/* Copyright (C) 2004 - 2009 Ivo van Doorn This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ /* Module: rt61pci Abstract: rt61pci device specific routines. Supported chipsets: RT2561, RT2561s, RT2661. */ #include #include #include #include #include #include #include #include #include "rt2x00.h" #include "rt2x00mmio.h" #include "rt2x00pci.h" #include "rt61pci.h" /* * Allow hardware encryption to be disabled. */ static bool modparam_nohwcrypt = false; module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); /* * Register access. * BBP and RF register require indirect register access, * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this. * These indirect registers work with busy bits, * and we will try maximal REGISTER_BUSY_COUNT times to access * the register while taking a REGISTER_BUSY_DELAY us delay * between each attempt. When the busy bit is still set at that time, * the access attempt is considered to have failed, * and we will print an error. */ #define WAIT_FOR_BBP(__dev, __reg) \ rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg)) #define WAIT_FOR_RF(__dev, __reg) \ rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg)) #define WAIT_FOR_MCU(__dev, __reg) \ rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \ H2M_MAILBOX_CSR_OWNER, (__reg)) static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev, const unsigned int word, const u8 value) { u32 reg; mutex_lock(&rt2x00dev->csr_mutex); /* * Wait until the BBP becomes available, afterwards we * can safely write the new data into the register. */ if (WAIT_FOR_BBP(rt2x00dev, ®)) { reg = 0; rt2x00_set_field32(®, PHY_CSR3_VALUE, value); rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0); rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg); } mutex_unlock(&rt2x00dev->csr_mutex); } static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev, const unsigned int word, u8 *value) { u32 reg; mutex_lock(&rt2x00dev->csr_mutex); /* * Wait until the BBP becomes available, afterwards we * can safely write the read request into the register. * After the data has been written, we wait until hardware * returns the correct value, if at any time the register * doesn't become available in time, reg will be 0xffffffff * which means we return 0xff to the caller. */ if (WAIT_FOR_BBP(rt2x00dev, ®)) { reg = 0; rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1); rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg); WAIT_FOR_BBP(rt2x00dev, ®); } *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE); mutex_unlock(&rt2x00dev->csr_mutex); } static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev, const unsigned int word, const u32 value) { u32 reg; mutex_lock(&rt2x00dev->csr_mutex); /* * Wait until the RF becomes available, afterwards we * can safely write the new data into the register. */ if (WAIT_FOR_RF(rt2x00dev, ®)) { reg = 0; rt2x00_set_field32(®, PHY_CSR4_VALUE, value); rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 21); rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0); rt2x00_set_field32(®, PHY_CSR4_BUSY, 1); rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg); rt2x00_rf_write(rt2x00dev, word, value); } mutex_unlock(&rt2x00dev->csr_mutex); } static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev, const u8 command, const u8 token, const u8 arg0, const u8 arg1) { u32 reg; mutex_lock(&rt2x00dev->csr_mutex); /* * Wait until the MCU becomes available, afterwards we * can safely write the new data into the register. */ if (WAIT_FOR_MCU(rt2x00dev, ®)) { rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1); rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token); rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0); rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1); rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg); rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR, ®); rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command); rt2x00_set_field32(®, HOST_CMD_CSR_INTERRUPT_MCU, 1); rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg); } mutex_unlock(&rt2x00dev->csr_mutex); } static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom) { struct rt2x00_dev *rt2x00dev = eeprom->data; u32 reg; rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, ®); eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN); eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT); eeprom->reg_data_clock = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK); eeprom->reg_chip_select = !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT); } static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom) { struct rt2x00_dev *rt2x00dev = eeprom->data; u32 reg = 0; rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in); rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out); rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, !!eeprom->reg_data_clock); rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT, !!eeprom->reg_chip_select); rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg); } #ifdef CONFIG_RT2X00_LIB_DEBUGFS static const struct rt2x00debug rt61pci_rt2x00debug = { .owner = THIS_MODULE, .csr = { .read = rt2x00mmio_register_read, .write = rt2x00mmio_register_write, .flags = RT2X00DEBUGFS_OFFSET, .word_base = CSR_REG_BASE, .word_size = sizeof(u32), .word_count = CSR_REG_SIZE / sizeof(u32), }, .eeprom = { .read = rt2x00_eeprom_read, .write = rt2x00_eeprom_write, .word_base = EEPROM_BASE, .word_size = sizeof(u16), .word_count = EEPROM_SIZE / sizeof(u16), }, .bbp = { .read = rt61pci_bbp_read, .write = rt61pci_bbp_write, .word_base = BBP_BASE, .word_size = sizeof(u8), .word_count = BBP_SIZE / sizeof(u8), }, .rf = { .read = rt2x00_rf_read, .write = rt61pci_rf_write, .word_base = RF_BASE, .word_size = sizeof(u32), .word_count = RF_SIZE / sizeof(u32), }, }; #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) { u32 reg; rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, ®); return rt2x00_get_field32(reg, MAC_CSR13_VAL5); } #ifdef CONFIG_RT2X00_LIB_LEDS static void rt61pci_brightness_set(struct led_classdev *led_cdev, enum led_brightness brightness) { struct rt2x00_led *led = container_of(led_cdev, struct rt2x00_led, led_dev); unsigned int enabled = brightness != LED_OFF; unsigned int a_mode = (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ); unsigned int bg_mode = (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); if (led->type == LED_TYPE_RADIO) { rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, MCU_LEDCS_RADIO_STATUS, enabled); rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, (led->rt2x00dev->led_mcu_reg & 0xff), ((led->rt2x00dev->led_mcu_reg >> 8))); } else if (led->type == LED_TYPE_ASSOC) { rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, MCU_LEDCS_LINK_BG_STATUS, bg_mode); rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, MCU_LEDCS_LINK_A_STATUS, a_mode); rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, (led->rt2x00dev->led_mcu_reg & 0xff), ((led->rt2x00dev->led_mcu_reg >> 8))); } else if (led->type == LED_TYPE_QUALITY) { /* * The brightness is divided into 6 levels (0 - 5), * this means we need to convert the brightness * argument into the matching level within that range. */ rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff, brightness / (LED_FULL / 6), 0); } } static int rt61pci_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on, unsigned long *delay_off) { struct rt2x00_led *led = container_of(led_cdev, struct rt2x00_led, led_dev); u32 reg; rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14, ®); rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on); rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off); rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg); return 0; } static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev, struct rt2x00_led *led, enum led_type type) { led->rt2x00dev = rt2x00dev; led->type = type; led->led_dev.brightness_set = rt61pci_brightness_set; led->led_dev.blink_set = rt61pci_blink_set; led->flags = LED_INITIALIZED; } #endif /* CONFIG_RT2X00_LIB_LEDS */ /* * Configuration handlers. */ static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_crypto *crypto, struct ieee80211_key_conf *key) { struct hw_key_entry key_entry; struct rt2x00_field32 field; u32 mask; u32 reg; if (crypto->cmd == SET_KEY) { /* * rt2x00lib can't determine the correct free * key_idx for shared keys. We have 1 register * with key valid bits. The goal is simple, read * the register, if that is full we have no slots * left. * Note that each BSS is allowed to have up to 4 * shared keys, so put a mask over the allowed * entries. */ mask = (0xf << crypto->bssidx); rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, ®); reg &= mask; if (reg && reg == mask) return -ENOSPC; key->hw_key_idx += reg ? ffz(reg) : 0; /* * Upload key to hardware */ memcpy(key_entry.key, crypto->key, sizeof(key_entry.key)); memcpy(key_entry.tx_mic, crypto->tx_mic, sizeof(key_entry.tx_mic)); memcpy(key_entry.rx_mic, crypto->rx_mic, sizeof(key_entry.rx_mic)); reg = SHARED_KEY_ENTRY(key->hw_key_idx); rt2x00mmio_register_multiwrite(rt2x00dev, reg, &key_entry, sizeof(key_entry)); /* * The cipher types are stored over 2 registers. * bssidx 0 and 1 keys are stored in SEC_CSR1 and * bssidx 1 and 2 keys are stored in SEC_CSR5. * Using the correct defines correctly will cause overhead, * so just calculate the correct offset. */ if (key->hw_key_idx < 8) { field.bit_offset = (3 * key->hw_key_idx); field.bit_mask = 0x7 << field.bit_offset; rt2x00mmio_register_read(rt2x00dev, SEC_CSR1, ®); rt2x00_set_field32(®, field, crypto->cipher); rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg); } else { field.bit_offset = (3 * (key->hw_key_idx - 8)); field.bit_mask = 0x7 << field.bit_offset; rt2x00mmio_register_read(rt2x00dev, SEC_CSR5, ®); rt2x00_set_field32(®, field, crypto->cipher); rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg); } /* * The