104 mod p(x)` << 1 */
	.octa 0x000000002dc8778800000000c4f9c7ae

	/* x^214016 mod p(x)` << 1, x^214080 mod p(x)` << 1 */
	.octa 0x0000000018240bb80000000074203d20

	/* x^212992 mod p(x)` << 1, x^213056 mod p(x)` << 1 */
	.octa 0x000000001ad381580000000198173052

	/* x^211968 mod p(x)` << 1, x^212032 mod p(x)` << 1 */
	.octa 0x00000001396b78f200000001ce8aba54

	/* x^210944 mod p(x)` << 1, x^211008 mod p(x)` << 1 */
	.octa 0x000000011a68133400000001850d5d94

	/* x^209920 mod p(x)` << 1, x^209984 mod p(x)` << 1 */
	.octa 0x000000012104732e00000001d609239c

	/* x^208896 mod p(x)` << 1, x^208960 mod p(x)` << 1 */
	.octa 0x00000000a140d90c000000001595f048

	/* x^207872 mod p(x)` << 1, x^207936 mod p(x)` << 1 */
	.octa 0x00000001b7215eda0000000042ccee08

	/* x^206848 mod p(x)` << 1, x^206912 mod p(x)` << 1 */
	.octa 0x00000001aaf1df3c000000010a389d74

	/* x^205824 mod p(x)` << 1, x^205888 mod p(x)` << 1 */
	.octa 0x0000000029d15b8a000000012a840da6

	/* x^204800 mod p(x)` << 1, x^204864 mod p(x)` << 1 */
	.octa 0x00000000f1a96922000000001d181c0c

	/* x^203776 mod p(x)` << 1, x^203840 mod p(x)` << 1 */
	.octa 0x00000001ac80d03c0000000068b7d1f6

	/* x^202752 mod p(x)` << 1, x^202816 mod p(x)` << 1 */
	.octa 0x000000000f11d56a000000005b0f14fc

	/* x^201728 mod p(x)` << 1, x^201792 mod p(x)` << 1 */
	.octa 0x00000001f1c022a20000000179e9e730

	/* x^200704 mod p(x)` << 1, x^200768 mod p(x)` << 1 */
	.octa 0x0000000173d00ae200000001ce1368d6

	/* x^199680 mod p(x)` << 1, x^199744 mod p(x)` << 1 */
	.octa 0x00000001d4ffe4ac0000000112c3a84c

	/* x^198656 mod p(x)` << 1, x^198720 mod p(x)` << 1 */
	.octa 0x000000016edc5ae400000000de940fee

	/* x^197632 mod p(x)` << 1, x^197696 mod p(x)` << 1 */
	.octa 0x00000001f1a0214000000000fe896b7e

	/* x^196608 mod p(x)` << 1, x^196672 mod p(x)` << 1 */
	.octa 0x00000000ca0b28a000000001f797431c

	/* x^195584 mod p(x)` << 1, x^195648 mod p(x)` << 1 */
	.octa 0x00000001928e30a20000000053e989ba

	/* x^194560 mod p(x)` << 1, x^194624 mod p(x)` << 1 */
	.octa 0x0000000097b1b002000000003920cd16

	/* x^193536 mod p(x)` << 1, x^193600 mod p(x)` << 1 */
	.octa 0x00000000b15bf90600000001e6f579b8

	/* x^192512 mod p(x)` << 1, x^192576 mod p(x)` << 1 */
	.octa 0x00000000411c5d52000000007493cb0a

	/* x^191488 mod p(x)` << 1, x^191552 mod p(x)` << 1 */
	.octa 0x00000001c36f330000000001bdd376d8

	/* x^190464 mod p(x)` << 1, x^190528 mod p(x)` << 1 */
	.octa 0x00000001119227e0000000016badfee6

	/* x^189440 mod p(x)` << 1, x^189504 mod p(x)` << 1 */
	.octa 0x00000000114d47020000000071de5c58

	/* x^188416 mod p(x)` << 1, x^188480 mod p(x)` << 1 */
	.octa 0x00000000458b5b9800000000453f317c

	/* x^187392 mod p(x)` << 1, x^187456 mod p(x)` << 1 */
	.octa 0x000000012e31fb8e0000000121675cce

	/* x^186368 mod p(x)` << 1, x^186432 mod p(x)` << 1 */
	.octa 0x000000005cf619d800000001f409ee92

	/* x^185344 mod p(x)` << 1, x^185408 mod p(x)` << 1 */
	.octa 0x0000000063f4d8b200000000f36b9c88

	/* x^184320 mod p(x)` << 1, x^184384 mod p(x)` << 1 */
	.octa 0x000000004138dc8a0000000036b398f4

	/* x^183296 mod p(x)` << 1, x^183360 mod p(x)` << 1 */
	.octa 0x00000001d29ee8e000000001748f9adc

	/* x^182272 mod p(x)` << 1, x^182336 mod p(x)` << 1 */
	.octa 0x000000006a08ace800000001be94ec00

	/* x^181248 mod p(x)` << 1, x^181312 mod p(x)` << 1 */
	.octa 0x0000000127d4201000000000b74370d6

	/* x^180224 mod p(x)` << 1, x^180288 mod p(x)` << 1 */
	.octa 0x0000000019d76b6200000001174d0b98

	/* x^179200 mod p(x)` << 1, x^179264 mod p(x)` << 1 */
	.octa 0x00000001b1471f6e00000000befc06a4

	/* x^178176 mod p(x)` << 1, x^178240 mod p(x)` << 1 */
	.octa 0x00000001f64c19cc00000001ae125288

	/* x^177152 mod p(x)` << 1, x^177216 mod p(x)` << 1 */
	.octa 0x00000000003c0ea00000000095c19b34

	/* x^176128 mod p(x)` << 1, x^176192 mod p(x)` << 1 */
	.octa 0x000000014d73abf600000001a78496f2

	/* x^175104 mod p(x)` << 1, x^175168 mod p(x)` << 1 */
	.octa 0x00000001620eb84400000001ac5390a0

	/* x^174080 mod p(x)` << 1, x^174144 mod p(x)` << 1 */
	.octa 0x0000000147655048000000002a80ed6e

	/* x^173056 mod p(x)` << 1, x^173120 mod p(x)` << 1 */
	.octa 0x0000000067b5077e00000001fa9b0128

	/* x^172032 mod p(x)` << 1, x^172096 mod p(x)` << 1 */
	.octa 0x0000000010ffe20600000001ea94929e

	/* x^171008 mod p(x)` << 1, x^171072 mod p(x)` << 1 */
	.octa 0x000000000fee8f1e0000000125f4305c

	/* x^169984 mod p(x)` << 1, x^170048 mod p(x)` << 1 */
	.octa 0x00000001da26fbae00000001471e2002

	/* x^168960 mod p(x)` << 1, x^169024 mod p(x)` << 1 */
	.octa 0x00000001b3a8bd880000000132d2253a

	/* x^167936 mod p(x)` << 1, x^168000 mod p(x)` << 1 */
	.octa 0x00000000e8f3898e00000000f26b3592

	/* x^166912 mod p(x)` << 1, x^166976 mod p(x)` << 1 */
	.octa 0x00000000b0d0d28c00000000bc8b67b0

