/* * PHY support for Xenon SDHC * * Copyright (C) 2016 Marvell, All Rights Reserved. * * Author: Hu Ziji * Date: 2016-8-24 * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. */ #include #include #include #include #include "sdhci-pltfm.h" #include "sdhci-xenon.h" /* Register base for eMMC PHY 5.0 Version */ #define XENON_EMMC_5_0_PHY_REG_BASE 0x0160 /* Register base for eMMC PHY 5.1 Version */ #define XENON_EMMC_PHY_REG_BASE 0x0170 #define XENON_EMMC_PHY_TIMING_ADJUST XENON_EMMC_PHY_REG_BASE #define XENON_EMMC_5_0_PHY_TIMING_ADJUST XENON_EMMC_5_0_PHY_REG_BASE #define XENON_TIMING_ADJUST_SLOW_MODE BIT(29) #define XENON_TIMING_ADJUST_SDIO_MODE BIT(28) #define XENON_SAMPL_INV_QSP_PHASE_SELECT BIT(18) #define XENON_SAMPL_INV_QSP_PHASE_SELECT_SHIFT 18 #define XENON_PHY_INITIALIZAION BIT(31) #define XENON_WAIT_CYCLE_BEFORE_USING_MASK 0xF #define XENON_WAIT_CYCLE_BEFORE_USING_SHIFT 12 #define XENON_FC_SYNC_EN_DURATION_MASK 0xF #define XENON_FC_SYNC_EN_DURATION_SHIFT 8 #define XENON_FC_SYNC_RST_EN_DURATION_MASK 0xF #define XENON_FC_SYNC_RST_EN_DURATION_SHIFT 4 #define XENON_FC_SYNC_RST_DURATION_MASK 0xF #define XENON_FC_SYNC_RST_DURATION_SHIFT 0 #define XENON_EMMC_PHY_FUNC_CONTROL (XENON_EMMC_PHY_REG_BASE + 0x4) #define XENON_EMMC_5_0_PHY_FUNC_CONTROL \ (XENON_EMMC_5_0_PHY_REG_BASE + 0x4) #define XENON_ASYNC_DDRMODE_MASK BIT(23) #define XENON_ASYNC_DDRMODE_SHIFT 23 #define XENON_CMD_DDR_MODE BIT(16) #define XENON_DQ_DDR_MODE_SHIFT 8 #define XENON_DQ_DDR_MODE_MASK 0xFF #define XENON_DQ_ASYNC_MODE BIT(4) #define XENON_EMMC_PHY_PAD_CONTROL (XENON_EMMC_PHY_REG_BASE + 0x8) #define XENON_EMMC_5_0_PHY_PAD_CONTROL \ (XENON_EMMC_5_0_PHY_REG_BASE + 0x8) #define XENON_REC_EN_SHIFT 24 #define XENON_REC_EN_MASK 0xF #define XENON_FC_DQ_RECEN BIT(24) #define XENON_FC_CMD_RECEN BIT(25) #define XENON_FC_QSP_RECEN BIT(26) #define XENON_FC_QSN_RECEN BIT(27) #define XENON_OEN_QSN BIT(28) #define XENON_AUTO_RECEN_CTRL BIT(30) #define XENON_FC_ALL_CMOS_RECEIVER 0xF000 #define XENON_EMMC5_FC_QSP_PD BIT(18) #define XENON_EMMC5_FC_QSP_PU BIT(22) #define XENON_EMMC5_FC_CMD_PD BIT(17) #define XENON_EMMC5_FC_CMD_PU BIT(21) #define XENON_EMMC5_FC_DQ_PD BIT(16) #define XENON_EMMC5_FC_DQ_PU BIT(20) #define XENON_EMMC_PHY_PAD_CONTROL1 (XENON_EMMC_PHY_REG_BASE + 0xC) #define XENON_EMMC5_1_FC_QSP_PD BIT(9) #define XENON_EMMC5_1_FC_QSP_PU BIT(25) #define XENON_EMMC5_1_FC_CMD_PD BIT(8) #define XENON_EMMC5_1_FC_CMD_PU BIT(24) #define XENON_EMMC5_1_FC_DQ_PD 0xFF #define XENON_EMMC5_1_FC_DQ_PU (0xFF << 16) #define XENON_EMMC_PHY_PAD_CONTROL2 (XENON_EMMC_PHY_REG_BASE + 0x10) #define XENON_EMMC_5_0_PHY_PAD_CONTROL2 \ (XENON_EMMC_5_0_PHY_REG_BASE + 0xC) #define XENON_ZNR_MASK 0x1F #define XENON_ZNR_SHIFT 8 #define XENON_ZPR_MASK 0x1F /* Preferred ZNR and ZPR value