/****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2013 - 2014 Intel Corporation. All rights reserved. * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2013 - 2014 Intel Corporation. All rights reserved. * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *****************************************************************************/ #include #include #include #include "fw-api-coex.h" #include "iwl-modparams.h" #include "mvm.h" #include "iwl-debug.h" #define EVENT_PRIO_ANT(_evt, _prio, _shrd_ant) \ [(_evt)] = (((_prio) << BT_COEX_PRIO_TBL_PRIO_POS) | \ ((_shrd_ant) << BT_COEX_PRIO_TBL_SHRD_ANT_POS)) static const u8 iwl_bt_prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX] = { EVENT_PRIO_ANT(BT_COEX_PRIO_TBL_EVT_INIT_CALIB1, BT_COEX_PRIO_TBL_PRIO_BYPASS, 0), EVENT_PRIO_ANT(BT_COEX_PRIO_TBL_EVT_INIT_CALIB2, BT_COEX_PRIO_TBL_PRIO_BYPASS, 1), EVENT_PRIO_ANT(BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1, BT_COEX_PRIO_TBL_PRIO_LOW, 0), EVENT_PRIO_ANT(BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2, BT_COEX_PRIO_TBL_PRIO_LOW, 1), EVENT_PRIO_ANT(BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1, BT_COEX_PRIO_TBL_PRIO_HIGH, 0), EVENT_PRIO_ANT(BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2, BT_COEX_PRIO_TBL_PRIO_HIGH, 1), EVENT_PRIO_ANT(BT_COEX_PRIO_TBL_EVT_DTIM, BT_COEX_PRIO_TBL_DISABLED, 0), EVENT_PRIO_ANT(BT_COEX_PRIO_TBL_EVT_SCAN52, BT_COEX_PRIO_TBL_PRIO_COEX_OFF, 0), EVENT_PRIO_ANT(BT_COEX_PRIO_TBL_EVT_SCAN24, BT_COEX_PRIO_TBL_PRIO_COEX_ON, 0), EVENT_PRIO_ANT(BT_COEX_PRIO_TBL_EVT_IDLE, BT_COEX_PRIO_TBL_PRIO_COEX_IDLE, 0), 0, 0, 0, 0, 0, 0, }; #undef EVENT_PRIO_ANT static int iwl_send_bt_prio_tbl(struct iwl_mvm *mvm) { if (unlikely(mvm->bt_force_ant_mode != BT_FORCE_ANT_DIS)) return 0; return iwl_mvm_send_cmd_pdu(mvm, BT_COEX_PRIO_TABLE, 0, sizeof(struct iwl_bt_coex_prio_tbl_cmd), &iwl_bt_prio_tbl); } static const __le32 iwl_bt_prio_boost[BT_COEX_BOOST_SIZE] = { cpu_to_le32(0xf0f0f0f0), /* 50% */ cpu_to_le32(0xc0c0c0c0), /* 25% */ cpu_to_le32(0xfcfcfcfc), /* 75% */ cpu_to_le32(0xfefefefe), /* 87.5% */ }; static const __le32 iwl_single_shared_ant[BT_COEX_MAX_LUT][BT_COEX_LUT_SIZE] = { { cpu_to_le32(0x40000000), cpu_to_le32(0x00000000), cpu_to_le32(0x44000000), cpu_to_le32(0x00000000), cpu_to_le32(0x40000000), cpu_to_le32(0x00000000), cpu_to_le32(0x44000000), cpu_to_le32(0x00000000), cpu_to_le32(0xc0004000), cpu_to_le32(0xf0005000), cpu_to_le32(0xc0004000), cpu_to_le32(0xf0005000), }, { cpu_to_le32(0x40000000), cpu_to_le32(0x00000000), cpu_to_le32(0x44000000), cpu_to_le32(0x00000000), cpu_to_le32(0x40000000), cpu_to_le32(0x00000000), cpu_to_le32(0x44000000), cpu_to_le32(0x00000000), cpu_to_le32(0xc0004000), cpu_to_le32(0xf0005000), cpu_to_le32(0xc0004000), cpu_to_le32(0xf0005000), }, { cpu_to_le32(0x40000000), cpu_to_le32(0x00000000), cpu_to_le32(0x44000000), cpu_to_le32(0x00000000), cpu_to_le32(0x40000000), cpu_to_le32(0x00000000), cpu_to_le32(0x44000000), cpu_to_le32(0x00000000), cpu_to_le32(0xc0004000), cpu_to_le32(0xf0005000), cpu_to_le32(0xc0004000), cpu_to_le32(0xf0005000), }, }; static const __le32 iwl_combined_lookup[BT_COEX_MAX_LUT][BT_COEX_LUT_SIZE] = { { /* Tight */ cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xaeaaaaaa), cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xcc00ff28), cpu_to_le32(0x0000aaaa), cpu_to_le32(0xcc00aaaa), cpu_to_le32(0x0000aaaa), cpu_to_le32(0xc0004000), cpu_to_le32(0x00004000), cpu_to_le32(0xf0005000), cpu_to_le32(0xf0005000), }, { /* Loose */ cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xcc00ff28), cpu_to_le32(0x0000aaaa), cpu_to_le32(0xcc00aaaa), cpu_to_le32(0x0000aaaa), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0xf0005000), cpu_to_le32(0xf0005000), }, { /* Tx Tx disabled */ cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xeeaaaaaa), cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xcc00ff28), cpu_to_le32(0x0000aaaa), cpu_to_le32(0xcc00aaaa), cpu_to_le32(0x0000aaaa), cpu_to_le32(0xc0004000), cpu_to_le32(0xc0004000), cpu_to_le32(0xf0005000), cpu_to_le32(0xf0005000), }, }; /* 20MHz / 40MHz below / 40Mhz above*/ static const __le64 iwl_ci_mask[][3] = { /* dummy entry for channel 0 */ {cpu_to_le64(0), cpu_to_le64(0), cpu_to_le64(0)}, { cpu_to_le64(0x0000001FFFULL), cpu_to_le64(0x0ULL), cpu_to_le64(0x00007FFFFFULL), }, { cpu_to_le64(0x000000FFFFULL), cpu_to_le64(0x0ULL), cpu_to_le64(0x0003FFFFFFULL), }, { cpu_to_le64(0x000003FFFCULL), cpu_to_le64(0x0ULL), cpu_to_le64(0x000FFFFFFCULL), }, { cpu_to_le64(0x00001FFFE0ULL), cpu_to_le64(0x0ULL), cpu_to_le64(0x007FFFFFE0ULL), }, { cpu_to_le64(0x00007FFF80ULL), cpu_to_le64(0x00007FFFFFULL), cpu_to_le64(0x01FFFFFF80ULL), }, { cpu_to_le64(0x0003FFFC00ULL), cpu_to_le64(0x0003FFFFFFULL), cpu_to_le64(0x0FFFFFFC00ULL), }, { cpu_to_le64(0x000FFFF000ULL), cpu_to_le64(0x000FFFFFFCULL), cpu_to_le64(0x3FFFFFF000ULL), }, { cpu_to_le64(0x007FFF8000ULL), cpu_to_le64(0x007FFFFFE0ULL), cpu_to_le64(0xFFFFFF8000ULL), }, { cpu_to_le64(0x01FFFE0000ULL), cpu_to_le64(0x01FFFFFF80ULL), cpu_to_le64(0xFFFFFE0000ULL), }, { cpu_to_le64(0x0FFFF00000ULL), cpu_to_le64(0x0FFFFFFC00ULL), cpu_to_le64(0x0ULL), }, { cpu_to_le64(0x3FFFC00000ULL), cpu_to_le64(0x3FFFFFF000ULL), cpu_to_le64(0x0) }, { cpu_to_le64(0xFFFE000000ULL), cpu_to_le64(0xFFFFFF8000ULL), cpu_to_le64(0x0) }, { cpu_to_le64(0xFFF8000000ULL), cpu_to_le64(0xFFFFFE0000ULL), cpu_to_le64(0x0) }, { cpu_to_le64(0xFFC0000000ULL), cpu_to_le64(0x0ULL), cpu_to_le64(0x0ULL) }, }; enum iwl_bt_kill_msk { BT_KILL_MSK_DEFAULT, BT_KILL_MSK_NEVER, BT_KILL_MSK_ALWAYS, BT_KILL_MSK_MAX, }; static const u32 iwl_bt_ctl_kill_msk[BT_KILL_MSK_MAX] = { [BT_KILL_MSK_DEFAULT] = 0xfffffc00, [BT_KILL_MSK_NEVER] = 0xffffffff, [BT_KILL_MSK_ALWAYS] = 0, }; static const u8 iwl_bt_cts_kill_msk[BT_MAX_AG][BT_COEX_MAX_LUT] = { { BT_KILL_MSK_ALWAYS, BT_KILL_MSK_ALWAYS, BT_KILL_MSK_ALWAYS, }, { BT_KILL_MSK_NEVER, BT_KILL_MSK_NEVER, BT_KILL_MSK_NEVER, }, { BT_KILL_MSK_NEVER, BT_KILL_MSK_NEVER, BT_KILL_MSK_NEVER, }, { BT_KILL_MSK_DEFAULT, BT_KILL_MSK_NEVER, BT_KILL_MSK_DEFAULT, }, }; static const u8 iwl_bt_ack_kill_msk[BT_MAX_AG][BT_COEX_MAX_LUT] = { { BT_KILL_MSK_ALWAYS, BT_KILL_MSK_ALWAYS, BT_KILL_MSK_ALWAYS, }, { BT_KILL_MSK_ALWAYS, BT_KILL_MSK_ALWAYS, BT_KILL_MSK_ALWAYS, }, { BT_KILL_MSK_ALWAYS, BT_KILL_MSK_ALWAYS, BT_KILL_MSK_ALWAYS, }, { BT_KILL_MSK_DEFAULT, BT_KILL_MSK_ALWAYS, BT_KILL_MSK_DEFAULT, }, }; struct corunning_block_luts { u8 range; __le32 lut20[BT_COEX_CORUN_LUT_SIZE]; }; /* * Ranges for the antenna coupling calibration / co-running block LUT: * LUT0: [ 0, 12[ * LUT1: [12, 20[ * LUT2: [20, 21[ * LUT3: [21, 23[ * LUT4: [23, 27[ * LUT5: [27, 30[ * LUT6: [30, 32[ * LUT7: [32, 33[ * LUT8: [33, - [ */ static const struct corunning_block_luts antenna_coupling_ranges[] = { { .range = 0, .lut20 = { cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), }, }, { .range = 12, .lut20 = { cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), }, }, { .range = 20, .lut20 = { cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), }, }, { .range = 21, .lut20 = { cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), }, }, { .range = 23, .lut20 = { cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), }, }, { .range = 27, .lut20 = { cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), }, }, { .range = 30, .lut20 = { cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), }, }, { .range = 32, .lut20 = { cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), }, }, { .range = 33, .lut20 = { cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), }, }, }; static enum iwl_bt_coex_lut_type iwl_get_coex_type(struct iwl_mvm *mvm, const struct ieee80211_vif *vif) { struct ieee80211_chanctx_conf *chanctx_conf; enum iwl_bt_coex_lut_type ret; u16 phy_ctx_id; /* * Checking that we hold mvm->mutex is a good idea, but the rate * control can't acquire the mutex since it runs in Tx path. * So this is racy in that case, but in the worst case, the AMPDU * size limit will be wrong for a short time which is not a big * issue. */ rcu_read_lock(); chanctx_conf = rcu_dereference(vif->chanctx_conf); if (!chanctx_conf || chanctx_conf->def.chan->band != IEEE80211_BAND_2GHZ) { rcu_read_unlock(); return BT_COEX_INVALID_LUT; } ret = BT_COEX_TX_DIS_LUT; if (mvm->cfg->bt_shared_single_ant) { rcu_read_unlock(); return ret; } phy_ctx_id = *((u16 *)chanctx_conf->drv_priv); if (mvm->last_bt_ci_cmd_old.primary_ch_phy_id == phy_ctx_id) ret = le32_to_cpu(mvm->last_bt_notif_old.primary_ch_lut); else if (mvm->last_bt_ci_cmd_old.secondary_ch_phy_id == phy_ctx_id) ret = le32_to_cpu(mvm->last_bt_notif_old.secondary_ch_lut); /* else - default = TX TX disallowed */ rcu_read_unlock(); return ret; } int iwl_send_bt_init_conf_old(struct iwl_mvm *mvm) { struct iwl_bt_coex_cmd_old *bt_cmd; struct iwl_host_cmd cmd = { .id = BT_CONFIG, .len = { sizeof(*bt_cmd), }, .dataflags = { IWL_HCMD_DFL_NOCOPY, }, }; int ret; u32 flags; ret = iwl_send_bt_prio_tbl(mvm); if (ret) return ret; bt_cmd = kzalloc(sizeof(*bt_cmd), GFP_KERNEL); if (!bt_cmd) return -ENOMEM; cmd.data[0] = bt_cmd; lockdep_assert_held(&mvm->mutex); if (unlikely(mvm->bt_force_ant_mode != BT_FORCE_ANT_DIS)) { switch (mvm->bt_force_ant_mode) { case BT_FORCE_ANT_AUTO: flags = BT_COEX_AUTO_OLD; break; case BT_FORCE_ANT_BT: flags = BT_COEX_BT_OLD; break; case BT_FORCE_ANT_WIFI: flags = BT_COEX_WIFI_OLD; break; default: WARN_ON(1); flags = 0; } bt_cmd->flags = cpu_to_le32(flags); bt_cmd->valid_bit_msk = cpu_to_le32(BT_VALID_ENABLE); goto send_cmd; } bt_cmd->max_kill = 5; bt_cmd->bt4_antenna_isolation_thr = IWL_MVM_BT_COEX_ANTENNA_COUPLING_THRS; bt_cmd->bt4_antenna_isolation = iwlwifi_mod_params.ant_coupling; bt_cmd->bt4_tx_tx_delta_freq_thr = 15; bt_cmd->bt4_tx_rx_max_freq0 = 15; bt_cmd->override_primary_lut = BT_COEX_INVALID_LUT; bt_cmd->override_secondary_lut = BT_COEX_INVALID_LUT; flags = iwlwifi_mod_params.bt_coex_active ? BT_COEX_NW_OLD : BT_COEX_DISABLE_OLD; bt_cmd->flags = cpu_to_le32(flags); bt_cmd->valid_bit_msk = cpu_to_le32(BT_VALID_ENABLE | BT_VALID_BT_PRIO_BOOST | BT_VALID_MAX_KILL | BT_VALID_3W_TMRS | BT_VALID_KILL_ACK | BT_VALID_KILL_CTS | BT_VALID_REDUCED_TX_POWER | BT_VALID_LUT | BT_VALID_WIFI_RX_SW_PRIO_BOOST | BT_VALID_WIFI_TX_SW_PRIO_BOOST | BT_VALID_ANT_ISOLATION | BT_VALID_ANT_ISOLATION_THRS | BT_VALID_TXTX_DELTA_FREQ_THRS | BT_VALID_TXRX_MAX_FREQ_0 | BT_VALID_SYNC_TO_SCO | BT_VALID_TTC | BT_VALID_RRC); if (IWL_MVM_BT_COEX_SYNC2SCO) bt_cmd->flags |= cpu_to_le32(BT_COEX_SYNC2SCO); if (iwl_mvm_bt_is_plcr_supported(mvm)) { bt_cmd->valid_bit_msk |= cpu_to_le32(BT_VALID_CORUN_LUT_20 | BT_VALID_CORUN_LUT_40); bt_cmd->flags |= cpu_to_le32(BT_COEX_CORUNNING); } if (IWL_MVM_BT_COEX_MPLUT) { bt_cmd->flags |= cpu_to_le32(BT_COEX_MPLUT); bt_cmd->valid_bit_msk |= cpu_to_le32(BT_VALID_MULTI_PRIO_LUT); } if (IWL_MVM_BT_COEX_TTC) bt_cmd->flags |= cpu_to_le32(BT_COEX_TTC); if (iwl_mvm_bt_is_rrc_supported(mvm)) bt_cmd->flags |= cpu_to_le32(BT_COEX_RRC); if (mvm->cfg->bt_shared_single_ant) memcpy(&bt_cmd->decision_lut, iwl_single_shared_ant, sizeof(iwl_single_shared_ant)); else memcpy(&bt_cmd->decision_lut, iwl_combined_lookup, sizeof(iwl_combined_lookup)); /* Take first Co-running block LUT to get started */ memcpy(bt_cmd->bt4_corun_lut20, antenna_coupling_ranges[0].lut20, sizeof(bt_cmd->bt4_corun_lut20)); memcpy(bt_cmd->bt4_corun_lut40, antenna_coupling_ranges[0].lut20, sizeof(bt_cmd->bt4_corun_lut40)); memcpy(&bt_cmd->bt_prio_boost, iwl_bt_prio_boost, sizeof(iwl_bt_prio_boost)); bt_cmd->bt4_multiprio_lut[0] = cpu_to_le32(IWL_MVM_BT_COEX_MPLUT_REG0); bt_cmd->bt4_multiprio_lut[1] = cpu_to_le32(IWL_MVM_BT_COEX_MPLUT_REG1); send_cmd: memset(&mvm->last_bt_notif_old, 0, sizeof(mvm->last_bt_notif_old)); memset(&mvm->last_bt_ci_cmd_old, 0, sizeof(mvm->last_bt_ci_cmd_old)); ret = iwl_mvm_send_cmd(mvm, &cmd); kfree(bt_cmd); return ret; } static int iwl_mvm_bt_udpate_ctrl_kill_msk(struct iwl_mvm *mvm) { struct iwl_bt_coex_profile_notif_old *notif = &mvm->last_bt_notif_old; u32 primary_lut = le32_to_cpu(notif->primary_ch_lut); u32 ag = le32_to_cpu(notif->bt_activity_grading); struct iwl_bt_coex_cmd_old *bt_cmd; u8 ack_kill_msk, cts_kill_msk; struct iwl_host_cmd cmd = { .id = BT_CONFIG, .data[0] = &bt_cmd, .len = { sizeof(*bt_cmd), }, .dataflags = { IWL_HCMD_DFL_NOCOPY, }, }; int ret = 0; lockdep_assert_held(&mvm->mutex); ack_kill_msk = iwl_bt_ack_kill_msk[ag][primary_lut]; cts_kill_msk = iwl_bt_cts_kill_msk[ag][primary_lut]; if (mvm->bt_ack_kill_msk[0] == ack_kill_msk && mvm->bt_cts_kill_msk[0] == cts_kill_msk) return 0; mvm->bt_ack_kill_msk[0] = ack_kill_msk; mvm->bt_cts_kill_msk[0] = cts_kill_msk; bt_cmd = kzalloc(sizeof(*bt_cmd), GFP_KERNEL); if (!bt_cmd) return -ENOMEM; cmd.data[0] = bt_cmd; bt_cmd->flags = cpu_to_le32(BT_COEX_NW_OLD); bt_cmd->kill_ack_msk = cpu_to_le32(iwl_bt_ctl_kill_msk[ack_kill_msk]); bt_cmd->kill_cts_msk = cpu_to_le32(iwl_bt_ctl_kill_msk[cts_kill_msk]); bt_cmd->valid_bit_msk |= cpu_to_le32(BT_VALID_ENABLE | BT_VALID_KILL_ACK | BT_VALID_KILL_CTS); ret = iwl_mvm_send_cmd(mvm, &cmd); kfree(bt_cmd); return ret; } static int iwl_mvm_bt_coex_reduced_txp(struct iwl_mvm *mvm, u8 sta_id, bool enable) { struct iwl_bt_coex_cmd_old *bt_cmd; /* Send ASYNC since this can be sent from an atomic context */ struct iwl_host_cmd cmd = { .id = BT_CONFIG, .len = { sizeof(*bt_cmd), }, .dataflags = { IWL_HCMD_DFL_NOCOPY, }, .flags = CMD_ASYNC, }; struct iwl_mvm_sta *mvmsta; int ret; mvmsta = iwl_mvm_sta_from_staid_protected(mvm, sta_id); if (!mvmsta) return 0; /* nothing to do */ if (mvmsta->bt_reduced_txpower == enable) return 0; bt_cmd = kzalloc(sizeof(*bt_cmd), GFP_ATOMIC); if (!bt_cmd) return -ENOMEM; cmd.data[0] = bt_cmd; bt_cmd->flags = cpu_to_le32(BT_COEX_NW_OLD); bt_cmd->valid_bit_msk = cpu_to_le32(BT_VALID_ENABLE | BT_VALID_REDUCED_TX_POWER); bt_cmd->bt_reduced_tx_power = sta_id; if (enable) bt_cmd->bt_reduced_tx_power |= BT_REDUCED_TX_POWER_BIT; IWL_DEBUG_COEX(mvm, "%sable reduced Tx Power for sta %d\n", enable ? "en" : "dis", sta_id); mvmsta->bt_reduced_txpower = enable; ret = iwl_mvm_send_cmd(mvm, &cmd); kfree(bt_cmd); return ret; } struct iwl_bt_iterator_data { struct iwl_bt_coex_profile_notif_old *notif; struct iwl_mvm *mvm; struct ieee80211_chanctx_conf *primary; struct ieee80211_chanctx_conf *secondary; bool primary_ll; }; static inline void iwl_mvm_bt_coex_enable_rssi_event(struct iwl_mvm *mvm, struct ieee80211_vif *vif, bool enable, int rssi) { struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); mvmvif->bf_data.last_bt_coex_event = rssi; mvmvif->bf_data.bt_coex_max_thold = enable ? -IWL_MVM_BT_COEX_EN_RED_TXP_THRESH : 0; mvmvif->bf_data.bt_coex_min_thold = enable ? -IWL_MVM_BT_COEX_DIS_RED_TXP_THRESH : 0; } /* must be called under rcu_read_lock */ static void iwl_mvm_bt_notif_iterator(void *_data, u8 *mac, struct ieee80211_vif *vif) { struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); struct iwl_bt_iterator_data *data = _data; struct iwl_mvm *mvm = data->mvm; struct ieee80211_chanctx_conf *chanctx_conf; enum ieee80211_smps_mode smps_mode; u32 bt_activity_grading; int ave_rssi; lockdep_assert_held(&mvm->mutex); switch (vif->type) { case NL80211_IFTYPE_STATION: /* default smps_mode for BSS / P2P client is AUTOMATIC */ smps_mode = IEEE80211_SMPS_AUTOMATIC; break; case NL80211_IFTYPE_AP: if (!mvmvif->ap_ibss_active) return; break; default: return; } chanctx_conf = rcu_dereference(vif->chanctx_conf); /* If channel context is invalid or not on 2.4GHz .. */ if ((!chanctx_conf || chanctx_conf->def.chan->band != IEEE80211_BAND_2GHZ)) { if (vif->type == NL80211_IFTYPE_STATION) { /* ... relax constraints and disable rssi events */ iwl_mvm_update_smps(mvm, vif, IWL_MVM_SMPS_REQ_BT_COEX, smps_mode); iwl_mvm_bt_coex_reduced_txp(mvm, mvmvif->ap_sta_id, false); iwl_mvm_bt_coex_enable_rssi_event(mvm, vif, false, 0); } return; } bt_activity_grading = le32_to_cpu(data->notif->bt_activity_grading); if (bt_activity_grading >= BT_HIGH_TRAFFIC) smps_mode = IEEE80211_SMPS_STATIC; else if (bt_activity_grading >= BT_LOW_TRAFFIC) smps_mode = vif->type == NL80211_IFTYPE_AP ? IEEE80211_SMPS_OFF : IEEE80211_SMPS_DYNAMIC; /* relax SMPS contraints for next association */ if (!vif->bss_conf.assoc) smps_mode = IEEE80211_SMPS_AUTOMATIC; if (mvmvif->phy_ctxt && data->notif->rrc_enabled & BIT(mvmvif->phy_ctxt->id)) smps_mode = IEEE80211_SMPS_AUTOMATIC; IWL_DEBUG_COEX(data->mvm, "mac %d: bt_status %d bt_activity_grading %d smps_req %d\n", mvmvif->id, data->notif->bt_status, bt_activity_grading, smps_mode); if (vif->type == NL80211_IFTYPE_STATION) iwl_mvm_update_smps(mvm, vif, IWL_MVM_SMPS_REQ_BT_COEX, smps_mode); /* low latency is always primary */ if (iwl_mvm_vif_low_latency(mvmvif)) { data->primary_ll = true; data->secondary = data->primary; data->primary = chanctx_conf; } if (vif->type == NL80211_IFTYPE_AP) { if (!mvmvif->ap_ibss_active) return; if (chanctx_conf == data->primary) return; if (!data->primary_ll) { /* * downgrade the current primary no matter what its * type is. */ data->secondary = data->primary; data->primary = chanctx_conf; } else { /* there is low latency vif - we will be secondary */ data->secondary = chanctx_conf; } return; } /* * STA / P2P Client, try to be primary if first vif. If we are in low * latency