	/* x^165888 mod p(x)` << 1, x^165952 mod p(x)` << 1 */
	.octa 0x0000000030f2a798000000013a826ef2

	/* x^164864 mod p(x)` << 1, x^164928 mod p(x)` << 1 */
	.octa 0x000000000fba10020000000081482c84

	/* x^163840 mod p(x)` << 1, x^163904 mod p(x)` << 1 */
	.octa 0x00000000bdb9bd7200000000e77307c2

	/* x^162816 mod p(x)` << 1, x^162880 mod p(x)` << 1 */
	.octa 0x0000000075d3bf5a00000000d4a07ec8

	/* x^161792 mod p(x)` << 1, x^161856 mod p(x)` << 1 */
	.octa 0x00000000ef1f98a00000000017102100

	/* x^160768 mod p(x)` << 1, x^160832 mod p(x)` << 1 */
	.octa 0x00000000689c760200000000db406486

	/* x^159744 mod p(x)` << 1, x^159808 mod p(x)` << 1 */
	.octa 0x000000016d5fa5fe0000000192db7f88

	/* x^158720 mod p(x)` << 1, x^158784 mod p(x)` << 1 */
	.octa 0x00000001d0d2b9ca000000018bf67b1e

	/* x^157696 mod p(x)` << 1, x^157760 mod p(x)` << 1 */
	.octa 0x0000000041e7b470000000007c09163e

	/* x^156672 mod p(x)` << 1, x^156736 mod p(x)` << 1 */
	.octa 0x00000001cbb6495e000000000adac060

	/* x^155648 mod p(x)` << 1, x^155712 mod p(x)` << 1 */
	.octa 0x000000010052a0b000000000bd8316ae

	/* x^154624 mod p(x)` << 1, x^154688 mod p(x)` << 1 */
	.octa 0x00000001d8effb5c000000019f09ab54

	/* x^153600 mod p(x)` << 1, x^153664 mod p(x)` << 1 */
	.octa 0x00000001d969853c0000000125155542

	/* x^152576 mod p(x)` << 1, x^152640 mod p(x)` << 1 */
	.octa 0x00000000523ccce2000000018fdb5882

	/* x^151552 mod p(x)` << 1, x^151616 mod p(x)` << 1 */
	.octa 0x000000001e2436bc00000000e794b3f4

	/* x^150528 mod p(x)` << 1, x^150592 mod p(x)` << 1 */
	.octa 0x00000000ddd1c3a2000000016f9bb022

	/* x^149504 mod p(x)` << 1, x^149568 mod p(x)` << 1 */
	.octa 0x0000000019fcfe3800000000290c9978

	/* x^148480 mod p(x)` << 1, x^148544 mod p(x)` << 1 */
	.octa 0x00000001ce95db640000000083c0f350

	/* x^147456 mod p(x)` << 1, x^147520 mod p(x)` << 1 */
	.octa 0x00000000af5828060000000173ea6628

	/* x^146432 mod p(x)` << 1, x^146496 mod p(x)` << 1 */
	.octa 0x00000001006388f600000001c8b4e00a

	/* x^145408 mod p(x)` << 1, x^145472 mod p(x)` << 1 */
	.octa 0x0000000179eca00a00000000de95d6aa

	/* x^144384 mod p(x)` << 1, x^144448 mod p(x)` << 1 */
	.octa 0x0000000122410a6a000000010b7f7248

	/* x^143360 mod p(x)` << 1, x^143424 mod p(x)` << 1 */
	.octa 0x000000004288e87c00000001326e3a06

	/* x^142336 mod p(x)` << 1, x^142400 mod p(x)` << 1 */
	.octa 0x000000016c5490da00000000bb62c2e6

	/* x^141312 mod p(x)` << 1, x^141376 mod p(x)` << 1 */
	.octa 0x00000000d1c71f6e0000000156a4b2c2

	/* x^140288 mod p(x)` << 1, x^140352 mod p(x)` << 1 */
	.octa 0x00000001b4ce08a6000000011dfe763a

	/* x^139264 mod p(x)` << 1, x^139328 mod p(x)` << 1 */
	.octa 0x00000001466ba60c000000007bcca8e2

	/* x^138240 mod p(x)` << 1, x^138304 mod p(x)` << 1 */
	.octa 0x00000001f6c488a40000000186118faa

	/* x^137216 mod p(x)` << 1, x^137280 mod p(x)` << 1 */
	.octa 0x000000013bfb06820000000111a65a88

	/* x^136192 mod p(x)` << 1, x^136256 mod p(x)` << 1 */
	.octa 0x00000000690e9e54000000003565e1c4

	/* x^135168 mod p(x)` << 1, x^135232 mod p(x)` << 1 */
	.octa 0x00000000281346b6000000012ed02a82

	/* x^134144 mod p(x)` << 1, x^134208 mod p(x)` << 1 */
	.octa 0x000000015646402400000000c486ecfc

	/* x^133120 mod p(x)` << 1, x^133184 mod p(x)` << 1 */
	.octa 0x000000016063a8dc0000000001b951b2

	/* x^132096 mod p(x)` << 1, x^132160 mod p(x)` << 1 */
	.octa 0x0000000116a663620000000048143916

	/* x^131072 mod p(x)` << 1, x^131136 mod p(x)` << 1 */
	.octa 0x000000017e8aa4d200000001dc2ae124

	/* x^130048 mod p(x)` << 1, x^130112 mod p(x)` << 1 */
	.octa 0x00000001728eb10c00000001416c58d6

	/* x^129024 mod p(x)` << 1, x^129088 mod p(x)` << 1 */
	.octa 0x00000001b08fd7fa00000000a479744a

	/* x^128000 mod p(x)` << 1, x^128064 mod p(x)` << 1 */
	.octa 0x00000001092a16e80000000096ca3a26

	/* x^126976 mod p(x)` << 1, x^127040 mod p(x)` << 1 */
	.octa 0x00000000a505637c00000000ff223d4e

	/* x^125952 mod p(x)` << 1, x^126016 mod p(x)` << 1 */
	.octa 0x00000000d94869b2000000010e84da42

	/* x^124928 mod p(x)` << 1, x^124992 mod p(x)` << 1 */
	.octa 0x00000001c8b203ae00000001b61ba3d0

	/* x^123904 mod p(x)` << 1, x^123968 mod p(x)` << 1 */
	.octa 0x000000005704aea000000000680f2de8

	/* x^122880 mod p(x)` << 1, x^122944 mod p(x)` << 1 */
	.octa 0x000000012e295fa2000000008772a9a8

	/* x^121856 mod p(x)` << 1, x^121920 mod p(x)` << 1 */
	.octa 0x000000011d0908bc0000000155f295bc

	/* x^120832 mod p(x)` << 1, x^120896 mod p(x)` << 1 */
	.octa 0x0000000193ed97ea00000000595f9282

	/* x^119808 mod p(x)` << 1, x^119872 mod p(x)` << 1 */
	.octa 0x000000013a0f1c520000000164b1c25a

	/* x^118784 mod p(x)` << 1, x^118848 mod p(x)` << 1 */
	.octa 0x000000010c2c40c000000000fbd67c50