driver does not support the IV/EIV generation * in hardware. However it doesn't support the IV/EIV * inside the ieee80211 frame either, but requires it * to be provided separately for the descriptor. * rt2x00lib will cut the IV/EIV data out of all frames * given to us by mac80211, but we must tell mac80211 * to generate the IV/EIV data. */ key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; } /* * SEC_CSR0 contains only single-bit fields to indicate * a particular key is valid. Because using the FIELD32() * defines directly will cause a lot of overhead, we use * a calculation to determine the correct bit directly. */ mask = 1 << key->hw_key_idx; rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, ®); if (crypto->cmd == SET_KEY) reg |= mask; else if (crypto->cmd == DISABLE_KEY) reg &= ~mask; rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg); return 0; } static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_crypto *crypto, struct ieee80211_key_conf *key) { struct hw_pairwise_ta_entry addr_entry; struct hw_key_entry key_entry; u32 mask; u32 reg; if (crypto->cmd == SET_KEY) { /* * rt2x00lib can't determine the correct free * key_idx for pairwise keys. We have 2 registers * with key valid bits. The goal is simple: read * the first register. If that is full, move to * the next register. * When both registers are full, we drop the key. * Otherwise, we use the first invalid entry. */ rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, ®); if (reg && reg == ~0) { key->hw_key_idx = 32; rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, ®); if (reg && reg == ~0) return -ENOSPC; } key->hw_key_idx += reg ? ffz(reg) : 0; /* * Upload key to hardware */ memcpy(key_entry.key, crypto->key, sizeof(key_entry.key)); memcpy(key_entry.tx_mic, crypto->tx_mic, sizeof(key_entry.tx_mic)); memcpy(key_entry.rx_mic, crypto->rx_mic, sizeof(key_entry.rx_mic)); memset(&addr_entry, 0, sizeof(addr_entry)); memcpy(&addr_entry, crypto->address, ETH_ALEN); addr_entry.cipher = crypto->cipher; reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx); rt2x00mmio_register_multiwrite(rt2x00dev, reg, &key_entry, sizeof(key_entry)); reg = PAIRWISE_TA_ENTRY(key->hw_key_idx); rt2x00mmio_register_multiwrite(rt2x00dev, reg, &addr_entry, sizeof(addr_entry)); /* * Enable pairwise lookup table for given BSS idx. * Without this, received frames will not be decrypted * by the hardware. */ rt2x00mmio_register_read(rt2x00dev, SEC_CSR4, ®); reg |= (1 << crypto->bssidx); rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg); /* * The driver does not support the IV/EIV generation * in hardware. However it doesn't support the IV/EIV * inside the ieee80211 frame either, but requires it * to be provided separately for the descriptor. * rt2x00lib will cut the IV/EIV data out of all frames * given to us by mac80211, but we must tell mac80211 * to generate the IV/EIV data. */ key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; } /* * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate * a particular key is valid. Because using the FIELD32() * defines directly will cause a lot of overhead, we use * a calculation to determine the correct bit directly. */ if (key->hw_key_idx < 32) { mask = 1 << key->hw_key_idx; rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, ®); if (crypto->cmd == SET_KEY) reg |= mask; else if (crypto->cmd == DISABLE_KEY) reg &= ~mask; rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg); } else { mask = 1 << (key->hw_key_idx - 32); rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, ®); if (crypto->cmd == SET_KEY) reg |= mask; else if (crypto->cmd == DISABLE_KEY) reg &= ~mask; rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg); } return 0; } static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev, const unsigned int filter_flags) { u32 reg; /* * Start configuration steps. * Note that the version error will always be dropped * and broadcast frames will always be accepted since * there is no filter for it at this time. */ rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC, !(filter_flags & FIF_FCSFAIL)); rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, !(filter_flags & FIF_PLCPFAIL)); rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, !(filter_flags & (FIF_CONTROL | FIF_PSPOLL))); rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME, 1); rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, !rt2x00dev->intf_ap_count); rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1); rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST, !(filter_flags & FIF_ALLMULTI)); rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0); rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, !(filter_flags & FIF_CONTROL)); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); } static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf, struct rt2x00intf_conf *conf, const unsigned int flags) { u32 reg; if (flags & CONFIG_UPDATE_TYPE) { /* * Enable synchronisation. */ rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®); rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); } if (flags & CONFIG_UPDATE_MAC) { reg = le32_to_cpu(conf->mac[1]); rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff); conf->mac[1] = cpu_to_le32(reg); rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac, sizeof(conf->mac)); } if (flags & CONFIG_UPDATE_BSSID) { reg = le32_to_cpu(conf->bssid[1]); rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3); conf->bssid[1] = cpu_to_le32(reg); rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4, conf->bssid, sizeof(conf->bssid)); } } static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp, u32 changed) { u32 reg; rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32); rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); if (changed & BSS_CHANGED_ERP_PREAMBLE) { rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, ®); rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1); rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, !!erp->short_preamble); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg); } if (changed & BSS_CHANGED_BASIC_RATES) rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates); if (changed & BSS_CHANGED_BEACON_INT) { rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®); rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, erp->beacon_int * 16); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); } if (changed & BSS_CHANGED_ERP_SLOT) { rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, ®); rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time); rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg); rt2x00mmio_register_read(rt2x00dev, MAC_CSR8, ®); rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs); rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3); rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs); rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg); } } static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) { u8 r3; u8 r4; u8 r77; rt61pci_bbp_read(rt2x00dev, 3, &r3); rt61pci_bbp_read(rt2x00dev, 4, &r4); rt61pci_bbp_read(rt2x00dev, 77, &r77); rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325)); /* * Configure the RX antenna. */ switch (ant->rx) { case ANTENNA_HW_DIVERSITY: rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ)); break; case ANTENNA_A: rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); else rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); break; case ANTENNA_B: default: rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); else rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); break; } rt61pci_bbp_write(rt2x00dev, 77, r77); rt61pci_bbp_write(rt2x00dev, 3, r3); rt61pci_bbp_write(rt2x00dev, 4, r4); } static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) { u8 r3; u8 r4; u8 r77; rt61pci_bbp_read(rt2x00dev, 3, &r3); rt61pci_bbp_read(rt2x00dev, 4, &r4); rt61pci_bbp_read(rt2x00dev, 77, &r77); rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529)); rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, !rt2x00_has_cap_frame_type(rt2x00dev)); /* * Configure the RX antenna. */ switch (ant->rx) { case ANTENNA_HW_DIVERSITY: rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); break; case ANTENNA_A: rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); break; case ANTENNA_B: default: rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); break; } rt61pci_bbp_write(rt2x00dev, 77, r77); rt61pci_bbp_write(rt2x00dev, 3, r3); rt61pci_bbp_write(rt2x00dev, 4, r4); } static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev, const int p1, const int p2) { u32 reg; rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, ®); rt2x00_set_field32(®, MAC_CSR13_DIR4, 0); rt2x00_set_field32(®, MAC_CSR13_VAL4, p1); rt2x00_set_field32(®, MAC_CSR13_DIR3, 0); rt2x00_set_field32(®, MAC_CSR13_VAL3, !p2); rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg); } static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) { u8 r3; u8 r4; u8 r77; rt61pci_bbp_read(rt2x00dev, 3, &r3); rt61pci_bbp_read(rt2x00dev, 4, &r4); rt61pci_bbp_read(rt2x00dev, 77, &r77); /* * Configure the RX antenna. */ switch (ant->rx) { case ANTENNA_A: rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0); break; case ANTENNA_HW_DIVERSITY: /* * FIXME: Antenna selection for the rf 2529 is very confusing * in the legacy driver. Just default to antenna B until the * legacy code can be properly translated into rt2x00 code. */ case ANTENNA_B: default: rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1); break; } rt61pci_bbp_write(rt2x00dev, 77, r77); rt61pci_bbp_write(rt2x00dev, 3, r3); rt61pci_bbp_write(rt2x00dev, 4, r4); } struct antenna_sel { u8 word; /* * value[0] -> non-LNA * value[1] -> LNA */ u8 value[2]; }; static const struct antenna_sel antenna_sel_a[] = { { 96, { 