vary between different boards. * The specific ZNR and ZPR value should be defined here * according to board actual timing. */ #define XENON_ZNR_DEF_VALUE 0xF #define XENON_ZPR_DEF_VALUE 0xF #define XENON_EMMC_PHY_DLL_CONTROL (XENON_EMMC_PHY_REG_BASE + 0x14) #define XENON_EMMC_5_0_PHY_DLL_CONTROL \ (XENON_EMMC_5_0_PHY_REG_BASE + 0x10) #define XENON_DLL_ENABLE BIT(31) #define XENON_DLL_UPDATE_STROBE_5_0 BIT(30) #define XENON_DLL_REFCLK_SEL BIT(30) #define XENON_DLL_UPDATE BIT(23) #define XENON_DLL_PHSEL1_SHIFT 24 #define XENON_DLL_PHSEL0_SHIFT 16 #define XENON_DLL_PHASE_MASK 0x3F #define XENON_DLL_PHASE_90_DEGREE 0x1F #define XENON_DLL_FAST_LOCK BIT(5) #define XENON_DLL_GAIN2X BIT(3) #define XENON_DLL_BYPASS_EN BIT(0) #define XENON_EMMC_5_0_PHY_LOGIC_TIMING_ADJUST \ (XENON_EMMC_5_0_PHY_REG_BASE + 0x14) #define XENON_EMMC_PHY_LOGIC_TIMING_ADJUST (XENON_EMMC_PHY_REG_BASE + 0x18) #define XENON_LOGIC_TIMING_VALUE 0x00AA8977 /* * List offset of PHY registers and some special register values * in eMMC PHY 5.0 or eMMC PHY 5.1 */ struct xenon_emmc_phy_regs { /* Offset of Timing Adjust register */ u16 timing_adj; /* Offset of Func Control register */ u16 func_ctrl; /* Offset of Pad Control register */ u16 pad_ctrl; /* Offset of Pad Control register 2 */ u16 pad_ctrl2; /* Offset of DLL Control register */ u16 dll_ctrl; /* Offset of Logic Timing Adjust register */ u16 logic_timing_adj; /* DLL Update Enable bit */ u32 dll_update; }; static const char * const phy_types[] = { "emmc 5.0 phy", "emmc 5.1 phy" }; enum xenon_phy_type_enum { EMMC_5_0_PHY, EMMC_5_1_PHY, NR_PHY_TYPES }; enum soc_pad_ctrl_type { SOC_PAD_SD, SOC_PAD_FIXED_1_8V, }; struct soc_pad_ctrl { /* Register address of SoC PHY PAD ctrl */ void __iomem *reg; /* SoC PHY PAD ctrl type */ enum soc_pad_ctrl_type pad_type; /* SoC specific operation to set SoC PHY PAD */ void (*set_soc_pad)(struct sdhci_host *host, unsigned char signal_voltage); }; static struct xenon_emmc_phy_regs xenon_emmc_5_0_phy_regs = { .timing_adj = XENON_EMMC_5_0_PHY_TIMING_ADJUST, .func_ctrl = XENON_EMMC_5_0_PHY_FUNC_CONTROL, .pad_ctrl = XENON_EMMC_5_0_PHY_PAD_CONTROL, .pad_ctrl2 = XENON_EMMC_5_0_PHY_PAD_CONTROL2, .dll_ctrl = XENON_EMMC_5_0_PHY_DLL_CONTROL, .logic_timing_adj = XENON_EMMC_5_0_PHY_LOGIC_TIMING_ADJUST, .dll_update = XENON_DLL_UPDATE_STROBE_5_0, }; static struct xenon_emmc_phy_regs xenon_emmc_5_1_phy_regs = { .timing_adj = XENON_EMMC_PHY_TIMING_ADJUST, .func_ctrl = XENON_EMMC_PHY_FUNC_CONTROL, .pad_ctrl = XENON_EMMC_PHY_PAD_CONTROL, .pad_ctrl2 = XENON_EMMC_PHY_PAD_CONTROL2, .dll_ctrl = XENON_EMMC_PHY_DLL_CONTROL, .logic_timing_adj = XENON_EMMC_PHY_LOGIC_TIMING_ADJUST, .dll_update = XENON_DLL_UPDATE, }; /* * eMMC PHY configuration and operations */ struct xenon_emmc_phy_params { bool slow_mode; u8 