	/* x^117760 mod p(x)` << 1, x^117824 mod p(x)` << 1 */
	.octa 0x00000000ff6fac3e0000000096076268

	/* x^116736 mod p(x)` << 1, x^116800 mod p(x)` << 1 */
	.octa 0x000000017b3609c000000001d288e4cc

	/* x^115712 mod p(x)` << 1, x^115776 mod p(x)` << 1 */
	.octa 0x0000000088c8c92200000001eaac1bdc

	/* x^114688 mod p(x)` << 1, x^114752 mod p(x)` << 1 */
	.octa 0x00000001751baae600000001f1ea39e2

	/* x^113664 mod p(x)` << 1, x^113728 mod p(x)` << 1 */
	.octa 0x000000010795297200000001eb6506fc

	/* x^112640 mod p(x)` << 1, x^112704 mod p(x)` << 1 */
	.octa 0x0000000162b00abe000000010f806ffe

	/* x^111616 mod p(x)` << 1, x^111680 mod p(x)` << 1 */
	.octa 0x000000000d7b404c000000010408481e

	/* x^110592 mod p(x)` << 1, x^110656 mod p(x)` << 1 */
	.octa 0x00000000763b13d40000000188260534

	/* x^109568 mod p(x)` << 1, x^109632 mod p(x)` << 1 */
	.octa 0x00000000f6dc22d80000000058fc73e0

	/* x^108544 mod p(x)` << 1, x^108608 mod p(x)` << 1 */
	.octa 0x000000007daae06000000000391c59b8

	/* x^107520 mod p(x)` << 1, x^107584 mod p(x)` << 1 */
	.octa 0x000000013359ab7c000000018b638400

	/* x^106496 mod p(x)` << 1, x^106560 mod p(x)` << 1 */
	.octa 0x000000008add438a000000011738f5c4

	/* x^105472 mod p(x)` << 1, x^105536 mod p(x)` << 1 */
	.octa 0x00000001edbefdea000000008cf7c6da

	/* x^104448 mod p(x)` << 1, x^104512 mod p(x)` << 1 */
	.octa 0x000000004104e0f800000001ef97fb16

	/* x^103424 mod p(x)` << 1, x^103488 mod p(x)` << 1 */
	.octa 0x00000000b48a82220000000102130e20

	/* x^102400 mod p(x)` << 1, x^102464 mod p(x)` << 1 */
	.octa 0x00000001bcb4684400000000db968898

	/* x^101376 mod p(x)` << 1, x^101440 mod p(x)` << 1 */
	.octa 0x000000013293ce0a00000000b5047b5e

	/* x^100352 mod p(x)` << 1, x^100416 mod p(x)` << 1 */
	.octa 0x00000001710d0844000000010b90fdb2

	/* x^99328 mod p(x)` << 1, x^99392 mod p(x)` << 1 */
	.octa 0x0000000117907f6e000000004834a32e

	/* x^98304 mod p(x)` << 1, x^98368 mod p(x)` << 1 */
	.octa 0x0000000087ddf93e0000000059c8f2b0

	/* x^97280 mod p(x)` << 1, x^97344 mod p(x)` << 1 */
	.octa 0x000000005970e9b00000000122cec508

	/* x^96256 mod p(x)` << 1, x^96320 mod p(x)` << 1 */
	.octa 0x0000000185b2b7d0000000000a330cda

	/* x^95232 mod p(x)` << 1, x^95296 mod p(x)` << 1 */
	.octa 0x00000001dcee0efc000000014a47148c

	/* x^94208 mod p(x)` << 1, x^94272 mod p(x)` << 1 */
	.octa 0x0000000030da27220000000042c61cb8

	/* x^93184 mod p(x)` << 1, x^93248 mod p(x)` << 1 */
	.octa 0x000000012f925a180000000012fe6960

	/* x^92160 mod p(x)` << 1, x^92224 mod p(x)` << 1 */
	.octa 0x00000000dd2e357c00000000dbda2c20

	/* x^91136 mod p(x)` << 1, x^91200 mod p(x)` << 1 */
	.octa 0x00000000071c80de000000011122410c

	/* x^90112 mod p(x)` << 1, x^90176 mod p(x)` << 1 */
	.octa 0x000000011513140a00000000977b2070

	/* x^89088 mod p(x)` << 1, x^89152 mod p(x)` << 1 */
	.octa 0x00000001df876e8e000000014050438e

	/* x^88064 mod p(x)` << 1, x^88128 mod p(x)` << 1 */
	.octa 0x000000015f81d6ce0000000147c840e8

	/* x^87040 mod p(x)` << 1, x^87104 mod p(x)` << 1 */
	.octa 0x000000019dd94dbe00000001cc7c88ce

	/* x^86016 mod p(x)` << 1, x^86080 mod p(x)` << 1 */
	.octa 0x00000001373d206e00000001476b35a4

	/* x^84992 mod p(x)` << 1, x^85056 mod p(x)` << 1 */
	.octa 0x00000000668ccade000000013d52d508

	/* x^83968 mod p(x)` << 1, x^84032 mod p(x)` << 1 */
	.octa 0x00000001b192d268000000008e4be32e

	/* x^82944 mod p(x)` << 1, x^83008 mod p(x)` << 1 */
	.octa 0x00000000e30f3a7800000000024120fe

	/* x^81920 mod p(x)` << 1, x^81984 mod p(x)` << 1 */
	.octa 0x000000010ef1f7bc00000000ddecddb4

	/* x^80896 mod p(x)` << 1, x^80960 mod p(x)` << 1 */
	.octa 0x00000001f5ac738000000000d4d403bc

	/* x^79872 mod p(x)` << 1, x^79936 mod p(x)` << 1 */
	.octa 0x000000011822ea7000000001734b89aa

	/* x^78848 mod p(x)` << 1, x^78912 mod p(x)` << 1 */
	.octa 0x00000000c3a33848000000010e7a58d6

	/* x^77824 mod p(x)` << 1, x^77888 mod p(x)` << 1 */
	.octa 0x00000001bd151c2400000001f9f04e9c

	/* x^76800 mod p(x)` << 1, x^76864 mod p(x)` << 1 */
	.octa 0x0000000056002d7600000000b692225e

	/* x^75776 mod p(x)` << 1, x^75840 mod p(x)` << 1 */
	.octa 0x000000014657c4f4000000019b8d3f3e

	/* x^74752 mod p(x)` << 1, x^74816 mod p(x)` << 1 */
	.octa 0x0000000113742d7c00000001a874f11e

	/* x^73728 mod p(x)` << 1, x^73792 mod p(x)` << 1 */
	.octa 0x000000019c5920ba000000010d5a4254

	/* x^72704 mod p(x)` << 1, x^72768 mod p(x)` << 1 */
	.octa 0x000000005216d2d600000000bbb2f5d6

	/* x^71680 mod p(x)` << 1, x^71744 mod p(x)` << 1 */
	.octa 0x0000000136f5ad8a0000000179cc0e36

	/* x^70656 mod p(x)` << 1, x^70720 mod p(x)` << 1 */
	.octa 0x000000018b07beb600000001dca1da4a

