/* * Core driver for the pin control subsystem * * Copyright (C) 2011-2012 ST-Ericsson SA * Written on behalf of Linaro for ST-Ericsson * Based on bits of regulator core, gpio core and clk core * * Author: Linus Walleij * * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. * * License terms: GNU General Public License (GPL) version 2 */ #define pr_fmt(fmt) "pinctrl core: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_GPIOLIB #include #endif #include "core.h" #include "devicetree.h" #include "pinmux.h" #include "pinconf.h" static bool pinctrl_dummy_state; /* Mutex taken to protect pinctrl_list */ DEFINE_MUTEX(pinctrl_list_mutex); /* Mutex taken to protect pinctrl_maps */ DEFINE_MUTEX(pinctrl_maps_mutex); /* Mutex taken to protect pinctrldev_list */ DEFINE_MUTEX(pinctrldev_list_mutex); /* Global list of pin control devices (struct pinctrl_dev) */ static LIST_HEAD(pinctrldev_list); /* List of pin controller handles (struct pinctrl) */ static LIST_HEAD(pinctrl_list); /* List of pinctrl maps (struct pinctrl_maps) */ LIST_HEAD(pinctrl_maps); /** * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support * * Usually this function is called by platforms without pinctrl driver support * but run with some shared drivers using pinctrl APIs. * After calling this function, the pinctrl core will return successfully * with creating a dummy state for the driver to keep going smoothly. */ void pinctrl_provide_dummies(void) { pinctrl_dummy_state = true; } const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) { /* We're not allowed to register devices without name */ return pctldev->desc->name; } EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) { return dev_name(pctldev->dev); } EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) { return pctldev->driver_data; } EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); /** * get_pinctrl_dev_from_devname() - look up pin controller device * @devname: the name of a device instance, as returned by dev_name() * * Looks up a pin control device matching a certain device name or pure device * pointer, the pure device pointer will take precedence. */ struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) { struct pinctrl_dev *pctldev = NULL; if (!devname) return NULL; mutex_lock(&pinctrldev_list_mutex); list_for_each_entry(pctldev, &pinctrldev_list, node) { if (!strcmp(dev_name(pctldev->dev), devname)) { /* Matched on device name */ mutex_unlock(&pinctrldev_list_mutex); return pctldev; } } mutex_unlock(&pinctrldev_list_mutex); return NULL; } struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) { struct pinctrl_dev *pctldev; mutex_lock(&pinctrldev_list_mutex); list_for_each_entry(pctldev, &pinctrldev_list, node) if (pctldev->dev->of_node == np) { mutex_unlock(&pinctrldev_list_mutex); return pctldev; } mutex_unlock(&pinctrldev_list_mutex); return NULL; } /** * pin_get_from_name() - look up a pin number from a name * @pctldev: the pin control device to lookup the pin on * @name: the name of the pin to look up */ int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) { unsigned i, pin; /* The pin number can be retrived from the pin controller descriptor */ for (i = 0; i < pctldev->desc->npins; i++) { struct pin_desc *desc; pin = pctldev->desc->pins[i].number; desc = pin_desc_get(pctldev, pin); /* Pin space may be sparse */ if (desc == NULL) continue; if (desc->name && !strcmp(name, desc->name)) return pin; } return -EINVAL; } /** * pin_get_name_from_id() - look up a pin name from a pin id * @pctldev: the pin control device to lookup the pin on * @name: the name of the pin to look up */ const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) { const struct pin_desc *desc; desc = pin_desc_get(pctldev, pin); if (desc == NULL) { dev_err(pctldev->dev, "failed to get pin(%d) name\n", pin); return NULL; } return desc->name; } /** * pin_is_valid() - check if pin exists on controller * @pctldev: the pin control device to check the pin on * @pin: pin to check, use the local pin controller index number * * This tells us whether a certain pin exist on a certain pin controller or * not. Pin lists may be sparse, so some pins may not exist. */ bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) { struct pin_desc *pindesc; if (pin < 0) return false; mutex_lock(&pctldev->mutex); pindesc = pin_desc_get(pctldev, pin); mutex_unlock(&pctldev->mutex); return pindesc != NULL; } EXPORT_SYMBOL_GPL(pin_is_valid); /* Deletes a range of pin descriptors */ static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, const struct pinctrl_pin_desc *pins, unsigned num_pins) { int i; for (i = 0; i < num_pins; i++) { struct pin_desc *pindesc; pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, pins[i].number); if (pindesc != NULL) { radix_tree_delete(&pctldev->pin_desc_tree, pins[i].number); if (pindesc->dynamic_name) kfree(pindesc->name); } kfree(pindesc); } } static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, unsigned number, const