1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
* Copyright (C) 1999, 2000 Silicon Graphics, Inc.
* Copyright (C) 2004 Thiemo Seufer
*/
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/mman.h>
#include <linux/personality.h>
#include <linux/sys.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <asm/bootinfo.h>
#include <asm/cpu.h>
#include <asm/fpu.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/mipsregs.h>
#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/elf.h>
#include <asm/isadep.h>
#include <asm/inst.h>
/*
* We use this if we don't have any better idle routine..
* (This to kill: kernel/platform.c.
*/
void default_idle (void)
{
}
/*
* The idle thread. There's no useful work to be done, so just try to conserve
* power and have a low exit latency (ie sit in a loop waiting for somebody to
* say that they'd like to reschedule)
*/
ATTRIB_NORET void cpu_idle(void)
{
/* endless idle loop with no priority at all */
while (1) {
while (!need_resched())
if (cpu_wait)
(*cpu_wait)();
schedule();
}
}
asmlinkage void ret_from_fork(void);
void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
{
unsigned long status;
/* New thread loses kernel privileges. */
status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|KU_MASK);
#ifdef CONFIG_MIPS64
status &= ~ST0_FR;
status |= (current->thread.mflags & MF_32BIT_REGS) ? 0 : ST0_FR;
#endif
status |= KU_USER;
regs->cp0_status = status;
clear_used_math();
lose_fpu();
regs->cp0_epc = pc;
regs->regs[29] = sp;
current_thread_info()->addr_limit = USER_DS;
}
void exit_thread(void)
{
}
void flush_thread(void)
{
}
int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
unsigned long unused, struct task_struct *p, struct pt_regs *regs)
{
struct thread_info *ti = p->thread_info;
struct pt_regs *childregs;
long childksp;
childksp = (unsigned long)ti + THREAD_SIZE - 32;
preempt_disable();
if (is_fpu_owner()) {
save_fp(p);
}
preempt_enable();
/* set up new TSS. */
childregs = (struct pt_regs *) childksp - 1;
*childregs = *regs;
childregs->regs[7] = 0; /* Clear error flag */
#if defined(CONFIG_BINFMT_IRIX)
if (current->personality != PER_LINUX) {
/* Under IRIX things are a little different. */
childregs->regs[3] = 1;
regs->regs[3] = 0;
}
#endif
childregs->regs[2] = 0; /* Child gets zero as return value */
regs->regs[2] = p->pid;
if (childregs->cp0_status & ST0_CU0) {
childregs->regs[28] = (unsigned long) ti;
childregs->regs[29] = childksp;
ti->addr_limit = KERNEL_DS;
} else {
childregs->regs[29] = usp;
ti->addr_limit = USER_DS;
}
p->thread.reg29 = (unsigned long) childregs;
p->thread.reg31 = (unsigned long) ret_from_fork;
/*
* New tasks lose permission to use the fpu. This accelerates context
* switching for most programs since they don't use the fpu.
*/
p->thread.cp0_status = read_c0_status() & ~(ST0_CU2|ST0_CU1);
childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
clear_tsk_thread_flag(p, TIF_USEDFPU);
return 0;
}
/* Fill in the fpu structure for a core dump.. */
int dump_fpu(struct pt_regs *regs, elf_fpregset_t *r)
{
memcpy(r, ¤t->thread.fpu, sizeof(current->thread.fpu));
return 1;
}
void dump_regs(elf_greg_t *gp, struct pt_regs *regs)
{
int i;
for (i = 0; i < EF_R0; i++)
gp[i] = 0;
gp[EF_R0] = 0;
for (i = 1; i <= 31; i++)
gp[EF_R0 + i] = regs->regs[i];
gp[EF_R26] = 0;
gp[EF_R27] = 0;
gp[EF_LO] = regs->lo;
gp[EF_HI] = regs->hi;
gp[EF_CP0_EPC] = regs->cp0_epc;
gp[EF_CP0_BADVADDR] = regs->cp0_badvaddr;
gp[EF_CP0_STATUS] = regs->cp0_status;
gp[EF_CP0_CAUSE] = regs->cp0_cause;
#ifdef EF_UNUSED0
gp[EF_UNUSED0] = 0;
#endif
}
int dump_task_fpu (struct task_struct *t, elf_fpregset_t *fpr)
{
memcpy(fpr, &t->thread.fpu, sizeof(current->thread.fpu));
return 1;
}
/*
* Create a kernel thread
*/
ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *))
{
do_exit(fn(arg));
}
long kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
{
struct pt_regs regs;
memset(®s, 0, sizeof(regs));
regs.regs[4] = (unsigned long) arg;
regs.regs[5] = (unsigned long) fn;
regs.cp0_epc = (unsigned long) kernel_thread_helper;
regs.cp0_status = read_c0_status();