	/* x^69632 mod p(x)` << 1, x^69696 mod p(x)` << 1 */
	.octa 0x00000000db1e93b000000000feb1a192

	/* x^68608 mod p(x)` << 1, x^68672 mod p(x)` << 1 */
	.octa 0x000000000b96fa3a00000000d1eeedd6

	/* x^67584 mod p(x)` << 1, x^67648 mod p(x)` << 1 */
	.octa 0x00000001d9968af0000000008fad9bb4

	/* x^66560 mod p(x)` << 1, x^66624 mod p(x)` << 1 */
	.octa 0x000000000e4a77a200000001884938e4

	/* x^65536 mod p(x)` << 1, x^65600 mod p(x)` << 1 */
	.octa 0x00000000508c2ac800000001bc2e9bc0

	/* x^64512 mod p(x)` << 1, x^64576 mod p(x)` << 1 */
	.octa 0x0000000021572a8000000001f9658a68

	/* x^63488 mod p(x)` << 1, x^63552 mod p(x)` << 1 */
	.octa 0x00000001b859daf2000000001b9224fc

	/* x^62464 mod p(x)` << 1, x^62528 mod p(x)` << 1 */
	.octa 0x000000016f7884740000000055b2fb84

	/* x^61440 mod p(x)` << 1, x^61504 mod p(x)` << 1 */
	.octa 0x00000001b438810e000000018b090348

	/* x^60416 mod p(x)` << 1, x^60480 mod p(x)` << 1 */
	.octa 0x0000000095ddc6f2000000011ccbd5ea

	/* x^59392 mod p(x)` << 1, x^59456 mod p(x)` << 1 */
	.octa 0x00000001d977c20c0000000007ae47f8

	/* x^58368 mod p(x)` << 1, x^58432 mod p(x)` << 1 */
	.octa 0x00000000ebedb99a0000000172acbec0

	/* x^57344 mod p(x)` << 1, x^57408 mod p(x)` << 1 */
	.octa 0x00000001df9e9e9200000001c6e3ff20

	/* x^56320 mod p(x)` << 1, x^56384 mod p(x)` << 1 */
	.octa 0x00000001a4a3f95200000000e1b38744

	/* x^55296 mod p(x)` << 1, x^55360 mod p(x)` << 1 */
	.octa 0x00000000e2f5122000000000791585b2

	/* x^54272 mod p(x)` << 1, x^54336 mod p(x)` << 1 */
	.octa 0x000000004aa01f3e00000000ac53b894

	/* x^53248 mod p(x)` << 1, x^53312 mod p(x)` << 1 */
	.octa 0x00000000b3e90a5800000001ed5f2cf4

	/* x^52224 mod p(x)` << 1, x^52288 mod p(x)` << 1 */
	.octa 0x000000000c9ca2aa00000001df48b2e0

	/* x^51200 mod p(x)` << 1, x^51264 mod p(x)` << 1 */
	.octa 0x000000015168231600000000049c1c62

	/* x^50176 mod p(x)` << 1, x^50240 mod p(x)` << 1 */
	.octa 0x0000000036fce78c000000017c460c12

	/* x^49152 mod p(x)` << 1, x^49216 mod p(x)` << 1 */
	.octa 0x000000009037dc10000000015be4da7e

	/* x^48128 mod p(x)` << 1, x^48192 mod p(x)` << 1 */
	.octa 0x00000000d3298582000000010f38f668

	/* x^47104 mod p(x)` << 1, x^47168 mod p(x)` << 1 */
	.octa 0x00000001b42e8ad60000000039f40a00

	/* x^46080 mod p(x)` << 1, x^46144 mod p(x)` << 1 */
	.octa 0x00000000142a983800000000bd4c10c4

	/* x^45056 mod p(x)` << 1, x^45120 mod p(x)` << 1 */
	.octa 0x0000000109c7f1900000000042db1d98

	/* x^44032 mod p(x)` << 1, x^44096 mod p(x)` << 1 */
	.octa 0x0000000056ff931000000001c905bae6

	/* x^43008 mod p(x)` << 1, x^43072 mod p(x)` << 1 */
	.octa 0x00000001594513aa00000000069d40ea

	/* x^41984 mod p(x)` << 1, x^42048 mod p(x)` << 1 */
	.octa 0x00000001e3b5b1e8000000008e4fbad0

	/* x^40960 mod p(x)` << 1, x^41024 mod p(x)` << 1 */
	.octa 0x000000011dd5fc080000000047bedd46

	/* x^39936 mod p(x)` << 1, x^40000 mod p(x)` << 1 */
	.octa 0x00000001675f0cc20000000026396bf8

	/* x^38912 mod p(x)` << 1, x^38976 mod p(x)` << 1 */
	.octa 0x00000000d1c8dd4400000000379beb92

	/* x^37888 mod p(x)` << 1, x^37952 mod p(x)` << 1 */
	.octa 0x0000000115ebd3d8000000000abae54a

	/* x^36864 mod p(x)` << 1, x^36928 mod p(x)` << 1 */
	.octa 0x00000001ecbd0dac0000000007e6a128

	/* x^35840 mod p(x)` << 1, x^35904 mod p(x)` << 1 */
	.octa 0x00000000cdf67af2000000000ade29d2

	/* x^34816 mod p(x)` << 1, x^34880 mod p(x)` << 1 */
	.octa 0x000000004c01ff4c00000000f974c45c

	/* x^33792 mod p(x)` << 1, x^33856 mod p(x)` << 1 */
	.octa 0x00000000f2d8657e00000000e77ac60a

	/* x^32768 mod p(x)` << 1, x^32832 mod p(x)` << 1 */
	.octa 0x000000006bae74c40000000145895816

	/* x^31744 mod p(x)` << 1, x^31808 mod p(x)` << 1 */
	.octa 0x0000000152af8aa00000000038e362be

	/* x^30720 mod p(x)` << 1, x^30784 mod p(x)` << 1 */
	.octa 0x0000000004663802000000007f991a64

	/* x^29696 mod p(x)` << 1, x^29760 mod p(x)` << 1 */
	.octa 0x00000001ab2f5afc00000000fa366d3a

	/* x^28672 mod p(x)` << 1, x^28736 mod p(x)` << 1 */
	.octa 0x0000000074a4ebd400000001a2bb34f0

	/* x^27648 mod p(x)` << 1, x^27712 mod p(x)` << 1 */
	.octa 0x00000001d7ab3a4c0000000028a9981e

	/* x^26624 mod p(x)` << 1, x^26688 mod p(x)` << 1 */
	.octa 0x00000001a8da60c600000001dbc672be

	/* x^25600 mod p(x)` << 1, x^25664 mod p(x)` << 1 */
	.octa 0x000000013cf6382000000000b04d77f6

	/* x^24576 mod p(x)` << 1, x^24640 mod p(x)` << 1 */
	.octa 0x00000000bec12e1e0000000124400d96

	/* x^23552 mod p(x)` << 1, x^23616 mod p(x)` << 1 */
	.octa 0x00000001c6368010000000014ca4b414

	/* x^22528 mod p(x)` << 1, x^22592 mod p(x)` << 1 */
	.octa 0x00000001e6e78758000000012fe2c938