char *name) { struct pin_desc *pindesc; pindesc = pin_desc_get(pctldev, number); if (pindesc != NULL) { pr_err("pin %d already registered on %s\n", number, pctldev->desc->name); return -EINVAL; } pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); if (pindesc == NULL) { dev_err(pctldev->dev, "failed to alloc struct pin_desc\n"); return -ENOMEM; } /* Set owner */ pindesc->pctldev = pctldev; /* Copy basic pin info */ if (name) { pindesc->name = name; } else { pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number); if (pindesc->name == NULL) { kfree(pindesc); return -ENOMEM; } pindesc->dynamic_name = true; } radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc); pr_debug("registered pin %d (%s) on %s\n", number, pindesc->name, pctldev->desc->name); return 0; } static int pinctrl_register_pins(struct pinctrl_dev *pctldev, struct pinctrl_pin_desc const *pins, unsigned num_descs) { unsigned i; int ret = 0; for (i = 0; i < num_descs; i++) { ret = pinctrl_register_one_pin(pctldev, pins[i].number, pins[i].name); if (ret) return ret; } return 0; } /** * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range * @pctldev: pin controller device to check * @gpio: gpio pin to check taken from the global GPIO pin space * * Tries to match a GPIO pin number to the ranges handled by a certain pin * controller, return the range or NULL */ static struct pinctrl_gpio_range * pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) { struct pinctrl_gpio_range *range = NULL; mutex_lock(&pctldev->mutex); /* Loop over the ranges */ list_for_each_entry(range, &pctldev->gpio_ranges, node) { /* Check if we're in the valid range */ if (gpio >= range->base && gpio < range->base + range->npins) { mutex_unlock(&pctldev->mutex); return range; } } mutex_unlock(&pctldev->mutex); return NULL; } /** * pinctrl_ready_for_gpio_range() - check if other GPIO pins of * the same GPIO chip are in range * @gpio: gpio pin to check taken from the global GPIO pin space * * This function is complement of pinctrl_match_gpio_range(). If the return * value of pinctrl_match_gpio_range() is NULL, this function could be used * to check whether pinctrl device is ready or not. Maybe some GPIO pins * of the same GPIO chip don't have back-end pinctrl interface. * If the return value is true, it means that pinctrl device is ready & the * certain GPIO pin doesn't have back-end pinctrl device. If the return value * is false, it means that pinctrl device may not be ready. */ #ifdef CONFIG_GPIOLIB static bool pinctrl_ready_for_gpio_range(unsigned gpio) { struct pinctrl_dev *pctldev; struct pinctrl_gpio_range *range = NULL; struct gpio_chip *chip = gpio_to_chip(gpio); mutex_lock(&pinctrldev_list_mutex); /* Loop over the pin controllers */ list_for_each_entry(pctldev, &pinctrldev_list, node) { /* Loop over the ranges */ list_for_each_entry(range, &pctldev->gpio_ranges, node) { /* Check if any gpio range overlapped with gpio chip */ if (range->base + range->npins - 1 < chip->base || range->base > chip->base + chip->ngpio - 1) continue; mutex_unlock(&pinctrldev_list_mutex); return true; } } mutex_unlock(&pinctrldev_list_mutex); return false; } #else static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } #endif /** * pinctrl_get_device_gpio_range() - find device for GPIO range * @gpio: the pin to locate the pin controller for * @outdev: the pin control device if found * @outrange: the GPIO range if found * * Find the pin controller handling a certain GPIO pin from the pinspace of * the GPIO subsystem, return the device and the matching GPIO range. Returns * -EPROBE_DEFER if the GPIO range could not be found in any device since it * may still have not been registered. */ static int pinctrl_get_device_gpio_range(unsigned gpio, struct pinctrl_dev **outdev, struct pinctrl_gpio_range **outrange) { struct pinctrl_dev *pctldev = NULL; /* Loop over the pin controllers */ list_for_each_entry(pctldev, &pinctrldev_list, node) { struct pinctrl_gpio_range *range; range = pinctrl_match_gpio_range(pctldev, gpio); if (range != NULL) { *outdev = pctldev; *outrange = range; return 0; } } return -EPROBE_DEFER; } /** * pinctrl_add_gpio_range() - register a GPIO range for a controller * @pctldev: pin controller device to add the range to * @range: the GPIO range to add * * This adds a range of GPIOs to be handled by a certain pin controller. Call * this to register handled ranges after registering your pin controller. */ void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, struct pinctrl_gpio_range *range) { mutex_lock(&pctldev->mutex); list_add_tail(&range->node, &pctldev->gpio_ranges); mutex_unlock(&pctldev->mutex); } EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, struct pinctrl_gpio_range *ranges, unsigned nranges) { int i; for (i = 0; i < nranges; i++) pinctrl_add_gpio_range(pctldev, &ranges[i]); } EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, struct pinctrl_gpio_range *range) { struct pinctrl_dev *pctldev; pctldev = get_pinctrl_dev_from_devname(devname); /* * If we can't find this device, let's assume that is because * it has not probed yet, so the driver trying to register this * range need to defer probing. */ if (!pctldev) { return ERR_PTR(-EPROBE_DEFER); } pinctrl_add_gpio_range(pctldev, range); return pctldev; } EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); /** * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin * @pctldev: the pin controller device to look in * @pin: a controller-local number to find the range for */ struct pinctrl_gpio_range * pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, unsigned int pin) { struct pinctrl_gpio_range *range = NULL; mutex_lock(&pctldev->mutex); /* Loop over the ranges */ list_for_each_entry(range, &pctldev->gpio_ranges, node) { /* Check if we're in the valid range */ if (pin >= range->pin_base && pin < range->pin_base + range->npins) { mutex_unlock(&pctldev->mutex); return range; } } mutex_unlock(&pctldev->mutex); return NULL; } EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); /** * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller * @pctldev: pin controller device to remove the range from * @range: the GPIO range to remove */ void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, struct pinctrl_gpio_range *range) { mutex_lock(&pctldev->mutex); list_del(&range->node); mutex_unlock(&pctldev->mutex); } EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); /** * pinctrl_get_group_selector() - returns the group selector for a group * @pctldev: the pin controller handling the group * @pin_group: the pin group to look up */ int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, const char *pin_group) { const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; unsigned ngroups = pctlops->get_groups_count(pctldev); unsigned group_selector = 0; while (group_selector < ngroups) { const char *gname = pctlops->get_group_name(pctldev, group_selector); if (!strcmp(gname, pin_group)) { dev_dbg(pctldev->dev, "found group selector %u for %s\n", group_selector, pin_group); return group_selector; } group_selector++; } dev_err(pctldev->dev, "does not have pin group %s\n", pin_group); return -EINVAL; } /** * pinctrl_request_gpio() - request a single pin to be used in as GPIO * @gpio: the GPIO pin number from the GPIO subsystem number space * * This function should *ONLY* be used from gpiolib-based GPIO drivers, * as part of their gpio_request() semantics, platforms and individual drivers * shall *NOT* request GPIO pins to be muxed in. */ int pinctrl_request_gpio(unsigned gpio) { struct pinctrl_dev *pctldev; struct pinctrl_gpio_range *range; int ret; int pin; ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); if (ret) { if (pinctrl_ready_for_gpio_range(gpio)) ret = 0; return ret; } /* Convert to the pin controllers number space */ pin = gpio - range->base + range->pin_base; ret = pinmux_request_gpio(pctldev, range, pin, gpio); return ret; } EXPORT_SYMBOL_GPL(pinctrl_request_gpio); /** * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO * @gpio: the GPIO pin number from the GPIO subsystem number space * * This function should *ONLY* be used from gpiolib-based GPIO drivers, * as part of their gpio_free() semantics, platforms and individual drivers * shall *NOT* request GPIO pins to be muxed out. */ void pinctrl_free_gpio(unsigned gpio) { struct pinctrl_dev *pctldev; struct pinctrl_gpio_range *range; int ret; int pin; ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); if (ret) { return; } mutex_lock(&pctldev->mutex); /* Convert to the pin controllers number space */ pin = gpio - range->base + range->pin_base; pinmux_free_gpio(pctldev, pin, range); mutex_unlock(&pctldev->mutex); } EXPORT_SYMBOL_GPL(pinctrl_free_gpio); static int pinctrl_gpio_direction(unsigned gpio, bool input) { struct pinctrl_dev *pctldev; struct pinctrl_gpio_range *range; int ret; int pin; ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); if (ret) { return ret; } mutex_lock(&pctldev->mutex); /* Convert to the pin controllers number space */ pin = gpio - range->base + range->pin_base; ret = pinmux_gpio_direction(pctldev, range, pin, input); mutex_unlock(&pctldev->mutex); return ret; } /** * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode * @gpio: the GPIO pin number from the GPIO subsystem number space * * This function should *ONLY* be used from gpiolib-based GPIO drivers, * as part of their gpio_direction_input() semantics, platforms and individual * drivers shall *NOT* touch pin control GPIO calls. */ int pinctrl_gpio_direction_input(unsigned gpio) { return pinctrl_gpio_direction(gpio, true); } EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); /** * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode * @gpio: the GPIO pin number from the GPIO subsystem number space * * This function should *ONLY* be used from gpiolib-based GPIO drivers, * as part of their gpio_direction_output() semantics, platforms and