#if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX)
regs.cp0_status &= ~(ST0_KUP | ST0_IEC);
regs.cp0_status |= ST0_IEP;
#else
regs.cp0_status |= ST0_EXL;
#endif
/* Ok, create the new process.. */
return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL);
}
struct mips_frame_info {
int frame_offset;
int pc_offset;
};
static struct mips_frame_info schedule_frame;
static struct mips_frame_info schedule_timeout_frame;
static struct mips_frame_info sleep_on_frame;
static struct mips_frame_info sleep_on_timeout_frame;
static struct mips_frame_info wait_for_completion_frame;
static int mips_frame_info_initialized;
static int __init get_frame_info(struct mips_frame_info *info, void *func)
{
int i;
union mips_instruction *ip = (union mips_instruction *)func;
info->pc_offset = -1;
info->frame_offset = -1;
for (i = 0; i < 128; i++, ip++) {
/* if jal, jalr, jr, stop. */
if (ip->j_format.opcode == jal_op ||
(ip->r_format.opcode == spec_op &&
(ip->r_format.func == jalr_op ||
ip->r_format.func == jr_op)))
break;
if (
#ifdef CONFIG_MIPS32
ip->i_format.opcode == sw_op &&
#endif
#ifdef CONFIG_MIPS64
ip->i_format.opcode == sd_op &&
#endif
ip->i_format.rs == 29)
{
/* sw / sd $ra, offset($sp) */
if (ip->i_format.rt == 31) {
if (info->pc_offset != -1)
break;
info->pc_offset =
ip->i_format.simmediate / sizeof(long);
}
/* sw / sd $s8, offset($sp) */
if (ip->i_format.rt == 30) {
if (info->frame_offset != -1)
break;
info->frame_offset =
ip->i_format.simmediate / sizeof(long);
}
}
}
if (info->pc_offset == -1 || info->frame_offset == -1) {
printk("Can't analyze prologue code at %p\n", func);
info->pc_offset = -1;
info->frame_offset = -1;
return -1;
}
return 0;
}
static int __init frame_info_init(void)
{
mips_frame_info_initialized =
!get_frame_info(&schedule_frame, schedule) &&
!get_frame_info(&schedule_timeout_frame, schedule_timeout) &&
!get_frame_info(&sleep_on_frame, sleep_on) &&
!get_frame_info(&sleep_on_timeout_frame, sleep_on_timeout) &&
!get_frame_info(&wait_for_completion_frame, wait_for_completion);
return 0;
}
arch_initcall(frame_info_init);
/*
* Return saved PC of a blocked thread.
*/
unsigned long thread_saved_pc(struct task_struct *tsk)
{
struct thread_struct *t = &tsk->thread;
/* New born processes are a special case */
if (t->reg31 == (unsigned long) ret_from_fork)
return t->reg31;
if (schedule_frame.pc_offset < 0)
return 0;
return ((unsigned long *)t->reg29)[schedule_frame.pc_offset];
}
/* get_wchan - a maintenance nightmare^W^Wpain in the ass ... */
unsigned long get_wchan(struct task_struct *p)
{
unsigned long frame, pc;
if (!p || p == current || p->state == TASK_RUNNING)
return 0;
if (!mips_frame_info_initialized)
return 0;
pc = thread_saved_pc(p);
if (!in_sched_functions(pc))
goto out;
if (pc >= (unsigned long) sleep_on_timeout)
goto schedule_timeout_caller;
if (pc >= (unsigned long) sleep_on)
goto schedule_caller;
if (pc >= (unsigned long) interruptible_sleep_on_timeout)
goto schedule_timeout_caller;
if (pc >= (unsigned long)interruptible_sleep_on)
goto schedule_caller;
if (pc >= (unsigned long)wait_for_completion)
goto schedule_caller;
goto schedule_timeout_caller;
schedule_caller:
frame = ((unsigned long *)p->thread.reg30)[schedule_frame.frame_offset];
if (pc >= (unsigned long) sleep_on)
pc = ((unsigned long *)frame)[sleep_on_frame.pc_offset];
else
pc = ((unsigned long *)frame)[wait_for_completion_frame.pc_offset];
goto out;
schedule_timeout_caller:
/*
* The schedule_timeout frame
*/
frame = ((unsigned long *)p->thread.reg30)[schedule_frame.frame_offset];
/*
* frame now points to sleep_on_timeout's frame
*/
pc = ((unsigned long *)frame)[schedule_timeout_frame.pc_offset];
if (in_sched_functions(pc)) {
/* schedule_timeout called by [interruptible_]sleep_on_timeout */
frame = ((unsigned long *)frame)[schedule_timeout_frame.frame_offset];
pc = ((unsigned long *)frame)[sleep_on_timeout_frame.pc_offset];
}
out:
#ifdef CONFIG_MIPS64
if (current->thread.mflags & MF_32BIT_REGS) /* Kludge for 32-bit ps */
pc &= 0xffffffffUL;
#endif
return pc;
}
EXPORT_SYMBOL(get_wchan);
|