	/* x^21504 mod p(x)` << 1, x^21568 mod p(x)` << 1 */
	.octa 0x000000008d7f2b3c00000001faed01e6

	/* x^20480 mod p(x)` << 1, x^20544 mod p(x)` << 1 */
	.octa 0x000000016b4a156e000000007e80ecfe

	/* x^19456 mod p(x)` << 1, x^19520 mod p(x)` << 1 */
	.octa 0x00000001c63cfeb60000000098daee94

	/* x^18432 mod p(x)` << 1, x^18496 mod p(x)` << 1 */
	.octa 0x000000015f902670000000010a04edea

	/* x^17408 mod p(x)` << 1, x^17472 mod p(x)` << 1 */
	.octa 0x00000001cd5de11e00000001c00b4524

	/* x^16384 mod p(x)` << 1, x^16448 mod p(x)` << 1 */
	.octa 0x000000001acaec540000000170296550

	/* x^15360 mod p(x)` << 1, x^15424 mod p(x)` << 1 */
	.octa 0x000000002bd0ca780000000181afaa48

	/* x^14336 mod p(x)` << 1, x^14400 mod p(x)` << 1 */
	.octa 0x0000000032d63d5c0000000185a31ffa

	/* x^13312 mod p(x)` << 1, x^13376 mod p(x)` << 1 */
	.octa 0x000000001c6d4e4c000000002469f608

	/* x^12288 mod p(x)` << 1, x^12352 mod p(x)` << 1 */
	.octa 0x0000000106a60b92000000006980102a

	/* x^11264 mod p(x)` << 1, x^11328 mod p(x)` << 1 */
	.octa 0x00000000d3855e120000000111ea9ca8

	/* x^10240 mod p(x)` << 1, x^10304 mod p(x)` << 1 */
	.octa 0x00000000e312563600000001bd1d29ce

	/* x^9216 mod p(x)` << 1, x^9280 mod p(x)` << 1 */
	.octa 0x000000009e8f7ea400000001b34b9580

	/* x^8192 mod p(x)` << 1, x^8256 mod p(x)` << 1 */
	.octa 0x00000001c82e562c000000003076054e

	/* x^7168 mod p(x)` << 1, x^7232 mod p(x)` << 1 */
	.octa 0x00000000ca9f09ce000000012a608ea4

	/* x^6144 mod p(x)` << 1, x^6208 mod p(x)` << 1 */
	.octa 0x00000000c63764e600000000784d05fe

	/* x^5120 mod p(x)` << 1, x^5184 mod p(x)` << 1 */
	.octa 0x0000000168d2e49e000000016ef0d82a

	/* x^4096 mod p(x)` << 1, x^4160 mod p(x)` << 1 */
	.octa 0x00000000e986c1480000000075bda454

	/* x^3072 mod p(x)` << 1, x^3136 mod p(x)` << 1 */
	.octa 0x00000000cfb65894000000003dc0a1c4

	/* x^2048 mod p(x)` << 1, x^2112 mod p(x)` << 1 */
	.octa 0x0000000111cadee400000000e9a5d8be

	/* x^1024 mod p(x)` << 1, x^1088 mod p(x)` << 1 */
	.octa 0x0000000171fb63ce00000001609bc4b4

.short_constants:

	/* Reduce final 1024-2048 bits to 64 bits, shifting 32 bits to include the trailing 32 bits of zeros */
	/* x^1952 mod p(x)`, x^1984 mod p(x)`, x^2016 mod p(x)`, x^2048 mod p(x)` */
	.octa 0x7fec2963e5bf80485cf015c388e56f72

	/* x^1824 mod p(x)`, x^1856 mod p(x)`, x^1888 mod p(x)`, x^1920 mod p(x)` */
	.octa 0x38e888d4844752a9963a18920246e2e6

	/* x^1696 mod p(x)`, x^1728 mod p(x)`, x^1760 mod p(x)`, x^1792 mod p(x)` */
	.octa 0x42316c00730206ad419a441956993a31

	/* x^1568 mod p(x)`, x^1600 mod p(x)`, x^1632 mod p(x)`, x^1664 mod p(x)` */
	.octa 0x543d5c543e65ddf9924752ba2b830011

	/* x^1440 mod p(x)`, x^1472 mod p(x)`, x^1504 mod p(x)`, x^1536 mod p(x)` */
	.octa 0x78e87aaf56767c9255bd7f9518e4a304

	/* x^1312 mod p(x)`, x^1344 mod p(x)`, x^1376 mod p(x)`, x^1408 mod p(x)` */
	.octa 0x8f68fcec1903da7f6d76739fe0553f1e

	/* x^1184 mod p(x)`, x^1216 mod p(x)`, x^1248 mod p(x)`, x^1280 mod p(x)` */
	.octa 0x3f4840246791d588c133722b1fe0b5c3

	/* x^1056 mod p(x)`, x^1088 mod p(x)`, x^1120 mod p(x)`, x^1152 mod p(x)` */
	.octa 0x34c96751b04de25a64b67ee0e55ef1f3

	/* x^928 mod p(x)`, x^960 mod p(x)`, x^992 mod p(x)`, x^1024 mod p(x)` */
	.octa 0x156c8e180b4a395b069db049b8fdb1e7

	/* x^800 mod p(x)`, x^832 mod p(x)`, x^864 mod p(x)`, x^896 mod p(x)` */
	.octa 0xe0b99ccbe661f7bea11bfaf3c9e90b9e

	/* x^672 mod p(x)`, x^704 mod p(x)`, x^736 mod p(x)`, x^768 mod p(x)` */
	.octa 0x041d37768cd75659817cdc5119b29a35

	/* x^544 mod p(x)`, x^576 mod p(x)`, x^608 mod p(x)`, x^640 mod p(x)` */
	.octa 0x3a0777818cfaa9651ce9d94b36c41f1c

	/* x^416 mod p(x)`, x^448 mod p(x)`, x^480 mod p(x)`, x^512 mod p(x)` */
	.octa 0x0e148e8252377a554f256efcb82be955

	/* x^288 mod p(x)`, x^320 mod p(x)`, x^352 mod p(x)`, x^384 mod p(x)` */
	.octa 0x9c25531d19e65ddeec1631edb2dea967

	/* x^160 mod p(x)`, x^192 mod p(x)`, x^224 mod p(x)`, x^256 mod p(x)` */
	.octa 0x790606ff9957c0a65d27e147510ac59a

	/* x^32 mod p(x)`, x^64 mod p(x)`, x^96 mod p(x)`, x^128 mod p(x)` */
	.octa 0x82f63b786ea2d55ca66805eb18b8ea18


.barrett_constants:
	/* 33 bit reflected Barrett constant m - (4^32)/n */
	.octa 0x000000000000000000000000dea713f1	/* x^64 div p(x)` */
	/* 33 bit reflected Barrett constant n */
	.octa 0x00000000000000000000000105ec76f1

	.text

#if defined(__BIG_ENDIAN__)
#define BYTESWAP_DATA
#else
#undef BYTESWAP_DATA
#endif

#define off16		r25
#define off32		r26
#define off48		r27
#define off64		r28
#define off80		r29
#define off96		r30
#define off112		r31