0x58, 0x78 } }, { 104, { 0x38, 0x48 } }, { 75, { 0xfe, 0x80 } }, { 86, { 0xfe, 0x80 } }, { 88, { 0xfe, 0x80 } }, { 35, { 0x60, 0x60 } }, { 97, { 0x58, 0x58 } }, { 98, { 0x58, 0x58 } }, }; static const struct antenna_sel antenna_sel_bg[] = { { 96, { 0x48, 0x68 } }, { 104, { 0x2c, 0x3c } }, { 75, { 0xfe, 0x80 } }, { 86, { 0xfe, 0x80 } }, { 88, { 0xfe, 0x80 } }, { 35, { 0x50, 0x50 } }, { 97, { 0x48, 0x48 } }, { 98, { 0x48, 0x48 } }, }; static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) { const struct antenna_sel *sel; unsigned int lna; unsigned int i; u32 reg; /* * We should never come here because rt2x00lib is supposed * to catch this and send us the correct antenna explicitely. */ BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || ant->tx == ANTENNA_SW_DIVERSITY); if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { sel = antenna_sel_a; lna = rt2x00_has_cap_external_lna_a(rt2x00dev); } else { sel = antenna_sel_bg; lna = rt2x00_has_cap_external_lna_bg(rt2x00dev); } for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++) rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]); rt2x00mmio_register_read(rt2x00dev, PHY_CSR0, ®); rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, rt2x00dev->curr_band == IEEE80211_BAND_5GHZ); rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg); if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) rt61pci_config_antenna_5x(rt2x00dev, ant); else if (rt2x00_rf(rt2x00dev, RF2527)) rt61pci_config_antenna_2x(rt2x00dev, ant); else if (rt2x00_rf(rt2x00dev, RF2529)) { if (rt2x00_has_cap_double_antenna(rt2x00dev)) rt61pci_config_antenna_2x(rt2x00dev, ant); else rt61pci_config_antenna_2529(rt2x00dev, ant); } } static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf) { u16 eeprom; short lna_gain = 0; if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) { if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) lna_gain += 14; rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom); lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1); } else { if (rt2x00_has_cap_external_lna_a(rt2x00dev)) lna_gain += 14; rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom); lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1); } rt2x00dev->lna_gain = lna_gain; } static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev, struct rf_channel *rf, const int txpower) { u8 r3; u8 r94; u8 smart; rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)); rt61pci_bbp_read(rt2x00dev, 3, &r3); rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart); rt61pci_bbp_write(rt2x00dev, 3, r3); r94 = 6; if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94)) r94 += txpower - MAX_TXPOWER; else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94)) r94 += txpower; rt61pci_bbp_write(rt2x00dev, 94, r94); rt61pci_rf_write(rt2x00dev, 1, rf->rf1); rt61pci_rf_write(rt2x00dev, 2, rf->rf2); rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); rt61pci_rf_write(rt2x00dev, 4, rf->rf4); udelay(200); rt61pci_rf_write(rt2x00dev, 1, rf->rf1); rt61pci_rf_write(rt2x00dev, 2, rf->rf2); rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); rt61pci_rf_write(rt2x00dev, 4, rf->rf4); udelay(200); rt61pci_rf_write(rt2x00dev, 1, rf->rf1); rt61pci_rf_write(rt2x00dev, 2, rf->rf2); rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); rt61pci_rf_write(rt2x00dev, 4, rf->rf4); msleep(1); } static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev, const int txpower) { struct rf_channel rf; rt2x00_rf_read(rt2x00dev, 1, &rf.rf1); rt2x00_rf_read(rt2x00dev, 2, &rf.rf2); rt2x00_rf_read(rt2x00dev, 3, &rf.rf3); rt2x00_rf_read(rt2x00dev, 4, &rf.rf4); rt61pci_config_channel(rt2x00dev, &rf, txpower); } static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf) { u32 reg; rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, ®); rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1); rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_STEP, 0); rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0); rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, libconf->conf->long_frame_max_tx_count); rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, libconf->conf->short_frame_max_tx_count); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg); } static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf) { enum dev_state state = (libconf->conf->flags & IEEE80211_CONF_PS) ? STATE_SLEEP : STATE_AWAKE; u32 reg; if (state == STATE_SLEEP) { rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, ®); rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, rt2x00dev->beacon_int - 10); rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, libconf->conf->listen_interval - 1); rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5); /* We must first disable autowake before it can be enabled */ rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg); rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1); rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg); rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005); rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c); rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060); rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0); } else { rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, ®); rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0); rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0); rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0); rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg); rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007); rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018); rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020); rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0); } } static void rt61pci_config(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf, const unsigned int flags) { /* Always recalculate LNA gain before changing configuration */ rt61pci_config_lna_gain(rt2x00dev, libconf); if (flags & IEEE80211_CONF_CHANGE_CHANNEL) rt61pci_config_channel(rt2x00dev, &libconf->rf, libconf->conf->power_level); if ((flags & IEEE80211_CONF_CHANGE_POWER) && !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level); if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) rt61pci_config_retry_limit(rt2x00dev, libconf); if (flags & IEEE80211_CONF_CHANGE_PS) rt61pci_config_ps(rt2x00dev, libconf); } /* * Link tuning */ static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) { u32 reg; /* * Update FCS error count from register. */ rt2x00mmio_register_read(rt2x00dev, STA_CSR0, ®); qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR); /* * Update False CCA count from register. */ rt2x00mmio_register_read(rt2x00dev, STA_CSR1, ®); qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR); } static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev, struct link_qual *qual, u8 vgc_level) { if (qual->vgc_level != vgc_level) { rt61pci_bbp_write(rt2x00dev, 17, vgc_level); qual->vgc_level = vgc_level; qual->vgc_level_reg = vgc_level; } } static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) { rt61pci_set_vgc(rt2x00dev, qual, 0x20); } static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual, const u32 count) { u8 up_bound; u8 low_bound; /* * Determine r17 bounds. */ if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { low_bound = 0x28; up_bound = 0x48; if (rt2x00_has_cap_external_lna_a(rt2x00dev)) { low_bound += 0x10; up_bound += 0x10; } } else { low_bound = 0x20; up_bound = 0x40; if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) { low_bound += 0x10; up_bound += 0x10; } } /* * If we are not associated, we should go straight to the * dynamic CCA tuning. */ if (!rt2x00dev->intf_associated) goto dynamic_cca_tune; /* * Special big-R17 for very short distance */ if (qual->rssi >= -35) { rt61pci_set_vgc(rt2x00dev, qual, 0x60); return; } /* * Special big-R17 for short distance */ if (qual->rssi >= -58) { rt61pci_set_vgc(rt2x00dev, qual, up_bound); return; } /* * Special big-R17 for middle-short distance */ if (qual->rssi >= -66) { rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10); return; } /* * Special mid-R17 for middle distance */ if (qual->rssi >= -74) { rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08); return; } /* * Special case: Change up_bound based on the rssi. * Lower up_bound when rssi is weaker then -74 dBm. */ up_bound -= 2 * (-74 - qual->rssi); if (low_bound > up_bound) up_bound = low_bound; if (qual->vgc_level > up_bound) { rt61pci_set_vgc(rt2x00dev, qual, up_bound); return; } dynamic_cca_tune: /* * r17 does not yet exceed upper limit, continue and base * the r17 tuning on the false CCA count. */ if ((qual->false_cca > 512) && (qual->vgc_level < up_bound)) rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level); else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound)) rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level); } /* * Queue handlers. */ static void rt61pci_start_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; u32 reg; switch (queue->qid) { case QID_RX: rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); break; case QID_BEACON: rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®); rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); break; default: break; } } static void rt61pci_kick_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; u32 reg; switch (queue->qid) { case QID_AC_VO: rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®); rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC0, 1); rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); break; case QID_AC_VI: rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®); rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC1, 1); rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); break; case QID_AC_BE: rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®); rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC2, 1); rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); break; case QID_AC_BK: rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®); rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC3, 1); rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); break; default: break; } } static void rt61pci_stop_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; u32 reg; switch (queue->qid) { case QID_AC_VO: rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®); rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC0, 1); rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); break; case QID_AC_VI: rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®); rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC1, 1); rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); break; case QID_AC_BE: rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®); rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC2, 1); rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); break; case QID_AC_BK: rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, ®); rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC3, 1); rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg); break; case QID_RX: rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 1); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); break; case QID_BEACON: rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®); rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); /* * Wait for possibly running tbtt tasklets. */ tasklet_kill(&rt2x00dev->tbtt_tasklet); break; default: break; } } /* * Firmware functions */ static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev) { u16 chip; char *fw_name; pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip); switch (chip) { case RT2561_PCI_ID: fw_name = FIRMWARE_RT2561; break; case RT2561s_PCI_ID: fw_name = FIRMWARE_RT2561s; break; case RT2661_PCI_ID: fw_name = FIRMWARE_RT2661; break; default: fw_name = NULL; break; } return fw_name; } static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev, const u8 *data, const size_t len) { u16 fw_crc; u16 crc; /* * Only support 8kb firmware files. */ if (len != 8192) return FW_BAD_LENGTH; /* * The last 2 bytes in the firmware array are the crc checksum itself. * This means that we should never pass those 2 bytes to the crc * algorithm. */ fw_crc = (data[len - 2] << 8 | data[len - 1]); /* * Use the crc itu-t algorithm. */ crc = crc_itu_t(0, data, len - 2); crc = crc_itu_t_byte(crc, 0); crc = crc_itu_t_byte(crc, 0); return (fw_crc == crc) ? FW_OK : FW_BAD_CRC; } static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const u8 *data, const size_t len) { int i; u32 reg; /* * Wait for stable hardware. */ for (i = 0; i < 100; i++) { rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, ®); if (reg) break; msleep(1); } if (!reg) { rt2x00_err(rt2x00dev, "Unstable hardware\n"); return -EBUSY; } /* * Prepare MCU and mailbox for firmware loading. */ reg = 0; rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1); rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg); rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0); /* * Write firmware to device. */ reg = 0; rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1); rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 1); rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg); rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len); rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 0); rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg); rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 0); rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg); for (i = 0; i < 100; i++) { rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR, ®); if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY)) break; msleep(1); } if (i == 100) { rt2x00_err(rt2x00dev, "MCU Control register not ready\n"); return -EBUSY; } /* * Hardware needs another millisecond before it is ready. */ msleep(1); /* * Reset MAC and BBP registers. */ reg = 0; rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); return 0; } /* * Initialization functions. */ static bool rt61pci_get_entry_state(struct queue_entry *entry) { struct queue_entry_priv_mmio *entry_priv = entry->priv_data; u32 word; if (entry->queue->qid == QID_RX) { rt2x00_desc_read(entry_priv->desc, 0, &word); return rt2x00_get_field32(word, RXD_W0_OWNER_NIC); } else { rt2x00_desc_read(entry_priv->desc, 0, &word); return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || rt2x00_get_field32(word, TXD_W0_VALID)); } } static void rt61pci_clear_entry(struct queue_entry *entry) { struct queue_entry_priv_mmio *entry_priv = entry->priv_data; struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); u32 word; if (entry->queue->qid == QID_RX) { rt2x00_desc_read(entry_priv->desc, 5, &word); rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS, skbdesc->skb_dma); rt2x00_desc_write(entry_priv->desc, 5, word); rt2x00_desc_read(entry_priv->desc, 0, &word); rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); rt2x00_desc_write(entry_priv->desc, 0, word); } else { rt2x00_desc_read(entry_priv->desc, 0, &word); rt2x00_set_field32(&word, TXD_W0_VALID, 0); rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); rt2x00_desc_write(entry_priv->desc, 0, word); } } static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev) { struct queue_entry_priv_mmio *entry_priv; u32 reg; /* * Initialize registers. */ rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0, ®); rt2x00_set_field32(®, TX_RING_CSR0_AC0_RING_SIZE, rt2x00dev->tx[0].limit); rt2x00_set_field32(®, TX_RING_CSR0_AC1_RING_SIZE, rt2x00dev->tx[1].limit); rt2x00_set_field32(®, TX_RING_CSR0_AC2_RING_SIZE, rt2x00dev->tx[2].limit); rt2x00_set_field32(®, TX_RING_CSR0_AC3_RING_SIZE, rt2x00dev->tx[3].limit); rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg); rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1, ®); rt2x00_set_field32(®, TX_RING_CSR1_TXD_SIZE, rt2x00dev->tx[0].desc_size / 4); rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg); entry_priv = rt2x00dev->tx[0].entries[0].priv_data; rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR, ®); rt2x00_set_field32(®, AC0_BASE_CSR_RING_REGISTER, entry_priv->desc_dma); rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg); entry_priv = rt2x00dev->tx[1].entries[0].priv_data; rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR, ®); rt2x00_set_field32(®, AC1_BASE_CSR_RING_REGISTER, entry_priv->desc_dma); rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg); entry_priv = rt2x00dev->tx[2].entries[0].priv_data; rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR, ®); rt2x00_set_field32(®, AC2_BASE_CSR_RING_REGISTER, entry_priv->desc_dma); rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg); entry_priv = rt2x00dev->tx[3].entries[0].priv_data; rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR, ®); rt2x00_set_field32(®, AC3_BASE_CSR_RING_REGISTER, entry_priv->desc_dma); rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg); rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR, ®); rt2x00_set_field32(®, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit); rt2x00_set_field32(®, RX_RING_CSR_RXD_SIZE, rt2x00dev->rx->desc_size / 4); rt2x00_set_field32(®, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4); rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg); entry_priv = rt2x00dev->rx->entries[0].priv_data; rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR, ®); rt2x00_set_field32(®, RX_BASE_CSR_RING_REGISTER, entry_priv->desc_dma); rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg); rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR, ®); rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC0, 2); rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC1, 2); rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC2, 2); rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC3, 2); rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg); rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR, ®); rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1); rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1); rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1); rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1); rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg); rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, ®); rt2x00_set_field32(®, RX_CNTL_CSR_LOAD_RXD, 1); rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg); return 0; } static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev) { u32 reg; rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1); rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg); rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1, ®); rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */ rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1); rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */ rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1); rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */ rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1); rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */ rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg); /* * CCK TXD BBP registers */ rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2, ®); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg); /* * OFDM TXD BBP registers */ rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3, ®); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg); rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7, ®); rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59); rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53); rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49); rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg); rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8, ®); rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44); rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42); rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42); rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg); rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®); rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0); rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0); rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f); rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff); rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, ®); rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0); rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg); rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c); if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) return -EBUSY; rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000); /* * Invalidate all Shared Keys (SEC_CSR0), * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5) */ rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000); rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000); rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000); rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0); rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c); rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606); rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08); rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404); rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200); rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); /* * Clear all beacons * For the Beacon base registers we only need to clear * the first byte since that byte contains the VALID and OWNER * bits which (when set to 0) will invalidate the entire beacon. */ rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0); rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0); rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0); rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0); /* * We must clear the error counters. * These registers are cleared on read, * so we may pass a useless variable to store the value. */ rt2x00mmio_register_read(rt2x00dev, STA_CSR0, ®); rt2x00mmio_register_read(rt2x00dev, STA_CSR1, ®); rt2x00mmio_register_read(rt2x00dev, STA_CSR2, ®); /* * Reset MAC and BBP registers. */ rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg); return 0; } static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) { unsigned int i; u8 value; for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt61pci_bbp_read(rt2x00dev, 0, &value); if ((value != 0xff) && (value != 0x00)) return 0; udelay(REGISTER_BUSY_DELAY); } rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); return -EACCES; } static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev) { unsigned int i; u16 eeprom; u8 reg_id; u8 value; if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev))) return -EACCES; rt61pci_bbp_write(rt2x00dev, 3, 0x00); rt61pci_bbp_write(rt2x00dev, 15, 0x30); rt61pci_bbp_write(rt2x00dev, 21, 0xc8); rt61pci_bbp_write(rt2x00dev, 22, 0x38); rt61pci_bbp_write(rt2x00dev, 23, 0x06); rt61pci_bbp_write(rt2x00dev, 24, 0xfe); rt61pci_bbp_write(rt2x00dev, 25, 0x0a); rt61pci_bbp_write(rt2x00dev, 26, 0x0d); rt61pci_bbp_write(rt2x00dev, 34, 0x12); rt61pci_bbp_write(rt2x00dev, 37, 0x07); rt61pci_bbp_write(rt2x00dev, 39, 0xf8); rt61pci_bbp_write(rt2x00dev, 41, 0x60); rt61pci_bbp_write(rt2x00dev, 53, 0x10); rt61pci_bbp_write(rt2x00dev, 54, 0x18); rt61pci_bbp_write(rt2x00dev, 60, 0x10); rt61pci_bbp_write(rt2x00dev, 61, 0x04); rt61pci_bbp_write(rt2x00dev, 62, 0x04); rt61pci_bbp_write(rt2x00dev, 75, 0xfe); rt61pci_bbp_write(rt2x00dev, 86, 0xfe); rt61pci_bbp_write(rt2x00dev, 88, 0xfe); rt61pci_bbp_write(rt2x00dev, 90, 0x0f); rt61pci_bbp_write(rt2x00dev, 99, 0x00); rt61pci_bbp_write(rt2x00dev, 102, 0x16); rt61pci_bbp_write(rt2x00dev, 107, 0x04); for (i = 0; i < EEPROM_BBP_SIZE; i++) { rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); if (eeprom != 0xffff && eeprom != 0x0000) { reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); rt61pci_bbp_write(rt2x00dev, reg_id, value); } } return 0; } /* * Device state switch handlers. */ static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev, enum dev_state state) { int mask = (state == STATE_RADIO_IRQ_OFF); u32 reg; unsigned long flags; /* * When interrupts are being enabled, the interrupt registers * should clear the register to assure a clean state. */ if (state == STATE_RADIO_IRQ_ON) { rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, ®); rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg); rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®); rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg); } /* * Only toggle the interrupts bits we are going to use. * Non-checked interrupt bits are disabled by default. */ spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, ®); rt2x00_set_field32(®, INT_MASK_CSR_TXDONE, mask); rt2x00_set_field32(®, INT_MASK_CSR_RXDONE, mask); rt2x00_set_field32(®, INT_MASK_CSR_BEACON_DONE, mask); rt2x00_set_field32(®, INT_MASK_CSR_ENABLE_MITIGATION, mask); rt2x00_set_field32(®, INT_MASK_CSR_MITIGATION_PERIOD, 0xff); rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®); rt2x00_set_field32(®, MCU_INT_MASK_CSR_0, mask); rt2x00_set_field32(®, MCU_INT_MASK_CSR_1, mask); rt2x00_set_field32(®, MCU_INT_MASK_CSR_2, mask); rt2x00_set_field32(®, MCU_INT_MASK_CSR_3, mask); rt2x00_set_field32(®, MCU_INT_MASK_CSR_4, mask); rt2x00_set_field32(®, MCU_INT_MASK_CSR_5, mask); rt2x00_set_field32(®, MCU_INT_MASK_CSR_6, mask); rt2x00_set_field32(®, MCU_INT_MASK_CSR_7, mask); rt2x00_set_field32(®, MCU_INT_MASK_CSR_TWAKEUP, mask); rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); if (state == STATE_RADIO_IRQ_OFF) { /* * Ensure that all tasklets are finished. */ tasklet_kill(&rt2x00dev->txstatus_tasklet); tasklet_kill(&rt2x00dev->rxdone_tasklet); tasklet_kill(&rt2x00dev->autowake_tasklet); tasklet_kill(&rt2x00dev->tbtt_tasklet); } } static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev) { u32 reg; /* * Initialize all registers. */ if (unlikely(rt61pci_init_queues(rt2x00dev) || rt61pci_init_registers(rt2x00dev) || rt61pci_init_bbp(rt2x00dev))) return -EIO; /* * Enable RX. */ rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, ®); rt2x00_set_field32(®, RX_CNTL_CSR_ENABLE_RX_DMA, 1); rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg); return 0; } static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev) { /* * Disable power */ rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818); } static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { u32 reg, reg2; unsigned int i; char put_to_sleep; put_to_sleep = (state != STATE_AWAKE); rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, ®); rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep); rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep); rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg); /* * Device is not guaranteed to be in the requested state yet. * We must wait until the register indicates that the * device has entered the correct state. */ for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, ®2); state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE); if (state == !put_to_sleep) return 0; rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg); msleep(10); } return -EBUSY; } static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { int retval = 0; switch (state) { case STATE_RADIO_ON: retval = rt61pci_enable_radio(rt2x00dev); break; case STATE_RADIO_OFF: rt61pci_disable_radio(rt2x00dev); break; case STATE_RADIO_IRQ_ON: case STATE_RADIO_IRQ_OFF: rt61pci_toggle_irq(rt2x00dev, state); break; case STATE_DEEP_SLEEP: case STATE_SLEEP: case STATE_STANDBY: case STATE_AWAKE: retval = rt61pci_set_state(rt2x00dev, state); break; default: retval = -ENOTSUPP; break; } if (unlikely(retval)) rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", state, retval); return retval; } /* * TX descriptor initialization */ static void rt61pci_write_tx_desc(struct queue_entry *entry, struct txentry_desc *txdesc) { struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); struct queue_entry_priv_mmio *entry_priv = entry->priv_data; __le32 *txd = entry_priv->desc; u32 word; /* * Start writing the descriptor words. */ rt2x00_desc_read(txd, 1, &word); rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid); rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs); rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1); rt2x00_desc_write(txd, 1, word); rt2x00_desc_read(txd, 2, &word); rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->u.plcp.length_low); rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->u.plcp.length_high); rt2x00_desc_write(txd, 2, word); if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); } rt2x00_desc_read(txd, 5, &word); rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid); rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, skbdesc->entry->entry_idx); rt2x00_set_field32(&word, TXD_W5_TX_POWER, TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power)); rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1); rt2x00_desc_write(txd, 5, word); if (entry->queue->qid != QID_BEACON) { rt2x00_desc_read(txd, 6, &word); rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS, skbdesc->skb_dma); rt2x00_desc_write(txd, 6, word); rt2x00_desc_read(txd, 11, &word); rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, txdesc->length); rt2x00_desc_write(txd, 11, word); } /* * Writing TXD word 0 must the last to prevent a race condition with * the device, whereby the device may take hold of the TXD before we * finished updating it. */ rt2x00_desc_read(txd, 0, &word); rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); rt2x00_set_field32(&word, TXD_W0_VALID, 1); rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_ACK, test_bit(ENTRY_TXD_ACK, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_OFDM, (txdesc->rate_mode == RATE_MODE_OFDM)); rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_KEY_TABLE, test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx); rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); rt2x00_set_field32(&word, TXD_W0_BURST, test_bit(ENTRY_TXD_BURST, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher); rt2x00_desc_write(txd, 0, word); /* * Register descriptor details in skb frame descriptor. */ skbdesc->desc = txd; skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE : TXD_DESC_SIZE; } /* * TX data initialization */ static void rt61pci_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct queue_entry_priv_mmio *entry_priv = entry->priv_data; unsigned int beacon_base; unsigned int padding_len; u32 orig_reg, reg; /* * Disable beaconing while we are reloading the beacon data, * otherwise we might be sending out invalid data. */ rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, ®); orig_reg = reg; rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); /* * Write the TX descriptor for the beacon. */ rt61pci_write_tx_desc(entry, txdesc); /* * Dump beacon to userspace through debugfs. */ rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); /* * Write entire beacon with descriptor and padding to register. */ padding_len = roundup(entry->skb->len, 4) - entry->skb->len; if (padding_len && skb_pad(entry->skb, padding_len)) { rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n"); /* skb freed by skb_pad() on failure */ entry->skb = NULL; rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg); return; } beacon_base = HW_BEACON_OFFSET(entry->entry_idx); rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base, entry_priv->desc, TXINFO_SIZE); rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE, entry->skb->data, entry->skb->len + padding_len); /* * Enable beaconing again. * * For Wi-Fi faily generated beacons between participating * stations. Set TBTT phase adaptive adjustment step to 8us. */ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008); rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); /* * Clean up beacon skb. */ dev_kfree_skb_any(entry->skb); entry->skb = NULL; } static void rt61pci_clear_beacon(struct queue_entry *entry) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; u32 orig_reg, reg; /* * Disable beaconing while we are reloading the beacon data, * otherwise we might be sending out invalid data. */ rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &orig_reg); reg = orig_reg; rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg); /* * Clear beacon. */ rt2x00mmio_register_write(rt2x00dev, HW_BEACON_OFFSET(entry->entry_idx), 0); /* * Restore global beaconing state. */ rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg); } /* * RX control handlers */ static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1) { u8 offset = rt2x00dev->lna_gain; u8 lna; lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA); switch (lna) { case 3: offset += 90; break; case 2: offset += 74; break; case 1: offset += 64; break; default: return 0; } if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { if (lna == 3 || lna == 2) offset += 10; } return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset; } static void rt61pci_fill_rxdone(struct queue_entry *entry, struct rxdone_entry_desc *rxdesc) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct queue_entry_priv_mmio *entry_priv = entry->priv_data; u32 word0; u32 word1; rt2x00_desc_read(entry_priv->desc, 0, &word0); rt2x00_desc_read(entry_priv->desc, 1, &word1); if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG); rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR); if (rxdesc->cipher != CIPHER_NONE) { _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]); _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]); rxdesc->dev_flags |= RXDONE_CRYPTO_IV; _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv); rxdesc->dev_flags |= RXDONE_CRYPTO_ICV; /* * Hardware has stripped IV/EIV data from 802.11 frame during * decryption. It has provided the data separately but rt2x00lib * should decide if it should be reinserted. */ rxdesc->flags |= RX_FLAG_IV_STRIPPED; /* * The hardware has already checked the Michael Mic and has * stripped it from the frame. Signal this to mac80211. */ rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) rxdesc->flags |= RX_FLAG_DECRYPTED; else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) rxdesc->flags |= RX_FLAG_MMIC_ERROR; } /* * Obtain the status about this packet. * When frame was received with an OFDM bitrate, * the signal is the PLCP value. If it was received with * a CCK bitrate the signal is the rate in 100kbit/s. */ rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1); rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); if (rt2x00_get_field32(word0, RXD_W0_OFDM)) rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; else rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) rxdesc->dev_flags |= RXDONE_MY_BSS; } /* * Interrupt functions. */ static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; struct queue_entry *entry; struct queue_entry *entry_done; struct queue_entry_priv_mmio *entry_priv; struct txdone_entry_desc txdesc; u32 word; u32 reg; int type; int index; int i; /* * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO * at most X times and also stop processing once the TX_STA_FIFO_VALID * flag is not set anymore. * * The legacy drivers use X=TX_RING_SIZE but state in a comment * that the TX_STA_FIFO stack has a size of 16. We stick to our * tx ring size for now. */ for (i = 0; i < rt2x00dev->tx->limit; i++) { rt2x00mmio_register_read(rt2x00dev, STA_CSR4, ®); if (!rt2x00_get_field32(reg, STA_CSR4_VALID)) break; /* * Skip this entry when it contains an invalid * queue identication number. */ type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE); queue = rt2x00queue_get_tx_queue(rt2x00dev, type); if (unlikely(!queue)) continue; /* * Skip this entry when it contains an invalid * index number. */ index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE); if (unlikely(index >= queue->limit)) continue; entry = &queue->entries[index]; entry_priv = entry->priv_data; rt2x00_desc_read(entry_priv->desc, 0, &word); if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || !rt2x00_get_field32(word, TXD_W0_VALID)) return; entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); while (entry != entry_done) { /* Catch up. * Just report any entries we missed as failed. */ rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n", entry_done->entry_idx); rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN); entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); } /* * Obtain the status about this packet. */ txdesc.flags = 0; switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) { case 0: /* Success, maybe with retry */ __set_bit(TXDONE_SUCCESS, &txdesc.flags); break; case 6: /* Failure, excessive retries */ __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags); /* Don't break, this is a failed frame! */ default: /* Failure */ __set_bit(TXDONE_FAILURE, &txdesc.flags); } txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT); /* * the frame was retried at least once * -> hw used fallback rates */ if (txdesc.retry) __set_bit(TXDONE_FALLBACK, &txdesc.flags); rt2x00lib_txdone(entry, &txdesc); } } static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev) { struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf }; rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS); } static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev, struct rt2x00_field32 irq_field) { u32 reg; /* * Enable a single interrupt. The interrupt mask register * access needs locking. */ spin_lock_irq(&rt2x00dev->irqmask_lock); rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, ®); rt2x00_set_field32(®, irq_field, 0); rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); spin_unlock_irq(&rt2x00dev->irqmask_lock); } static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev, struct rt2x00_field32 irq_field) { u32 reg; /* * Enable a single MCU interrupt. The interrupt mask register * access needs locking. */ spin_lock_irq(&rt2x00dev->irqmask_lock); rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®); rt2x00_set_field32(®, irq_field, 0); rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); spin_unlock_irq(&rt2x00dev->irqmask_lock); } static void rt61pci_txstatus_tasklet(unsigned long data) { struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; rt61pci_txdone(rt2x00dev); if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE); } static void rt61pci_tbtt_tasklet(unsigned long data) { struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; rt2x00lib_beacondone(rt2x00dev); if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE); } static void rt61pci_rxdone_tasklet(unsigned long data) { struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; if (rt2x00mmio_rxdone(rt2x00dev)) tasklet_schedule(&rt2x00dev->rxdone_tasklet); else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE); } static void rt61pci_autowake_tasklet(unsigned long data) { struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; rt61pci_wakeup(rt2x00dev); rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP); } static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance) { struct rt2x00_dev *rt2x00dev = dev_instance; u32 reg_mcu, mask_mcu; u32 reg, mask; /* * Get the interrupt sources & saved to local variable. * Write register value back to clear pending interrupts. */ rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®_mcu); rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu); rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, ®); rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg); if (!reg && !reg_mcu) return IRQ_NONE; if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) return IRQ_HANDLED; /* * Schedule tasklets for interrupt handling. */ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE)) tasklet_schedule(&rt2x00dev->rxdone_tasklet); if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE)) tasklet_schedule(&rt2x00dev->txstatus_tasklet); if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE)) tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP)) tasklet_schedule(&rt2x00dev->autowake_tasklet); /* * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits * for interrupts and interrupt masks we can just use the value of * INT_SOURCE_CSR to create the interrupt mask. */ mask = reg; mask_mcu = reg_mcu; /* * Disable all interrupts for which a tasklet was scheduled right now, * the tasklet will reenable the appropriate interrupts. */ spin_lock(&rt2x00dev->irqmask_lock); rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, ®); reg |= mask; rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®); reg |= mask_mcu; rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); spin_unlock(&rt2x00dev->irqmask_lock); return IRQ_HANDLED; } /* * Device probe functions. */ static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) { struct eeprom_93cx6 eeprom; u32 reg; u16 word; u8 *mac; s8 value; rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, ®); eeprom.data = rt2x00dev; eeprom.register_read = rt61pci_eepromregister_read; eeprom.register_write = rt61pci_eepromregister_write; eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ? PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; eeprom.reg_data_in = 0; eeprom.reg_data_out = 0; eeprom.reg_data_clock = 0; eeprom.reg_chip_select = 0; eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, EEPROM_SIZE / sizeof(u16)); /* * Start validation of the data that has been read. */ mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); if (!is_valid_ether_addr(mac)) { eth_random_addr(mac); rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac); } rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, ANTENNA_B); rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, ANTENNA_B); rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0); rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225); rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0); rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0); rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0); rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0); rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0); rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_LED_LED_MODE, LED_MODE_DEFAULT); rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word); rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); } else { value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1); if (value < -10 || value > 10) rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2); if (value < -10 || value > 10) rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word); } else { value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1); if (value < -10 || value > 10) rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2); if (value < -10 || value > 10) rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); } return 0; } static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev) { u32 reg; u16 value; u16 eeprom; /* * Read EEPROM word for configuration. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); /* * Identify RF chipset. */ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, ®); rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET), value, rt2x00_get_field32(reg, MAC_CSR0_REVISION)); if (!rt2x00_rf(rt2x00dev, RF5225) && !rt2x00_rf(rt2x00dev, RF5325) && !rt2x00_rf(rt2x00dev, RF2527) && !rt2x00_rf(rt2x00dev, RF2529)) { rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); return -ENODEV; } /* * Determine number of antennas. */ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2) __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags); /* * Identify default antenna configuration. */ rt2x00dev->default_ant.tx = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); rt2x00dev->default_ant.rx = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); /* * Read the Frame type. */ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE)) __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags); /* * Detect if this device has a hardware controlled radio. */ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); /* * Read frequency offset and RF programming sequence. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ)) __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags); rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); /* * Read external LNA informations. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A)) __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG)) __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); /* * When working with a RF2529 chip without double antenna, * the antenna settings should be gathered from the NIC * eeprom word. */ if (rt2x00_rf(rt2x00dev, RF2529) && !rt2x00_has_cap_double_antenna(rt2x00dev)) { rt2x00dev->default_ant.rx = ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED); rt2x00dev->default_ant.tx = ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED); if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY; if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY)) rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY; } /* * Store led settings, for correct led behaviour. * If the eeprom value is invalid, * switch to default led mode. */ #ifdef CONFIG_RT2X00_LIB_LEDS rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom); value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE); rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); if (value == LED_MODE_SIGNAL_STRENGTH) rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_0)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_1)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_2)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_3)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_4)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_RDY_G)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_RDY_A)); #endif /* CONFIG_RT2X00_LIB_LEDS */ return 0; } /* * RF value list for RF5225 & RF5325 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled */ static const struct rf_channel rf_vals_noseq[] = { { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, /* 802.11 UNI / HyperLan 2 */ { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 }, { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 }, { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b }, { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 }, { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b }, { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 }, { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 }, { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b }, /* 802.11 HyperLan 2 */ { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 }, { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b }, { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 }, { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b }, { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 }, { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 }, { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b }, { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 }, { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b }, { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 }, /* 802.11 UNII */ { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 }, { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f }, { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 }, { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 }, { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f }, { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 }, /* MMAC(Japan)J52 ch 34,38,42,46 */ { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b }, { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 }, { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b }, { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 }, }; /* * RF value list for RF5225 & RF5325 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled */ static const struct rf_channel rf_vals_seq[] = { { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, /* 802.11 UNI / HyperLan 2 */ { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 }, { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 }, { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b }, { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b }, { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 }, { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 }, { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 }, { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b }, /* 802.11 HyperLan 2 */ { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 }, { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 }, { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 }, { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 }, { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 }, { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 }, { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b }, { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b }, { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 }, { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 }, /* 802.11 UNII */ { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 }, { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b }, { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b }, { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 }, { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 }, { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 }, /* MMAC(Japan)J52 ch 34,38,42,46 */ { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b }, { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 }, { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b }, { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 }, }; static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) { struct hw_mode_spec *spec = &rt2x00dev->spec; struct channel_info *info; char *tx_power; unsigned int i; /* * Disable powersaving as default. */ rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; /* * Initialize all hw fields. */ rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_SUPPORTS_PS | IEEE80211_HW_PS_NULLFUNC_STACK; SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0)); /* * As rt61 has a global fallback table we cannot specify * more then one tx rate per frame but since the hw will * try several rates (based on the fallback table) we should * initialize max_report_rates to the maximum number of rates * we are going to try. Otherwise mac80211 will truncate our * reported tx rates and the rc algortihm will end up with * incorrect data. */ rt2x00dev->hw->max_rates = 1; rt2x00dev->hw->max_report_rates = 7; rt2x00dev->hw->max_rate_tries = 1; /* * Initialize hw_mode information. */ spec->supported_bands = SUPPORT_BAND_2GHZ; spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) { spec->num_channels = 14; spec->channels = rf_vals_noseq; } else { spec->num_channels = 14; spec->channels = rf_vals_seq; } if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) { spec->supported_bands |= SUPPORT_BAND_5GHZ; spec->num_channels = ARRAY_SIZE(rf_vals_seq); } /* * Create channel information array */ info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; spec->channels_info = info; tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START); for (i = 0; i < 14; i++) { info[i].max_power = MAX_TXPOWER; info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); } if (spec->num_channels > 14) { tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START); for (i = 14; i < spec->num_channels; i++) { info[i].max_power = MAX_TXPOWER; info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i - 14]); } } return 0; } static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev) { int retval; u32 reg; /* * Disable power saving. */ rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007); /* * Allocate eeprom data. */ retval = rt61pci_validate_eeprom(rt2x00dev); if (retval) return retval; retval = rt61pci_init_eeprom(rt2x00dev); if (retval) return retval; /* * Enable rfkill polling by setting GPIO direction of the * rfkill switch GPIO pin correctly. */ rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, ®); rt2x00_set_field32(®, MAC_CSR13_DIR5, 1); rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg); /* * Initialize hw specifications. */ retval = rt61pci_probe_hw_mode(rt2x00dev); if (retval) return retval; /* * This device has multiple filters for control frames, * but has no a separate filter for PS Poll frames. */ __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags); /* * This device requires firmware and DMA mapped skbs. */ __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags); __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags); if (!modparam_nohwcrypt) __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); /* * Set the rssi offset. */ rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; return 0; } /* * IEEE80211 stack callback functions. */ static int rt61pci_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue_idx, const struct ieee80211_tx_queue_params *params) { struct rt2x00_dev *rt2x00dev = hw->priv; struct data_queue *queue; struct rt2x00_field32 field; int retval; u32 reg; u32 offset; /* * First pass the configuration through rt2x00lib, that will * update the queue settings and validate the input. After that * we are free to update the registers based on the value * in the queue parameter. */ retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params); if (retval) return retval; /* * We only need to perform additional register initialization * for WMM queues. */ if (queue_idx >= 4) return 0; queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); /* Update WMM TXOP register */ offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2))); field.bit_offset = (queue_idx & 1) * 16; field.bit_mask = 0xffff << field.bit_offset; rt2x00mmio_register_read(rt2x00dev, offset, ®); rt2x00_set_field32(®, field, queue->txop); rt2x00mmio_register_write(rt2x00dev, offset, reg); /* Update WMM registers */ field.bit_offset = queue_idx * 4; field.bit_mask = 0xf << field.bit_offset; rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR, ®); rt2x00_set_field32(®, field, queue->aifs); rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg); rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR, ®); rt2x00_set_field32(®, field, queue->cw_min); rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg); rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR, ®); rt2x00_set_field32(®, field, queue->cw_max); rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg); return 0; } static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct rt2x00_dev *rt2x00dev = hw->priv; u64 tsf; u32 reg; rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13, ®); tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32; rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12, ®); tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER); return tsf; } static const struct ieee80211_ops rt61pci_mac80211_ops = { .tx = rt2x00mac_tx, .start = rt2x00mac_start, .stop = rt2x00mac_stop, .add_interface = rt2x00mac_add_interface, .remove_interface = rt2x00mac_remove_interface, .config = rt2x00mac_config, .configure_filter = rt2x00mac_configure_filter, .set_key = rt2x00mac_set_key, .sw_scan_start = rt2x00mac_sw_scan_start, .sw_scan_complete = rt2x00mac_sw_scan_complete, .get_stats = rt2x00mac_get_stats, .bss_info_changed = rt2x00mac_bss_info_changed, .conf_tx = rt61pci_conf_tx, .get_tsf = rt61pci_get_tsf, .rfkill_poll = rt2x00mac_rfkill_poll, .flush = rt2x00mac_flush, .set_antenna = rt2x00mac_set_antenna, .get_antenna = rt2x00mac_get_antenna, .get_ringparam = rt2x00mac_get_ringparam, .tx_frames_pending = rt2x00mac_tx_frames_pending, }; static const struct rt2x00lib_ops rt61pci_rt2x00_ops = { .irq_handler = rt61pci_interrupt, .txstatus_tasklet = rt61pci_txstatus_tasklet, .tbtt_tasklet = rt61pci_tbtt_tasklet, .rxdone_tasklet = rt61pci_rxdone_tasklet, .autowake_tasklet = rt61pci_autowake_tasklet, .probe_hw = rt61pci_probe_hw, .get_firmware_name = rt61pci_get_firmware_name, .check_firmware = rt61pci_check_firmware, .load_firmware = rt61pci_load_firmware, .initialize = rt2x00mmio_initialize, .uninitialize = rt2x00mmio_uninitialize, .get_entry_state = rt61pci_get_entry_state, .clear_entry = rt61pci_clear_entry, .set_device_state = rt61pci_set_device_state, .rfkill_poll = rt61pci_rfkill_poll, .link_stats = rt61pci_link_stats, .reset_tuner = rt61pci_reset_tuner, .link_tuner = rt61pci_link_tuner, .start_queue = rt61pci_start_queue, .kick_queue = rt61pci_kick_queue, .stop_queue = rt61pci_stop_queue, .flush_queue = rt2x00mmio_flush_queue, .write_tx_desc = rt61pci_write_tx_desc, .write_beacon = rt61pci_write_beacon, .clear_beacon = rt61pci_clear_beacon, .fill_rxdone = rt61pci_fill_rxdone, .config_shared_key = rt61pci_config_shared_key, .config_pairwise_key = rt61pci_config_pairwise_key, .config_filter = rt61pci_config_filter, .config_intf = rt61pci_config_intf, .config_erp = rt61pci_config_erp, .config_ant = rt61pci_config_ant, .config = rt61pci_config, }; static void rt61pci_queue_init(struct data_queue *queue) { switch (queue->qid) { case QID_RX: queue->limit = 32; queue->data_size = DATA_FRAME_SIZE; queue->desc_size = RXD_DESC_SIZE; queue->priv_size = sizeof(struct queue_entry_priv_mmio); break; case QID_AC_VO: case QID_AC_VI: case QID_AC_BE: case QID_AC_BK: queue->limit = 32; queue->data_size = DATA_FRAME_SIZE; queue->desc_size = TXD_DESC_SIZE; queue->priv_size = sizeof(struct queue_entry_priv_mmio); break; case QID_BEACON: queue->limit = 4; queue->data_size = 0; /* No DMA required for beacons */ queue->desc_size = TXINFO_SIZE; queue->priv_size = sizeof(struct queue_entry_priv_mmio); break; case QID_ATIM: /* fallthrough */ default: BUG(); break; } } static const struct rt2x00_ops rt61pci_ops = { .name = KBUILD_MODNAME, .max_ap_intf = 4, .eeprom_size = EEPROM_SIZE, .rf_size = RF_SIZE, .tx_queues = NUM_TX_QUEUES, .queue_init = rt61pci_queue_init, .lib = &rt61pci_rt2x00_ops, .hw = &rt61pci_mac80211_ops, #ifdef CONFIG_RT2X00_LIB_DEBUGFS .debugfs = &rt61pci_rt2x00debug, #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ }; /* * RT61pci module information. */ static const struct pci_device_id rt61pci_device_table[] = { /* RT2561s */ { PCI_DEVICE(0x1814, 0x0301) }, /* RT2561 v2 */ { PCI_DEVICE(0x1814, 0x0302) }, /* RT2661 */ { PCI_DEVICE(0x1814, 0x0401) }, { 0, } }; MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver."); MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 " "PCI & PCMCIA chipset based cards"); MODULE_DEVICE_TABLE(pci, rt61pci_device_table); MODULE_FIRMWARE(FIRMWARE_RT2561); MODULE_FIRMWARE(FIRMWARE_RT2561s); MODULE_FIRMWARE(FIRMWARE_RT2661); MODULE_LICENSE("GPL"); static int rt61pci_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) { return rt2x00pci_probe(pci_dev, &rt61pci_ops); } static struct pci_driver rt61pci_driver = { .name = KBUILD_MODNAME, .id_table = rt61pci_device_table, .probe = rt61pci_probe, .remove = rt2x00pci_remove, .suspend = rt2x00pci_suspend, .resume = rt2x00pci_resume, }; module_pci_driver(rt61pci_driver);