individual * drivers shall *NOT* touch pin control GPIO calls. */ int pinctrl_gpio_direction_output(unsigned gpio) { return pinctrl_gpio_direction(gpio, false); } EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); static struct pinctrl_state *find_state(struct pinctrl *p, const char *name) { struct pinctrl_state *state; list_for_each_entry(state, &p->states, node) if (!strcmp(state->name, name)) return state; return NULL; } static struct pinctrl_state *create_state(struct pinctrl *p, const char *name) { struct pinctrl_state *state; state = kzalloc(sizeof(*state), GFP_KERNEL); if (state == NULL) { dev_err(p->dev, "failed to alloc struct pinctrl_state\n"); return ERR_PTR(-ENOMEM); } state->name = name; INIT_LIST_HEAD(&state->settings); list_add_tail(&state->node, &p->states); return state; } static int add_setting(struct pinctrl *p, struct pinctrl_map const *map) { struct pinctrl_state *state; struct pinctrl_setting *setting; int ret; state = find_state(p, map->name); if (!state) state = create_state(p, map->name); if (IS_ERR(state)) return PTR_ERR(state); if (map->type == PIN_MAP_TYPE_DUMMY_STATE) return 0; setting = kzalloc(sizeof(*setting), GFP_KERNEL); if (setting == NULL) { dev_err(p->dev, "failed to alloc struct pinctrl_setting\n"); return -ENOMEM; } setting->type = map->type; setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name); if (setting->pctldev == NULL) { kfree(setting); /* Do not defer probing of hogs (circular loop) */ if (!strcmp(map->ctrl_dev_name, map->dev_name)) return -ENODEV; /* * OK let us guess that the driver is not there yet, and * let's defer obtaining this pinctrl handle to later... */ dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", map->ctrl_dev_name); return -EPROBE_DEFER; } setting->dev_name = map->dev_name; switch (map->type) { case PIN_MAP_TYPE_MUX_GROUP: ret = pinmux_map_to_setting(map, setting); break; case PIN_MAP_TYPE_CONFIGS_PIN: case PIN_MAP_TYPE_CONFIGS_GROUP: ret = pinconf_map_to_setting(map, setting); break; default: ret = -EINVAL; break; } if (ret < 0) { kfree(setting); return ret; } list_add_tail(&setting->node, &state->settings); return 0; } static struct pinctrl *find_pinctrl(struct device *dev) { struct pinctrl *p; mutex_lock(&pinctrl_list_mutex); list_for_each_entry(p, &pinctrl_list, node) if (p->dev == dev) { mutex_unlock(&pinctrl_list_mutex); return p; } mutex_unlock(&pinctrl_list_mutex); return NULL; } static void pinctrl_free(struct pinctrl *p, bool inlist); static struct pinctrl *create_pinctrl(struct device *dev) { struct pinctrl *p; const char *devname; struct pinctrl_maps *maps_node; int i; struct pinctrl_map const *map; int ret; /* * create the state cookie holder struct pinctrl for each * mapping, this is what consumers will get when requesting * a pin control handle with pinctrl_get() */ p = kzalloc(sizeof(*p), GFP_KERNEL); if (p == NULL) { dev_err(dev, "failed to alloc struct pinctrl\n"); return ERR_PTR(-ENOMEM); } p->dev = dev; INIT_LIST_HEAD(&p->states); INIT_LIST_HEAD(&p->dt_maps); ret = pinctrl_dt_to_map(p); if (ret < 0) { kfree(p); return ERR_PTR(ret); } devname = dev_name(dev); mutex_lock(&pinctrl_maps_mutex); /* Iterate over the pin control maps to locate the right ones */ for_each_maps(maps_node, i, map) { /* Map must be for this device */ if (strcmp(map->dev_name, devname)) continue; ret = add_setting(p, map); /* * At this point the adding of a setting may: * * - Defer, if the pinctrl device is not yet available * - Fail, if the pinctrl device is not yet available, * AND the setting is a hog. We cannot defer that, since * the hog will kick in immediately after the device * is registered. * * If the error returned was not -EPROBE_DEFER then we * accumulate the errors to see if we end up with * an -EPROBE_DEFER later, as that is the worst case. */ if (ret == -EPROBE_DEFER) { pinctrl_free(p, false); mutex_unlock(&pinctrl_maps_mutex); return ERR_PTR(ret); } } mutex_unlock(&pinctrl_maps_mutex); if (ret < 0) { /* If some other error than deferral occured, return here */ pinctrl_free(p, false); return ERR_PTR(ret); } kref_init(&p->users); /* Add the pinctrl handle to the global list */ list_add_tail(&p->node, &pinctrl_list); return p; } /** * pinctrl_get() - retrieves the pinctrl handle for a device * @dev: the device to obtain the handle for */ struct pinctrl *pinctrl_get(struct device *dev) { struct pinctrl *p; if (WARN_ON(!dev)) return ERR_PTR(-EINVAL); /* * See if somebody else (such as the device core) has already * obtained a handle to the pinctrl for this device. In that case, * return another pointer to it. */ p = find_pinctrl(dev); if (p != NULL) { dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); kref_get(&p->users); return p; } return create_pinctrl(dev); } EXPORT_SYMBOL_GPL(pinctrl_get); static void pinctrl_free_setting(bool disable_setting, struct pinctrl_setting *setting) { switch (setting->type) { case PIN_MAP_TYPE_MUX_GROUP: if (disable_setting) pinmux_disable_setting(setting); pinmux_free_setting(setting); break; case PIN_MAP_TYPE_CONFIGS_PIN: case PIN_MAP_TYPE_CONFIGS_GROUP: pinconf_free_setting(setting); break; default: break; } } static void pinctrl_free(struct pinctrl *p, bool inlist) { struct pinctrl_state *state, *n1; struct pinctrl_setting *setting, *n2; mutex_lock(&pinctrl_list_mutex); list_for_each_entry_safe(state, n1, &p->states, node) { list_for_each_entry_safe(setting, n2, &state->settings, node) { pinctrl_free_setting(state == p->state, setting); list_del(&setting->node); kfree(setting); } list_del(&state->node); kfree(state); } pinctrl_dt_free_maps(p); if (inlist) list_del(&p->node); kfree(p); mutex_unlock(&pinctrl_list_mutex); } /** * pinctrl_release() - release the pinctrl handle * @kref: the kref in the pinctrl being released */ static void pinctrl_release(struct kref *kref) { struct pinctrl *p = container_of(kref, struct pinctrl, users); pinctrl_free(p, true); } /** * pinctrl_put() - decrease use count on a previously claimed pinctrl handle * @p: the pinctrl handle to release */ void pinctrl_put(struct pinctrl *p) { kref_put(&p->users, pinctrl_release); } EXPORT_SYMBOL_GPL(pinctrl_put); /** * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle * @p: the pinctrl handle to retrieve the state from * @name: the state name to retrieve */ struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, const char *name) { struct pinctrl_state *state; state = find_state(p, name); if (!state) { if (pinctrl_dummy_state) { /* create dummy state */ dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", name); state = create_state(p, name); } else state = ERR_PTR(-ENODEV); } return state; } EXPORT_SYMBOL_GPL(pinctrl_lookup_state); /** * pinctrl_select_state() - select/activate/program a pinctrl state to HW * @p: the pinctrl handle for the device that requests configuration * @state: the state handle to select/activate/program */ int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) { struct pinctrl_setting *setting, *setting2; struct pinctrl_state *old_state = p->state; int ret; if (p->state == state) return 0; if (p->state) { /* * The set of groups with a mux configuration in the old state * may not be identical to the set of groups with a mux setting * in the new state. While this might be unusual, it's entirely * possible for the "user"-supplied mapping table to be written * that way. For each group that was configured in the old state * but not in the new state, this code puts that group into a * safe/disabled state. */ list_for_each_entry(setting, &p->state->settings, node) { bool found = false; if (setting->type != PIN_MAP_TYPE_MUX_GROUP) continue; list_for_each_entry(setting2, &state->settings, node) { if (setting2->type != PIN_MAP_TYPE_MUX_GROUP) continue; if (setting2->data.mux.group == setting->data.mux.group) { found = true; break; } } if (!found) pinmux_disable_setting(setting); } } p->state = NULL; /* Apply all the settings for the new state */ list_for_each_entry(setting, &state->settings, node) { switch (setting->type) { case PIN_MAP_TYPE_MUX_GROUP: ret = pinmux_enable_setting(setting); break; case PIN_MAP_TYPE_CONFIGS_PIN: case PIN_MAP_TYPE_CONFIGS_GROUP: ret = pinconf_apply_setting(setting); break; default: ret = -EINVAL; break; } if (ret < 0) { goto unapply_new_state; } } p->state = state; return 0; unapply_new_state: dev_err(p->dev, "Error applying setting, reverse things back\n"); list_for_each_entry(setting2, &state->settings, node) { if (&setting2->node == &setting->node) break; /* * All we can do here is pinmux_disable_setting. * That means that some pins are muxed differently now * than they were before applying the setting (We can't * "unmux a pin"!), but it's not a big deal since the pins * are free to be muxed by another apply_setting. */ if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) pinmux_disable_setting(setting2); } /* There's no infinite recursive loop here because p->state is NULL */ if (old_state) pinctrl_select_state(p, old_state); return ret; } EXPORT_SYMBOL_GPL(pinctrl_select_state); static void devm_pinctrl_release(struct device *dev, void *res) { pinctrl_put(*(struct pinctrl **)res); } /** * struct devm_pinctrl_get() - Resource managed pinctrl_get() * @dev: the device to obtain the handle for * * If there is a need to explicitly destroy the returned struct pinctrl, * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). */ struct pinctrl *devm_pinctrl_get(struct device *dev) { struct pinctrl **ptr, *p; ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); p = pinctrl_get(dev); if (!IS_ERR(p)) { *ptr = p; devres_add(dev, ptr); } else { devres_free(ptr); } return p; } EXPORT_SYMBOL_GPL(devm_pinctrl_get); static int devm_pinctrl_match(struct device *dev, void *res, void *data) { struct pinctrl **p = res; return *p == data; } /** * devm_pinctrl_put() - Resource managed pinctrl_put() * @p: the pinctrl handle to release * * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally * this function will not need to be called and the resource management * code will ensure that the resource is freed. */ void devm_pinctrl_put(struct pinctrl *p) { WARN_ON(devres_release(p->dev, devm_pinctrl_release, devm_pinctrl_match, p)); } EXPORT_SYMBOL_GPL(devm_pinctrl_put); int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps, bool dup, bool locked) { int i, ret; struct pinctrl_maps *maps_node; pr_debug("add %d pinmux maps\n", num_maps); /* First sanity check the new mapping */ for (i = 0; i < num_maps; i++) { if (!maps[i].dev_name) { pr_err("failed to register map %s (%d): no device given\n", maps[i].name, i); return -EINVAL; } if (!maps[i].name) { pr_err("failed to register map %d: no map name given\n", i); return -EINVAL; } if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && !maps[i].ctrl_dev_name) { pr_err("failed to register map %s (%d): no pin control device given\n", maps[i].name, i); return -EINVAL; } switch (maps[i].type) { case PIN_MAP_TYPE_DUMMY_STATE: break; case PIN_MAP_TYPE_MUX_GROUP: ret = pinmux_validate_map(&maps[i], i); if (ret < 0) return ret; break; case PIN_MAP_TYPE_CONFIGS_PIN: case PIN_MAP_TYPE_CONFIGS_GROUP: ret = pinconf_validate_map(&maps[i], i); if (ret < 0) return ret; break; default: pr_err("failed to register map %s (%d): invalid type given\n", maps[i].name, i); return -EINVAL; } } maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); if (!maps_node) { pr_err("failed to alloc struct pinctrl_maps\n"); return -ENOMEM; } maps_node->num_maps = num_maps; if (dup) { maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, GFP_KERNEL); if (!maps_node->maps) { pr_err("failed to duplicate mapping table\n"); kfree(maps_node); return -ENOMEM; } } else { maps_node->maps = maps; } if (!locked) mutex_lock(&pinctrl_maps_mutex); list_add_tail(&maps_node->node, &pinctrl_maps); if (!locked) mutex_unlock(&pinctrl_maps_mutex); return 0; } /** * pinctrl_register_mappings() - register a set of pin controller mappings * @maps: the pincontrol mappings table to register. This should probably be * marked with __initdata so it can be discarded after boot. This * function will perform a shallow copy for the mapping entries. * @num_maps: the number of maps in the mapping table */ int pinctrl_register_mappings(struct pinctrl_map const *maps, unsigned num_maps) { return pinctrl_register_map(maps, num_maps, true, false); } void pinctrl_unregister_map(struct pinctrl_map const *map) { struct pinctrl_maps *maps_node; mutex_lock(&pinctrl_maps_mutex); list_for_each_entry(maps_node, &pinctrl_maps, node) { if (maps_node->maps == map) { list_del(&maps_node->node); mutex_unlock(&pinctrl_maps_mutex); return; } } mutex_unlock(&pinctrl_maps_mutex); } /** * pinctrl_force_sleep() - turn a given controller device into sleep state * @pctldev: pin controller device */ int pinctrl_force_sleep(struct pinctrl_dev *pctldev) { if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) return pinctrl_select_state(pctldev->p, pctldev->hog_sleep); return 0; } EXPORT_SYMBOL_GPL(pinctrl_force_sleep); /** * pinctrl_force_default() - turn a given controller device into default state * @pctldev: pin controller device */ int pinctrl_force_default(struct pinctrl_dev *pctldev) { if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) return pinctrl_select_state(pctldev->p, pctldev->hog_default); return 0; } EXPORT_SYMBOL_GPL(pinctrl_force_default); #ifdef CONFIG_DEBUG_FS static int pinctrl_pins_show(struct seq_file *s, void *what) { struct pinctrl_dev *pctldev = s->private; const struct pinctrl_ops *ops = pctldev->desc->pctlops; unsigned i, pin; seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); mutex_lock(&pctldev->mutex); /* The pin number can be retrived from the pin controller descriptor */ for (i = 0; i < pctldev->desc->npins; i++) { struct pin_desc *desc; pin = pctldev->desc->pins[i].number; desc = pin_desc_get(pctldev, pin); /* Pin space may be sparse */ if (desc == NULL) continue; seq_printf(s, "pin %d (%s) ", pin, desc->name ? desc->name : "unnamed"); /* Driver-specific info per pin */ if (ops->pin_dbg_show) ops->pin_dbg_show(pctldev, s, pin); seq_puts(s, "\n"); } mutex_unlock(&pctldev->mutex); return 0; } static int pinctrl_groups_show(struct seq_file *s, void *what) { struct pinctrl_dev *pctldev = s->private; const struct pinctrl_ops *ops = pctldev->desc->pctlops; unsigned ngroups, selector = 0; mutex_lock(&pctldev->mutex); ngroups = ops->get_groups_count(pctldev); seq_puts(s, "registered pin groups:\n"); while (selector < ngroups) { const unsigned *pins; unsigned num_pins; const char *gname = ops->get_group_name(pctldev, selector); const char *pname; int ret; int i; ret = ops->get_group_pins(pctldev, selector, &pins, &num_pins); if (ret) seq_printf(s, "%s [ERROR GETTING PINS]\n", gname); else { seq_printf(s, "group: %s\n", gname); for (i = 0; i < num_pins; i++) { pname = pin_get_name(pctldev, pins[i]); if (WARN_ON(!pname)) { mutex_unlock(&pctldev->mutex); return -EINVAL; } seq_printf(s, "pin %d (%s)\n", pins[i], pname); } seq_puts(s, "\n"); } selector++; } mutex_unlock(&pctldev->mutex); return 0; } static int pinctrl_gpioranges_show(struct seq_file *s, void *what) { struct pinctrl_dev *pctldev = s->private; struct pinctrl_gpio_range *range = NULL; seq_puts(s, "GPIO ranges handled:\n"); mutex_lock(&pctldev->mutex); /* Loop over the ranges */ list_for_each_entry(range, &pctldev->gpio_ranges, node) { seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", range->id, range->name, range->base, (range->base + range->npins - 1), range->pin_base, (range->pin_base + range->npins - 1)); } mutex_unlock(&pctldev->mutex); return 0; } static int pinctrl_devices_show(struct seq_file *s, void *what) { struct pinctrl_dev *pctldev; seq_puts(s, "name [pinmux] [pinconf]\n"); mutex_lock(&pinctrldev_list_mutex); list_for_each_entry(pctldev, &pinctrldev_list, node) { seq_printf(s, "%s ", pctldev->desc->name); if (pctldev->desc->pmxops) seq_puts(s, "yes "); else seq_puts(s, "no "); if (pctldev->desc->confops) seq_puts(s, "yes"); else seq_puts(s, "no"); seq_puts(s, "\n"); } mutex_unlock(&pinctrldev_list_mutex); return 0; } static inline const char *map_type(enum pinctrl_map_type type) { static const char * const names[] = { "INVALID", "DUMMY_STATE", "MUX_GROUP", "CONFIGS_PIN", "CONFIGS_GROUP", }; if (type >= ARRAY_SIZE(names)) return "UNKNOWN"; return names[type]; } static int pinctrl_maps_show(struct seq_file *s, void *what) { struct pinctrl_maps *maps_node; int i; struct pinctrl_map const *map; seq_puts(s, "Pinctrl maps:\n"); mutex_lock(&pinctrl_maps_mutex); for_each_maps(maps_node, i, map) { seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", map->dev_name, map->name, map_type(map->type), map->type); if (map->type != PIN_MAP_TYPE_DUMMY_STATE) seq_printf(s, "controlling device %s\n", map->ctrl_dev_name); switch (map->type) { case PIN_MAP_TYPE_MUX_GROUP: pinmux_show_map(s, map); break; case PIN_MAP_TYPE_CONFIGS_PIN: case PIN_MAP_TYPE_CONFIGS_GROUP: pinconf_show_map(s, map); break; default: break; } seq_printf(s, "\n"); } mutex_unlock(&pinctrl_maps_mutex); return 0; } static int pinctrl_show(struct seq_file *s, void *what) { struct pinctrl *p; struct pinctrl_state *state; struct pinctrl_setting *setting; seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); mutex_lock(&pinctrl_list_mutex); list_for_each_entry(p, &pinctrl_list, node) { seq_printf(s, "device: %s current state: %s\n", dev_name(p->dev), p->state ? p->state->name : "none"); list_for_each_entry(state, &p->states, node) { seq_printf(s, " state: %s\n", state->name); list_for_each_entry(setting, &state->settings, node) { struct pinctrl_dev *pctldev = setting->pctldev; seq_printf(s, " type: %s controller %s ", map_type(setting->type), pinctrl_dev_get_name(pctldev)); switch (setting->type) { case PIN_MAP_TYPE_MUX_GROUP: pinmux_show_setting(s, setting); break; case PIN_MAP_TYPE_CONFIGS_PIN: case PIN_MAP_TYPE_CONFIGS_GROUP: pinconf_show_setting(s, setting); break; default: break; } } } } mutex_unlock(&pinctrl_list_mutex); return 0; } static int pinctrl_pins_open(struct inode *inode, struct file *file) { return single_open(file, pinctrl_pins_show, inode->i_private); } static int pinctrl_groups_open(struct inode *inode, struct file *file) { return single_open(file, pinctrl_groups_show, inode->i_private); } static int pinctrl_gpioranges_open(struct inode *inode, struct file *file) { return single_open(file, pinctrl_gpioranges_show, inode->i_private); } static int pinctrl_devices_open(struct inode *inode, struct file *file) { return single_open(file, pinctrl_devices_show, NULL); } static int pinctrl_maps_open(struct inode *inode, struct file *file) { return single_open(file, pinctrl_maps_show, NULL); } static int pinctrl_open(struct inode *inode, struct file *file) { return single_open(file, pinctrl_show, NULL); } static const struct file_operations pinctrl_pins_ops = { .open = pinctrl_pins_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static const struct file_operations pinctrl_groups_ops = { .open = pinctrl_groups_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static const struct file_operations pinctrl_gpioranges_ops = { .open = pinctrl_gpioranges_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static const struct file_operations pinctrl_devices_ops = { .open = pinctrl_devices_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static const struct file_operations pinctrl_maps_ops = { .open = pinctrl_maps_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static const struct file_operations pinctrl_ops = { .open = pinctrl_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static struct dentry *debugfs_root; static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) { struct dentry *device_root; device_root = debugfs_create_dir(dev_name(pctldev->dev), debugfs_root); pctldev->device_root = device_root; if (IS_ERR(device_root) || !device_root) { pr_warn("failed to create debugfs directory