#define const1		v24
#define const2		v25

#define byteswap	v26
#define	mask_32bit	v27
#define	mask_64bit	v28
#define zeroes		v29

#ifdef BYTESWAP_DATA
#define VPERM(A, B, C, D) vperm	A, B, C, D
#else
#define VPERM(A, B, C, D)
#endif

/* unsigned int __crc32c_vpmsum(unsigned int crc, void *p, unsigned long len) */
FUNC_START(__crc32c_vpmsum)
	std	r31,-8(r1)
	std	r30,-16(r1)
	std	r29,-24(r1)
	std	r28,-32(r1)
	std	r27,-40(r1)
	std	r26,-48(r1)
	std	r25,-56(r1)

	li	off16,16
	li	off32,32
	li	off48,48
	li	off64,64
	li	off80,80
	li	off96,96
	li	off112,112
	li	r0,0

	/* Enough room for saving 10 non volatile VMX registers */
	subi	r6,r1,56+10*16
	subi	r7,r1,56+2*16

	stvx	v20,0,r6
	stvx	v21,off16,r6
	stvx	v22,off32,r6
	stvx	v23,off48,r6
	stvx	v24,off64,r6
	stvx	v25,off80,r6
	stvx	v26,off96,r6
	stvx	v27,off112,r6
	stvx	v28,0,r7
	stvx	v29,off16,r7

	mr	r10,r3

	vxor	zeroes,zeroes,zeroes
	vspltisw v0,-1

	vsldoi	mask_32bit,zeroes,v0,4
	vsldoi	mask_64bit,zeroes,v0,8

	/* Get the initial value into v8 */
	vxor	v8,v8,v8
	MTVRD(v8, R3)
	vsldoi	v8,zeroes,v8,8	/* shift into bottom 32 bits */

#ifdef BYTESWAP_DATA
	addis	r3,r2,.byteswap_constant@toc@ha
	addi	r3,r3,.byteswap_constant@toc@l

	lvx	byteswap,0,r3
	addi	r3,r3,16
#endif

	cmpdi	r5,256
	blt	.Lshort

	rldicr	r6,r5,0,56

	/* Checksum in blocks of MAX_SIZE */
1:	lis	r7,MAX_SIZE@h
	ori	r7,r7,MAX_SIZE@l
	mr	r9,r7
	cmpd	r6,r7
	bgt	2f
	mr	r7,r6
2:	subf	r6,r7,r6

	/* our main loop does 128 bytes at a time */
	srdi	r7,r7,7

	/*
	 * Work out the offset into the constants table to start at. Each
	 * constant is 16 bytes, and it is used against 128 bytes of input
	 * data - 128 / 16 = 8
	 */
	sldi	r8,r7,4
	srdi	r9,r9,3
	subf	r8,r8,r9

	/* We reduce our final 128 bytes in a separate step */
	addi	r7,r7,-1
	mtctr	r7

	addis	r3,r2,.constants@toc@ha
	addi	r3,r3,.constants@toc@l

	/* Find the start of our constants */
	add	r3,r3,r8

	/* zero v0-v7 which will contain our checksums */
	vxor	v0,v0,v0
	vxor	v1,v1,v1
	vxor	v2,v2,v2
	vxor	v3,v3,v3
	vxor	v4,v4,v4
	vxor	v5,v5,v5
	vxor	v6,v6,v6
	vxor	v7,v7,v7

	lvx	const1,0,r3

	/*
	 * If we are looping back to consume more data we use the values
	 * already in v16-v23.
	 */
	cmpdi	r0,1
	beq	2f

	/* First warm up pass */
	lvx	v16,0,r4
	lvx	v17,off16,r4
	VPERM(v16,v16,v16,byteswap)
	VPERM(v17,v17,v17,byteswap)
	lvx	v18,off32,r4
	lvx	v19,off48,r4
	VPERM(v18,v18,v18,byteswap)
	VPERM(v19,v19,v19,byteswap)
	lvx	v20,off64,r4
	lvx	v21,off80,r4
	VPERM(v20,v20,v20,byteswap)
	VPERM(v21,v21,v21,byteswap)
	lvx	v22,off96,r4
	lvx	v23,off112,r4
	VPERM(v22,v22,v22,byteswap)
	VPERM(v23,v23,v23,byteswap)
	addi	r4,r4,8*16

	/* xor in initial value */
	vxor	v16,v16,v8

2:	bdz	.Lfirst_warm_up_done

	addi	r3,r3,16
	lvx	const2,0,r3

	/* Second warm up pass */
	VPMSUMD(v8,v16,const1)
	lvx	v16,0,r4
	VPERM(v16,v16,v16,byteswap)
	ori	r2,r2,0

	VPMSUMD(v9,v17,const1)
	lvx	v17,off16,r4
	VPERM(v17,v17,v17,byteswap)
	ori	r2,r2,0

	VPMSUMD(v10,v18,const1)
	lvx	v18,off32,r4
	VPERM(v18,v18,v18,byteswap)
	ori	r2,r2,0

	VPMSUMD(v11,v19,const1)
	lvx	v19,off48,r4
	VPERM(v19,v19,v19,byteswap)
	ori	r2,r2,0

	VPMSUMD(v12,v20,const1)
	lvx	v20,off64,r4
	VPERM(v20,v20,v20,byteswap)
	ori	r2,r2,0

	VPMSUMD(v13,v21,const1)
	lvx	v21,off80,r4
	VPERM(v21,v21,v21,byteswap)
	ori	r2,r2,0

	VPMSUMD(v14,v22,const1)
	lvx	v22,off96,r4
	VPERM(v22,v22,v22,byteswap)
	ori	r2,r2,0

	VPMSUMD(v15,v23,const1)
	lvx	v23,off112,r4
	VPERM(v23,v23,v23,byteswap)

	addi	r4,r4,8*16

	bdz	.Lfirst_cool_down

	/*
	 * main loop. We modulo schedule it such that it takes three iterations
	 * to complete - first iteration load, second iteration vpmsum, third
	 * iteration xor.
	 */
	.balign	16
4:	lvx	const1,0,r3
	addi	r3,r3,16
	ori	r2,r2,0

	vxor	v0,v0,v8
	VPMSUMD(v8,v16,const2)
	lvx	v16,0,r4
	VPERM(v16,v16,v16,byteswap)
	ori	r2,r2,0

	vxor	v1,v1,v9
	VPMSUMD(v9,v17,const2)
	lvx	v17,off16,r4
	VPERM(v17,v17,v17,byteswap)
	ori	r2,r2,0

	vxor	v2,v2,v10
	VPMSUMD(v10,v18,const2)
	lvx	v18,off32,r4
	VPERM(v18,v18,v18,byteswap)
	ori	r2,r2,0

	vxor	v3,v3,v11
	VPMSUMD(v11,v19,const2)
	lvx	v19,off48,r4
	VPERM(v19,v19,v19,byteswap)
	lvx	const2,0,r3
	ori	r2,r2,0

	vxor	v4,v4,v12
	VPMSUMD(v12,v20,const1)
	lvx	v20,off64,r4
	VPERM(v20,v20,v20,byteswap)
	ori	r2,r2,0