mode, we are already in primary and just don't do much */ if (!data->primary || data->primary == chanctx_conf) data->primary = chanctx_conf; else if (!data->secondary) /* if secondary is not NULL, it might be a GO */ data->secondary = chanctx_conf; /* * don't reduce the Tx power if one of these is true: * we are in LOOSE * single share antenna product * BT is active * we are associated */ if (iwl_get_coex_type(mvm, vif) == BT_COEX_LOOSE_LUT || mvm->cfg->bt_shared_single_ant || !vif->bss_conf.assoc || !data->notif->bt_status) { iwl_mvm_bt_coex_reduced_txp(mvm, mvmvif->ap_sta_id, false); iwl_mvm_bt_coex_enable_rssi_event(mvm, vif, false, 0); return; } /* try to get the avg rssi from fw */ ave_rssi = mvmvif->bf_data.ave_beacon_signal; /* if the RSSI isn't valid, fake it is very low */ if (!ave_rssi) ave_rssi = -100; if (ave_rssi > -IWL_MVM_BT_COEX_EN_RED_TXP_THRESH) { if (iwl_mvm_bt_coex_reduced_txp(mvm, mvmvif->ap_sta_id, true)) IWL_ERR(mvm, "Couldn't send BT_CONFIG cmd\n"); } else if (ave_rssi < -IWL_MVM_BT_COEX_DIS_RED_TXP_THRESH) { if (iwl_mvm_bt_coex_reduced_txp(mvm, mvmvif->ap_sta_id, false)) IWL_ERR(mvm, "Couldn't send BT_CONFIG cmd\n"); } /* Begin to monitor the RSSI: it may influence the reduced Tx power */ iwl_mvm_bt_coex_enable_rssi_event(mvm, vif, true, ave_rssi); } static void iwl_mvm_bt_coex_notif_handle(struct iwl_mvm *mvm) { struct iwl_bt_iterator_data data = { .mvm = mvm, .notif = &mvm->last_bt_notif_old, }; struct iwl_bt_coex_ci_cmd_old cmd = {}; u8 ci_bw_idx; /* Ignore updates if we are in force mode */ if (unlikely(mvm->bt_force_ant_mode != BT_FORCE_ANT_DIS)) return; rcu_read_lock(); ieee80211_iterate_active_interfaces_atomic( mvm->hw, IEEE80211_IFACE_ITER_NORMAL, iwl_mvm_bt_notif_iterator, &data); if (data.primary) { struct ieee80211_chanctx_conf *chan = data.primary; if (WARN_ON(!chan->def.chan)) { rcu_read_unlock(); return; } if (chan->def.width < NL80211_CHAN_WIDTH_40) { ci_bw_idx = 0; cmd.co_run_bw_primary = 0; } else { cmd.co_run_bw_primary = 1; if (chan->def.center_freq1 > chan->def.chan->center_freq) ci_bw_idx = 2; else ci_bw_idx = 1; } cmd.bt_primary_ci = iwl_ci_mask[chan->def.chan->hw_value][ci_bw_idx]; cmd.primary_ch_phy_id = *((u16 *)data.primary->drv_priv); } if (data.secondary) { struct ieee80211_chanctx_conf *chan = data.secondary; if (WARN_ON(!data.secondary->def.chan)) { rcu_read_unlock(); return; } if (chan->def.width < NL80211_CHAN_WIDTH_40) { ci_bw_idx = 0; cmd.co_run_bw_secondary = 0; } else { cmd.co_run_bw_secondary = 1; if (chan->def.center_freq1 > chan->def.chan->center_freq) ci_bw_idx = 2; else ci_bw_idx = 1; } cmd.bt_secondary_ci = iwl_ci_mask[chan->def.chan->hw_value][ci_bw_idx]; cmd.secondary_ch_phy_id = *((u16 *)data.secondary->drv_priv); } rcu_read_unlock(); /* Don't spam the fw with the same command over and over */ if (memcmp(&cmd, &mvm->last_bt_ci_cmd_old, sizeof(cmd))) { if (iwl_mvm_send_cmd_pdu(mvm, BT_COEX_CI, 0, sizeof(cmd), &cmd)) IWL_ERR(mvm, "Failed to send BT_CI cmd\n"); memcpy(&mvm->last_bt_ci_cmd_old, &cmd, sizeof(cmd)); } if (iwl_mvm_bt_udpate_ctrl_kill_msk(mvm)) IWL_ERR(mvm, "Failed to update the ctrl_kill_msk\n"); } int iwl_mvm_rx_bt_coex_notif_old(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb, struct iwl_device_cmd *dev_cmd) { struct iwl_rx_packet *pkt = rxb_addr(rxb); struct iwl_bt_coex_profile_notif_old *notif = (void *)pkt->data; IWL_DEBUG_COEX(mvm, "BT Coex Notification received\n"); IWL_DEBUG_COEX(mvm, "\tBT