for %s\n", dev_name(pctldev->dev)); return; } debugfs_create_file("pins", S_IFREG | S_IRUGO, device_root, pctldev, &pinctrl_pins_ops); debugfs_create_file("pingroups", S_IFREG | S_IRUGO, device_root, pctldev, &pinctrl_groups_ops); debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, device_root, pctldev, &pinctrl_gpioranges_ops); pinmux_init_device_debugfs(device_root, pctldev); pinconf_init_device_debugfs(device_root, pctldev); } static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) { debugfs_remove_recursive(pctldev->device_root); } static void pinctrl_init_debugfs(void) { debugfs_root = debugfs_create_dir("pinctrl", NULL); if (IS_ERR(debugfs_root) || !debugfs_root) { pr_warn("failed to create debugfs directory\n"); debugfs_root = NULL; return; } debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, debugfs_root, NULL, &pinctrl_devices_ops); debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, debugfs_root, NULL, &pinctrl_maps_ops); debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, debugfs_root, NULL, &pinctrl_ops); } #else /* CONFIG_DEBUG_FS */ static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) { } static void pinctrl_init_debugfs(void) { } static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) { } #endif static int pinctrl_check_ops(struct pinctrl_dev *pctldev) { const struct pinctrl_ops *ops = pctldev->desc->pctlops; if (!ops || !ops->get_groups_count || !ops->get_group_name || !ops->get_group_pins) return -EINVAL; if (ops->dt_node_to_map && !ops->dt_free_map) return -EINVAL; return 0; } /** * pinctrl_register() - register a pin controller device * @pctldesc: descriptor for this pin controller * @dev: parent device for this pin controller * @driver_data: private pin controller data for this pin controller */ struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, struct device *dev, void *driver_data) { struct pinctrl_dev *pctldev; int ret; if (!pctldesc) return NULL; if (!pctldesc->name) return NULL; pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); if (pctldev == NULL) { dev_err(dev, "failed to alloc struct pinctrl_dev\n"); return NULL; } /* Initialize pin control device struct */ pctldev->owner = pctldesc->owner; pctldev->desc = pctldesc; pctldev->driver_data = driver_data; INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); INIT_LIST_HEAD(&pctldev->gpio_ranges); pctldev->dev = dev; mutex_init(&pctldev->mutex); /* check core ops for sanity */ if (pinctrl_check_ops(pctldev)) { dev_err(dev, "pinctrl ops lacks necessary functions\n"); goto out_err; } /* If we're implementing pinmuxing, check the ops for sanity */ if (pctldesc->pmxops) { if (pinmux_check_ops(pctldev)) goto out_err; } /* If we're implementing pinconfig, check the ops for sanity */ if (pctldesc->confops) { if (pinconf_check_ops(pctldev)) goto out_err; } /* Register all the pins */ dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); if (ret) { dev_err(dev, "error during pin registration\n"); pinctrl_free_pindescs(pctldev, pctldesc->pins, pctldesc->npins); goto out_err; } mutex_lock(&pinctrldev_list_mutex); list_add_tail(&pctldev->node, &pinctrldev_list); mutex_unlock(&pinctrldev_list_mutex); pctldev->p = pinctrl_get(pctldev->dev); if (!IS_ERR(pctldev->p)) { pctldev->hog_default = pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); if (IS_ERR(pctldev->hog_default)) { dev_dbg(dev, "failed to lookup the default state\n"); } else { if (pinctrl_select_state(pctldev->p, pctldev->hog_default)) dev_err(dev, "failed to select default state\n"); } pctldev->hog_sleep = pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_SLEEP); if (IS_ERR(pctldev->hog_sleep)) dev_dbg(dev, "failed to lookup the sleep state\n"); } pinctrl_init_device_debugfs(pctldev); return pctldev; out_err: mutex_destroy(&pctldev->mutex); kfree(pctldev); return NULL; } EXPORT_SYMBOL_GPL(pinctrl_register); /** * pinctrl_unregister() - unregister pinmux * @pctldev: pin controller to unregister * * Called by pinmux drivers to unregister a pinmux. */ void pinctrl_unregister(struct pinctrl_dev *pctldev) { struct pinctrl_gpio_range *range, *n; if (pctldev == NULL) return; mutex_lock(&pinctrldev_list_mutex); mutex_lock(&pctldev->mutex); pinctrl_remove_device_debugfs(pctldev); if (!IS_ERR(pctldev->p)) pinctrl_put(pctldev->p); /* TODO: check that no pinmuxes are still active? */ list_del(&pctldev->node); /* Destroy descriptor tree */ pinctrl_free_pindescs(pctldev, pctldev->desc->pins, pctldev->desc->npins); /* remove gpio ranges map */ list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) list_del(&range->node); mutex_unlock(&pctldev->mutex); mutex_destroy(&pctldev->mutex); kfree(pctldev); mutex_unlock(&pinctrldev_list_mutex); } EXPORT_SYMBOL_GPL(pinctrl_unregister); static int __init pinctrl_init(void) { pr_info("initialized pinctrl subsystem\n"); pinctrl_init_debugfs(); return 0; } /* init early since many drivers really need to initialized pinmux early */ core_initcall(pinctrl_init);