	vxor	v5,v5,v13
	VPMSUMD(v13,v21,const1)
	lvx	v21,off80,r4
	VPERM(v21,v21,v21,byteswap)
	ori	r2,r2,0

	vxor	v6,v6,v14
	VPMSUMD(v14,v22,const1)
	lvx	v22,off96,r4
	VPERM(v22,v22,v22,byteswap)
	ori	r2,r2,0

	vxor	v7,v7,v15
	VPMSUMD(v15,v23,const1)
	lvx	v23,off112,r4
	VPERM(v23,v23,v23,byteswap)

	addi	r4,r4,8*16

	bdnz	4b

.Lfirst_cool_down:
	/* First cool down pass */
	lvx	const1,0,r3
	addi	r3,r3,16

	vxor	v0,v0,v8
	VPMSUMD(v8,v16,const1)
	ori	r2,r2,0

	vxor	v1,v1,v9
	VPMSUMD(v9,v17,const1)
	ori	r2,r2,0

	vxor	v2,v2,v10
	VPMSUMD(v10,v18,const1)
	ori	r2,r2,0

	vxor	v3,v3,v11
	VPMSUMD(v11,v19,const1)
	ori	r2,r2,0

	vxor	v4,v4,v12
	VPMSUMD(v12,v20,const1)
	ori	r2,r2,0

	vxor	v5,v5,v13
	VPMSUMD(v13,v21,const1)
	ori	r2,r2,0

	vxor	v6,v6,v14
	VPMSUMD(v14,v22,const1)
	ori	r2,r2,0

	vxor	v7,v7,v15
	VPMSUMD(v15,v23,const1)
	ori	r2,r2,0

.Lsecond_cool_down:
	/* Second cool down pass */
	vxor	v0,v0,v8
	vxor	v1,v1,v9
	vxor	v2,v2,v10
	vxor	v3,v3,v11
	vxor	v4,v4,v12
	vxor	v5,v5,v13
	vxor	v6,v6,v14
	vxor	v7,v7,v15

	/*
	 * vpmsumd produces a 96 bit result in the least significant bits
	 * of the register. Since we are bit reflected we have to shift it
	 * left 32 bits so it occupies the least significant bits in the
	 * bit reflected domain.
	 */
	vsldoi	v0,v0,zeroes,4
	vsldoi	v1,v1,zeroes,4
	vsldoi	v2,v2,zeroes,4
	vsldoi	v3,v3,zeroes,4
	vsldoi	v4,v4,zeroes,4
	vsldoi	v5,v5,zeroes,4
	vsldoi	v6,v6,zeroes,4
	vsldoi	v7,v7,zeroes,4

	/* xor with last 1024 bits */
	lvx	v8,0,r4
	lvx	v9,off16,r4
	VPERM(v8,v8,v8,byteswap)
	VPERM(v9,v9,v9,byteswap)
	lvx	v10,off32,r4
	lvx	v11,off48,r4
	VPERM(v10,v10,v10,byteswap)
	VPERM(v11,v11,v11,byteswap)
	lvx	v12,off64,r4
	lvx	v13,off80,r4
	VPERM(v12,v12,v12,byteswap)
	VPERM(v13,v13,v13,byteswap)
	lvx	v14,off96,r4
	lvx	v15,off112,r4
	VPERM(v14,v14,v14,byteswap)
	VPERM(v15,v15,v15,byteswap)

	addi	r4,r4,8*16

	vxor	v16,v0,v8
	vxor	v17,v1,v9
	vxor	v18,v2,v10
	vxor	v19,v3,v11
	vxor	v20,v4,v12
	vxor	v21,v5,v13
	vxor	v22,v6,v14
	vxor	v23,v7,v15

	li	r0,1
	cmpdi	r6,0
	addi	r6,r6,128
	bne	1b

	/* Work out how many bytes we have left */
	andi.	r5,r5,127

	/* Calculate where in the constant table we need to start */
	subfic	r6,r5,128
	add	r3,r3,r6

	/* How many 16 byte chunks are in the tail */
	srdi	r7,r5,4
	mtctr	r7

	/*
	 * Reduce the previously calculated 1024 bits to 64 bits, shifting
	 * 32 bits to include the trailing 32 bits of zeros
	 */
	lvx	v0,0,r3
	lvx	v1,off16,r3
	lvx	v2,off32,r3
	lvx	v3,off48,r3
	lvx	v4,off64,r3
	lvx	v5,off80,r3
	lvx	v6,off96,r3
	lvx	v7,off112,r3
	addi	r3,r3,8*16

	VPMSUMW(v0,v16,v0)
	VPMSUMW(v1,v17,v1)
	VPMSUMW(v2,v18,v2)
	VPMSUMW(v3,v19,v3)
	VPMSUMW(v4,v20,v4)
	VPMSUMW(v5,v21,v5)
	VPMSUMW(v6,v22,v6)
	VPMSUMW(v7,v23,v7)

	/* Now reduce the tail (0 - 112 bytes) */
	cmpdi	r7,0
	beq	1f

	lvx	v16,0,r4
	lvx	v17,0,r3
	VPERM(v16,v16,v16,byteswap)
	VPMSUMW(v16,v16,v17)
	vxor	v0,v0,v16
	bdz	1f

	lvx	v16,off16,r4
	lvx	v17,off16,r3
	VPERM(v16,v16,v16,byteswap)
	VPMSUMW(v16,v16,v17)
	vxor	v0,v0,v16
	bdz	1f

	lvx	v16,off32,r4
	lvx	v17,off32,r3
	VPERM(v16,v16,v16,byteswap)
	VPMSUMW(v16,v16,v17)
	vxor	v0,v0,v16
	bdz	1f

	lvx	v16,off48,r4
	lvx	v17,off48,r3
	VPERM(v16,v16,v16,byteswap)
	VPMSUMW(v16,v16,v17)
	vxor	v0,v0,v16
	bdz	1f

	lvx	v16,off64,r4
	lvx	v17,off64,r3
	VPERM(v16,v16,v16,byteswap)
	VPMSUMW(v16,v16,v17)
	vxor	v0,v0,v16
	bdz	1f

	lvx	v16,off80,r4
	lvx	v17,off80,r3
	VPERM(v16,v16,v16,byteswap)
	VPMSUMW(v16,v16,v17)
	vxor	v0,v0,v16
	bdz	1f

	lvx	v16,off96,r4
	lvx	v17,off96,r3
	VPERM(v16,v16,v16,byteswap)
	VPMSUMW(v16,v16,v17)
	vxor	v0,v0,v16