status: %s\n", notif->bt_status ? "ON" : "OFF"); IWL_DEBUG_COEX(mvm, "\tBT open conn %d\n", notif->bt_open_conn); IWL_DEBUG_COEX(mvm, "\tBT ci compliance %d\n", notif->bt_ci_compliance); IWL_DEBUG_COEX(mvm, "\tBT primary_ch_lut %d\n", le32_to_cpu(notif->primary_ch_lut)); IWL_DEBUG_COEX(mvm, "\tBT secondary_ch_lut %d\n", le32_to_cpu(notif->secondary_ch_lut)); IWL_DEBUG_COEX(mvm, "\tBT activity grading %d\n", le32_to_cpu(notif->bt_activity_grading)); IWL_DEBUG_COEX(mvm, "\tBT agg traffic load %d\n", notif->bt_agg_traffic_load); /* remember this notification for future use: rssi fluctuations */ memcpy(&mvm->last_bt_notif_old, notif, sizeof(mvm->last_bt_notif_old)); iwl_mvm_bt_coex_notif_handle(mvm); /* * This is an async handler for a notification, returning anything other * than 0 doesn't make sense even if HCMD failed. */ return 0; } static void iwl_mvm_bt_rssi_iterator(void *_data, u8 *mac, struct ieee80211_vif *vif) { struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); struct iwl_bt_iterator_data *data = _data; struct iwl_mvm *mvm = data->mvm; struct ieee80211_sta *sta; struct iwl_mvm_sta *mvmsta; struct ieee80211_chanctx_conf *chanctx_conf; rcu_read_lock(); chanctx_conf = rcu_dereference(vif->chanctx_conf); /* If channel context is invalid or not on 2.4GHz - don't count it */ if (!chanctx_conf || chanctx_conf->def.chan->band != IEEE80211_BAND_2GHZ) { rcu_read_unlock(); return; } rcu_read_unlock(); if (vif->type != NL80211_IFTYPE_STATION || mvmvif->ap_sta_id == IWL_MVM_STATION_COUNT) return; sta = rcu_dereference_protected(mvm->fw_id_to_mac_id[mvmvif->ap_sta_id], lockdep_is_held(&mvm->mutex)); /* This can happen if the station has been removed right now */ if (IS_ERR_OR_NULL(sta)) return; mvmsta = iwl_mvm_sta_from_mac80211(sta); } void iwl_mvm_bt_rssi_event_old(struct iwl_mvm *mvm, struct ieee80211_vif *vif, enum ieee80211_rssi_event rssi_event) { struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); struct iwl_bt_iterator_data data = { .mvm = mvm, }; int ret; lockdep_assert_held(&mvm->mutex); /* Ignore updates if we are in force mode */ if (unlikely(mvm->bt_force_ant_mode != BT_FORCE_ANT_DIS)) return; /* * Rssi update while not associated - can happen since the statistics * are handled asynchronously */ if (mvmvif->ap_sta_id == IWL_MVM_STATION_COUNT) return; /* No BT - reports should be disabled */ if (!mvm->last_bt_notif_old.bt_status) return; IWL_DEBUG_COEX(mvm, "RSSI for %pM is now %s\n", vif->bss_conf.bssid, rssi_event == RSSI_EVENT_HIGH ? "HIGH" : "LOW"); /* * Check if rssi is good enough for reduced Tx power, but not in loose * scheme. */ if (rssi_event == RSSI_EVENT_LOW || mvm->cfg->bt_shared_single_ant || iwl_get_coex_type(mvm, vif) == BT_COEX_LOOSE_LUT) ret = iwl_mvm_bt_coex_reduced_txp(mvm, mvmvif->ap_sta_id, false); else ret = iwl_mvm_bt_coex_reduced_txp(mvm, mvmvif->ap_sta_id, true); if (ret) IWL_ERR(mvm, "couldn't send BT_CONFIG HCMD upon RSSI event\n"); ieee80211_iterate_active_interfaces_atomic( mvm->hw, IEEE80211_IFACE_ITER_NORMAL, iwl_mvm_bt_rssi_iterator, &data); if (iwl_mvm_bt_udpate_ctrl_kill_msk(mvm)) IWL_ERR(mvm, "Failed to update the ctrl_kill_msk\n"); } #define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) #define LINK_QUAL_AGG_TIME_LIMIT_BT_ACT (1200) u16 iwl_mvm_coex_agg_time_limit_old(struct iwl_mvm *mvm, struct ieee80211_sta *sta) { struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); enum iwl_bt_coex_lut_type lut_type; if (le32_to_cpu(mvm->last_bt_notif_old.bt_activity_grading) < BT_HIGH_TRAFFIC) return LINK_QUAL_AGG_TIME_LIMIT_DEF; if (mvm->last_bt_notif_old.ttc_enabled) return LINK_QUAL_AGG_TIME_LIMIT_DEF; lut_type = iwl_get_coex_type(mvm, mvmsta->vif); if (lut_type == BT_COEX_LOOSE_LUT || lut_type == BT_COEX_INVALID_LUT) return LINK_QUAL_AGG_TIME_LIMIT_DEF; /* tight coex, high bt traffic, reduce AGG time limit */ return LINK_QUAL_AGG_TIME_LIMIT_BT_ACT; } bool iwl_mvm_bt_coex_is_mimo_allowed_old(struct iwl_mvm *mvm, struct ieee80211_sta *sta) { struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); enum iwl_bt_coex_lut_type lut_type; if (mvm->last_bt_notif_old.ttc_enabled) return true; if (le32_to_cpu(mvm->last_bt_notif_old.bt_activity_grading) < BT_HIGH_TRAFFIC) return true; /* * In Tight / TxTxDis, BT can't Rx while we Tx, so use both antennas * since BT is already killed. * In Loose, BT can Rx while we Tx, so forbid MIMO to let BT Rx while * we Tx. * When we are in 5GHz, we'll get BT_COEX_INVALID_LUT allowing MIMO. */ lut_type = iwl_get_coex_type(mvm, mvmsta->vif); return lut_type != BT_COEX_LOOSE_LUT; } bool iwl_mvm_bt_coex_is_shared_ant_avail_old(struct iwl_mvm *mvm) { u32 ag = le32_to_cpu(mvm->last_bt_notif_old.bt_activity_grading); return ag < BT_HIGH_TRAFFIC; } bool iwl_mvm_bt_coex_is_tpc_allowed_old(struct iwl_mvm *mvm, enum ieee80211_band band) { u32 bt_activity = le32_to_cpu(mvm->last_bt_notif_old.bt_activity_grading); if (band != IEEE80211_BAND_2GHZ) return false; return bt_activity >= BT_LOW_TRAFFIC; } void iwl_mvm_bt_coex_vif_change_old(struct iwl_mvm *mvm) { iwl_mvm_bt_coex_notif_handle(mvm); } int iwl_mvm_rx_ant_coupling_notif_old(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb, struct iwl_device_cmd *dev_cmd) { struct iwl_rx_packet *pkt = rxb_addr(rxb); u32 ant_isolation = le32_to_cpup((void *)pkt->data); u8 __maybe_unused lower_bound, upper_bound; int ret; u8 lut; struct iwl_bt_coex_cmd_old *bt_cmd; struct iwl_host_cmd cmd = { .id = BT_CONFIG, .len = { sizeof(*bt_cmd), }, .dataflags = { IWL_HCMD_DFL_NOCOPY, }, }; if (!iwl_mvm_bt_is_plcr_supported(mvm)) return 0; lockdep_assert_held(&mvm->mutex); /* Ignore updates if we are in force mode */ if (unlikely(mvm->bt_force_ant_mode != BT_FORCE_ANT_DIS)) return 0; if (ant_isolation == mvm->last_ant_isol) return 0; for (lut = 0; lut < ARRAY_SIZE(antenna_coupling_ranges) - 1; lut++) if (ant_isolation < antenna_coupling_ranges[lut + 1].range) break; lower_bound = antenna_coupling_ranges[lut].range; if (lut < ARRAY_SIZE(antenna_coupling_ranges) - 1) upper_bound = antenna_coupling_ranges[lut + 1].range; else upper_bound = antenna_coupling_ranges[lut].range; IWL_DEBUG_COEX(mvm, "Antenna isolation=%d in range [%d,%d[, lut=%d\n", ant_isolation, lower_bound, upper_bound, lut); mvm->last_ant_isol = ant_isolation; if (mvm->last_corun_lut == lut) return 0; mvm->last_corun_lut = lut; bt_cmd = kzalloc(sizeof(*bt_cmd), GFP_KERNEL); if (!bt_cmd) return 0; cmd.data[0] = bt_cmd; bt_cmd->flags = cpu_to_le32(BT_COEX_NW_OLD); bt_cmd->valid_bit_msk |= cpu_to_le32(BT_VALID_ENABLE | BT_VALID_CORUN_LUT_20 | BT_VALID_CORUN_LUT_40); /* For the moment, use the same LUT for 20GHz and 40GHz */ memcpy(bt_cmd->bt4_corun_lut20, antenna_coupling_ranges[lut].lut20, sizeof(bt_cmd->bt4_corun_lut20)); memcpy(bt_cmd->bt4_corun_lut40, antenna_coupling_ranges[lut].lut20, sizeof(bt_cmd->bt4_corun_lut40)); ret = iwl_mvm_send_cmd(mvm, &cmd); kfree(bt_cmd); return ret; }