	/* Now xor all the parallel chunks together */
1:	vxor	v0,v0,v1
	vxor	v2,v2,v3
	vxor	v4,v4,v5
	vxor	v6,v6,v7

	vxor	v0,v0,v2
	vxor	v4,v4,v6

	vxor	v0,v0,v4

.Lbarrett_reduction:
	/* Barrett constants */
	addis	r3,r2,.barrett_constants@toc@ha
	addi	r3,r3,.barrett_constants@toc@l

	lvx	const1,0,r3
	lvx	const2,off16,r3

	vsldoi	v1,v0,v0,8
	vxor	v0,v0,v1		/* xor two 64 bit results together */

	/* shift left one bit */
	vspltisb v1,1
	vsl	v0,v0,v1

	vand	v0,v0,mask_64bit

	/*
	 * The reflected version of Barrett reduction. Instead of bit
	 * reflecting our data (which is expensive to do), we bit reflect our
	 * constants and our algorithm, which means the intermediate data in
	 * our vector registers goes from 0-63 instead of 63-0. We can reflect
	 * the algorithm because we don't carry in mod 2 arithmetic.
	 */
	vand	v1,v0,mask_32bit	/* bottom 32 bits of a */
	VPMSUMD(v1,v1,const1)		/* ma */
	vand	v1,v1,mask_32bit	/* bottom 32bits of ma */
	VPMSUMD(v1,v1,const2)		/* qn */
	vxor	v0,v0,v1		/* a - qn, subtraction is xor in GF(2) */

	/*
	 * Since we are bit reflected, the result (ie the low 32 bits) is in
	 * the high 32 bits. We just need to shift it left 4 bytes
	 * V0 [ 0 1 X 3 ]
	 * V0 [ 0 X 2 3 ]
	 */
	vsldoi	v0,v0,zeroes,4		/* shift result into top 64 bits of */

	/* Get it into r3 */
	MFVRD(R3, v0)

.Lout:
	subi	r6,r1,56+10*16
	subi	r7,r1,56+2*16

	lvx	v20,0,r6
	lvx	v21,off16,r6
	lvx	v22,off32,r6
	lvx	v23,off48,r6
	lvx	v24,off64,r6
	lvx	v25,off80,r6
	lvx	v26,off96,r6
	lvx	v27,off112,r6
	lvx	v28,0,r7
	lvx	v29,off16,r7

	ld	r31,-8(r1)
	ld	r30,-16(r1)
	ld	r29,-24(r1)
	ld	r28,-32(r1)
	ld	r27,-40(r1)
	ld	r26,-48(r1)
	ld	r25,-56(r1)

	blr

.Lfirst_warm_up_done:
	lvx	const1,0,r3
	addi	r3,r3,16

	VPMSUMD(v8,v16,const1)
	VPMSUMD(v9,v17,const1)
	VPMSUMD(v10,v18,const1)
	VPMSUMD(v11,v19,const1)
	VPMSUMD(v12,v20,const1)
	VPMSUMD(v13,v21,const1)
	VPMSUMD(v14,v22,const1)
	VPMSUMD(v15,v23,const1)

	b	.Lsecond_cool_down

.Lshort:
	cmpdi	r5,0
	beq	.Lzero

	addis	r3,r2,.short_constants@toc@ha
	addi	r3,r3,.short_constants@toc@l

	/* Calculate where in the constant table we need to start */
	subfic	r6,r5,256
	add	r3,r3,r6

	/* How many 16 byte chunks? */
	srdi	r7,r5,4
	mtctr	r7

	vxor	v19,v19,v19
	vxor	v20,v20,v20

	lvx	v0,0,r4
	lvx	v16,0,r3
	VPERM(v0,v0,v16,byteswap)
	vxor	v0,v0,v8	/* xor in initial value */
	VPMSUMW(v0,v0,v16)
	bdz	.Lv0

	lvx	v1,off16,r4
	lvx	v17,off16,r3
	VPERM(v1,v1,v17,byteswap)
	VPMSUMW(v1,v1,v17)
	bdz	.Lv1

	lvx	v2,off32,r4
	lvx	v16,off32,r3
	VPERM(v2,v2,v16,byteswap)
	VPMSUMW(v2,v2,v16)
	bdz	.Lv2

	lvx	v3,off48,r4
	lvx	v17,off48,r3
	VPERM(v3,v3,v17,byteswap)
	VPMSUMW(v3,v3,v17)
	bdz	.Lv3

	lvx	v4,off64,r4
	lvx	v16,off64,r3
	VPERM(v4,v4,v16,byteswap)
	VPMSUMW(v4,v4,v16)
	bdz	.Lv4

	lvx	v5,off80,r4
	lvx	v17,off80,r3
	VPERM(v5,v5,v17,byteswap)
	VPMSUMW(v5,v5,v17)
	bdz	.Lv5

	lvx	v6,off96,r4
	lvx	v16,off96,r3
	VPERM(v6,v6,v16,byteswap)
	VPMSUMW(v6,v6,v16)
	bdz	.Lv6

	lvx	v7,off112,r4
	lvx	v17,off112,r3
	VPERM(v7,v7,v17,byteswap)
	VPMSUMW(v7,v7,v17)
	bdz	.Lv7

	addi	r3,r3,128
	addi	r4,r4,128

	lvx	v8,0,r4
	lvx	v16,0,r3
	VPERM(v8,v8,v16,byteswap)
	VPMSUMW(v8,v8,v16)
	bdz	.Lv8

	lvx	v9,off16,r4
	lvx	v17,off16,r3
	VPERM(v9,v9,v17,byteswap)
	VPMSUMW(v9,v9,v17)
	bdz	.Lv9

	lvx	v10,off32,r4
	lvx	v16,off32,r3
	VPERM(v10,v10,v16,byteswap)
	VPMSUMW(v10,v10,v16)
	bdz	.Lv10

	lvx	v11,off48,r4
	lvx	v17,off48,r3
	VPERM(v11,v11,v17,byteswap)
	VPMSUMW(v11,v11,v17)
	bdz	.Lv11

	lvx	v12,off64,r4
	lvx	v16,off64,r3
	VPERM(v12,v12,v16,byteswap)
	VPMSUMW(v12,v12,v16)
	bdz	.Lv12

	lvx	v13,off80,r4
	lvx	v17,off80,r3
	VPERM(v13,v13,v17,byteswap)
	VPMSUMW(v13,v13,v17)
	bdz	.Lv13

	lvx	v14,off96,r4
	lvx	v16,off96,r3
	VPERM(v14,v14,v16,byteswap)
	VPMSUMW(v14,v14,v16)
	bdz	.Lv14

	lvx	v15,off112,r4
	lvx	v17,off112,r3
	VPERM(v15,v15,v17,byteswap)
	VPMSUMW(v15,v15,v17)

.Lv15:	vxor	v19,v19,v15
.Lv14:	vxor	v20,v20,v14
.Lv13:	vxor	v19,v19,v13
.Lv12:	vxor	v20,v20,v12
.Lv11:	vxor	v19,v19,v11
.Lv10:	vxor	v20,v20,v10
.Lv9:	vxor	v19,v19,v9
.Lv8:	vxor	v20,v20,v8
.Lv7:	vxor	v19,v19,v7
.Lv6:	vxor	v20,v20,v6
.Lv5:	vxor	v19,v19,v5
.Lv4:	vxor	v20,v20,v4
.Lv3:	vxor	v19,v19,v3
.Lv2:	vxor	v20,v20,v2
.Lv1:	vxor	v19,v19,v1
.Lv0:	vxor	v20,v20,v0

	vxor	v0,v19,v20

	b	.Lbarrett_reduction

.Lzero:
	mr	r3,r10
	b	.Lout

FUNC_END(__crc32_vpmsum)
OpenPOWER on IntegriCloud