znr; u8 zpr; /* Nr of consecutive Sampling Points of a Valid Sampling Window */ u8 nr_tun_times; /* Divider for calculating Tuning Step */ u8 tun_step_divider; struct soc_pad_ctrl pad_ctrl; }; static int xenon_alloc_emmc_phy(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host); struct xenon_emmc_phy_params *params; params = devm_kzalloc(mmc_dev(host->mmc), sizeof(*params), GFP_KERNEL); if (!params) return -ENOMEM; priv->phy_params = params; if (priv->phy_type == EMMC_5_0_PHY) priv->emmc_phy_regs = &xenon_emmc_5_0_phy_regs; else priv->emmc_phy_regs = &xenon_emmc_5_1_phy_regs; return 0; } /* * eMMC 5.0/5.1 PHY init/re-init. * eMMC PHY init should be executed after: * 1. SDCLK frequency changes. * 2. SDCLK is stopped and re-enabled. * 3. config in emmc_phy_regs->timing_adj and emmc_phy_regs->func_ctrl * are changed */ static int xenon_emmc_phy_init(struct sdhci_host *host) { u32 reg; u32 wait, clock; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host); struct xenon_emmc_phy_regs *phy_regs = priv->emmc_phy_regs; reg = sdhci_readl(host, phy_regs->timing_adj); reg |= XENON_PHY_INITIALIZAION; sdhci_writel(host, reg, phy_regs->timing_adj); /* Add duration of FC_SYNC_RST */ wait = ((reg >> XENON_FC_SYNC_RST_DURATION_SHIFT) & XENON_FC_SYNC_RST_DURATION_MASK); /* Add interval between FC_SYNC_EN and FC_SYNC_RST */ wait += ((reg >> XENON_FC_SYNC_RST_EN_DURATION_SHIFT) & XENON_FC_SYNC_RST_EN_DURATION_MASK); /* Add duration of asserting FC_SYNC_EN */ wait += ((reg >> XENON_FC_SYNC_EN_DURATION_SHIFT) & XENON_FC_SYNC_EN_DURATION_MASK); /* Add duration of waiting for PHY */ wait += ((reg >> XENON_WAIT_CYCLE_BEFORE_USING_SHIFT) & XENON_WAIT_CYCLE_BEFORE_USING_MASK); /* 4 additional bus clock and 4 AXI bus clock are required */ wait += 8; wait <<= 20; clock = host->clock; if (!clock) /* Use the possibly slowest bus frequency value */ clock = XENON_LOWEST_SDCLK_FREQ; /* get the wait time */ wait /= clock; wait++; /* wait for host eMMC PHY init completes */ udelay(wait); reg = sdhci_readl(host, phy_regs->timing_adj); reg &= XENON_PHY_INITIALIZAION; if (reg) { dev_err(mmc_dev(host->mmc), "eMMC PHY init cannot complete after %d us\n", wait); return -ETIMEDOUT; } return 0; } #define ARMADA_3700_SOC_PAD_1_8V 0x1 #define ARMADA_3700_SOC_PAD_3_3V 0x0 static void armada_3700_soc_pad_voltage_set(struct sdhci_host *host, unsigned char signal_voltage) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host); struct xenon_emmc_phy_params *params = priv->phy_params; if (params->pad_ctrl.pad_type == SOC_PAD_FIXED_1_8V) { writel(ARMADA_3700_SOC_PAD_1_8V, params->pad_ctrl.reg); } else if (params->pad_ctrl.pad_type == SOC_PAD_SD) { if (signal_voltage == MMC_SIGNAL_VOLTAGE_180) writel(ARMADA_3700_SOC_PAD_1_8V, params->pad_ctrl.reg); else if (signal_voltage == MMC_SIGNAL_VOLTAGE_330) writel(ARMADA_3700_SOC_PAD_3_3V, params->pad_ctrl.reg); } } /* * Set SoC PHY voltage PAD control register, * according to the operation voltage on PAD. * The detailed operation depends on SoC implementation. */ static void xenon_emmc_phy_set_soc_pad(struct sdhci_host *host, unsigned char signal_voltage) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host); struct xenon_emmc_phy_params *params = priv->phy_params; if (!params->pad_ctrl.reg) return; if (params->pad_ctrl.set_soc_pad) params->pad_ctrl.set_soc_pad(host, signal_voltage); } /* * Enable eMMC PHY HW DLL * DLL should be enabled and stable before HS200/SDR104 tuning, * and before HS400 data strobe setting. */ static int xenon_emmc_phy_enable_dll(struct sdhci_host *host) { u32 reg; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host); struct xenon_emmc_phy_regs *phy_regs = priv->emmc_phy_regs; ktime_t timeout; if (WARN_ON(host->clock <= MMC_HIGH_52_MAX_DTR)) return -EINVAL; reg = sdhci_readl(host, phy_regs->dll_ctrl); if (reg & XENON_DLL_ENABLE) return 0; /* Enable DLL */ reg = sdhci_readl(host, phy_regs->dll_ctrl); reg |= (XENON_DLL_ENABLE | XENON_DLL_FAST_LOCK); /* * Set Phase as 90 degree, which is most common value. * Might set another value if necessary. * The granularity is 1 degree. */ reg &= ~((XENON_DLL_PHASE_MASK << XENON_DLL_PHSEL0_SHIFT) | (XENON_DLL_PHASE_MASK << XENON_DLL_PHSEL1_SHIFT)); reg |= ((XENON_DLL_PHASE_90_DEGREE << XENON_DLL_PHSEL0_SHIFT) | (XENON_DLL_PHASE_90_DEGREE << XENON_DLL_PHSEL1_SHIFT)); reg &= ~XENON_DLL_BYPASS_EN; reg |= phy_regs->dll_update; if (priv->phy_type == EMMC_5_1_PHY) reg &= ~XENON_DLL_REFCLK_SEL; sdhci_writel(host, reg, phy_regs->dll_ctrl); /* Wait max 32 ms */ timeout = ktime_add_ms(ktime_get(), 32); while (!(sdhci_readw(host, XENON_SLOT_EXT_PRESENT_STATE) & XENON_DLL_LOCK_STATE)) { if (ktime_after(ktime_get(), timeout)) { dev_err(mmc_dev(host->mmc), "Wait for DLL Lock time-out\n"); return -ETIMEDOUT; } udelay(100); } return 0; } /* * Config to eMMC PHY to prepare for tuning. * Enable HW DLL and set the TUNING_STEP */ static int xenon_emmc_phy_config_tuning(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host); struct xenon_emmc_phy_params *params = priv->phy_params; u32 reg, tuning_step; int ret; if (host->clock <= MMC_HIGH_52_MAX_DTR) return -EINVAL; ret = xenon_emmc_phy_enable_dll(host); if (ret) return ret; /* Achieve TUNING_STEP with HW DLL help */ reg = sdhci_readl(host, XENON_SLOT_DLL_CUR_DLY_VAL); tuning_step = reg / params->tun_step_divider; if (unlikely(tuning_step > XENON_TUNING_STEP_MASK)) { dev_warn(mmc_dev(host->mmc), "HS200 TUNING_STEP %d is larger than MAX value\n", tuning_step); tuning_step = XENON_TUNING_STEP_MASK; } /* Set TUNING_STEP for later tuning */ reg = sdhci_readl(host, XENON_SLOT_OP_STATUS_CTRL); reg &= ~(XENON_TUN_CONSECUTIVE_TIMES_MASK << XENON_TUN_CONSECUTIVE_TIMES_SHIFT); reg |= (params->nr_tun_times << XENON_TUN_CONSECUTIVE_TIMES_SHIFT); reg &= ~(XENON_TUNING_STEP_MASK << XENON_TUNING_STEP_SHIFT); reg |= (tuning_step << XENON_TUNING_STEP_SHIFT); sdhci_writel(host, reg, XENON_SLOT_OP_STATUS_CTRL); return 0; } static void xenon_emmc_phy_disable_data_strobe(struct sdhci_host *host) { u32 reg; /* Disable SDHC Data Strobe */ reg = sdhci_readl(host, XENON_SLOT_EMMC_CTRL); reg &= ~XENON_ENABLE_DATA_STROBE; sdhci_writel(host, reg, XENON_SLOT_EMMC_CTRL); } /* Set HS400 Data Strobe */ static void xenon_emmc_phy_strobe_delay_adj(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host); u32 reg; if (WARN_ON(host->timing != MMC_TIMING_MMC_HS400)) return; if (host->clock <= MMC_HIGH_52_MAX_DTR) return; dev_dbg(mmc_dev(host->mmc), "starts HS400 strobe delay adjustment\n"); xenon_emmc_phy_enable_dll(host); /* Enable SDHC Data Strobe */ reg = sdhci_readl(host, XENON_SLOT_EMMC_CTRL); reg |= XENON_ENABLE_DATA_STROBE; sdhci_writel(host, reg, XENON_SLOT_EMMC_CTRL); /* Set Data Strobe Pull down */ if (priv->phy_type == EMMC_5_0_PHY) { reg = sdhci_readl(host, XENON_EMMC_5_0_PHY_PAD_CONTROL); reg |= XENON_EMMC5_FC_QSP_PD; reg &= ~XENON_EMMC5_FC_QSP_PU; sdhci_writel(host, reg, XENON_EMMC_5_0_PHY_PAD_CONTROL); } else { reg = sdhci_readl(host, XENON_EMMC_PHY_PAD_CONTROL1); reg |= XENON_EMMC5_1_FC_QSP_PD; reg &= ~XENON_EMMC5_1_FC_QSP_PU; sdhci_writel(host, reg, XENON_EMMC_PHY_PAD_CONTROL1); } } /* * If eMMC PHY Slow Mode is required in lower speed mode (SDCLK < 55MHz) * in SDR mode, enable Slow Mode to bypass eMMC PHY. * SDIO slower SDR mode also requires Slow Mode. * * If Slow Mode is enabled, return true. * Otherwise, return false. */ static bool xenon_emmc_phy_slow_mode(struct sdhci_host *host, unsigned char timing) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host); struct xenon_emmc_phy_params *params = priv->phy_params; struct xenon_emmc_phy_regs *phy_regs = priv->emmc_phy_regs; u32 reg; int ret; if (host->clock > MMC_HIGH_52_MAX_DTR) return false; reg = sdhci_readl(host, phy_regs->timing_adj); /* When in slower SDR mode, enable Slow Mode for SDIO * or when Slow Mode flag is set */ switch (timing) { case MMC_TIMING_LEGACY: /* * If Slow Mode is required, enable Slow Mode by default * in early init phase to avoid any potential issue. */ if (params->slow_mode) { reg |= XENON_TIMING_ADJUST_SLOW_MODE; ret = true; } else { reg &= ~XENON_TIMING_ADJUST_SLOW_MODE; ret = false; } break; case MMC_TIMING_UHS_SDR25: case MMC_TIMING_UHS_SDR12: case MMC_TIMING_SD_HS: case MMC_TIMING_MMC_HS: if ((priv->init_card_type == MMC_TYPE_SDIO) || params->slow_mode) { reg |= XENON_TIMING_ADJUST_SLOW_MODE; ret = true; break; } default: reg &= ~XENON_TIMING_ADJUST_SLOW_MODE; ret = false; } sdhci_writel(host, reg, phy_regs->timing_adj); return ret; } /* * Set-up eMMC 5.0/5.1 PHY. * Specific configuration depends on the current speed mode in use. */ static void xenon_emmc_phy_set(struct sdhci_host *host, unsigned char timing) { u32 reg; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host); struct xenon_emmc_phy_params *params = priv->phy_params; struct xenon_emmc_phy_regs *phy_regs = priv->emmc_phy_regs; dev_dbg(mmc_dev(host->mmc), "eMMC PHY setting starts\n"); /* Setup pad, set bit[28] and bits[26:24] */ reg = sdhci_readl(host, phy_regs->pad_ctrl); reg |= (XENON_FC_DQ_RECEN | XENON_FC_CMD_RECEN | XENON_FC_QSP_RECEN | XENON_OEN_QSN); /* All FC_XX_RECEIVCE should be set as CMOS Type */ reg |= XENON_FC_ALL_CMOS_RECEIVER; sdhci_writel(host, reg, phy_regs->pad_ctrl); /* Set CMD and DQ Pull Up */ if (priv->phy_type == EMMC_5_0_PHY) { reg = sdhci_readl(host, XENON_EMMC_5_0_PHY_PAD_CONTROL); reg |= (XENON_EMMC5_FC_CMD_PU | XENON_EMMC5_FC_DQ_PU); reg &= ~(XENON_EMMC5_FC_CMD_PD | XENON_EMMC5_FC_DQ_PD); sdhci_writel(host, reg, XENON_EMMC_5_0_PHY_PAD_CONTROL); } else { reg = sdhci_readl(host, XENON_EMMC_PHY_PAD_CONTROL1); reg |= (XENON_EMMC5_1_FC_CMD_PU | XENON_EMMC5_1_FC_DQ_PU); reg &= ~(XENON_EMMC5_1_FC_CMD_PD | XENON_EMMC5_1_FC_DQ_PD); sdhci_writel(host, reg, XENON_EMMC_PHY_PAD_CONTROL1); } if (timing == MMC_TIMING_LEGACY) { xenon_emmc_phy_slow_mode(host, timing); goto phy_init; } /* * If SDIO card, set SDIO Mode * Otherwise, clear SDIO Mode */ reg = sdhci_readl(host, phy_regs->timing_adj); if (priv->init_card_type == MMC_TYPE_SDIO) reg |= XENON_TIMING_ADJUST_SDIO_MODE; else reg &= ~XENON_TIMING_ADJUST_SDIO_MODE; sdhci_writel(host, reg, phy_regs->timing_adj); if (xenon_emmc_phy_slow_mode(host, timing)) goto phy_init; /* * Set preferred ZNR and ZPR value * The ZNR and ZPR value vary between different boards. * Define them both in sdhci-xenon-emmc-phy.h. */ reg = sdhci_readl(host, phy_regs->pad_ctrl2); reg &= ~((XENON_ZNR_MASK << XENON_ZNR_SHIFT) | XENON_ZPR_MASK); reg |= ((params->znr << XENON_ZNR_SHIFT) | params->zpr); sdhci_writel(host, reg, phy_regs->pad_ctrl2); /* * When setting EMMC_PHY_FUNC_CONTROL register, * SD clock should be disabled */ reg = sdhci_readl(host, SDHCI_CLOCK_CONTROL); reg &= ~SDHCI_CLOCK_CARD_EN; sdhci_writew(host, reg, SDHCI_CLOCK_CONTROL); reg = sdhci_readl(host, phy_regs->func_ctrl); switch (timing) { case MMC_TIMING_MMC_HS400: reg |= (XENON_DQ_DDR_MODE_MASK << XENON_DQ_DDR_MODE_SHIFT) | XENON_CMD_DDR_MODE; reg &= ~XENON_DQ_ASYNC_MODE; break; case MMC_TIMING_UHS_DDR50: case MMC_TIMING_MMC_DDR52: reg |= (XENON_DQ_DDR_MODE_MASK << XENON_DQ_DDR_MODE_SHIFT) | XENON_CMD_DDR_MODE | XENON_DQ_ASYNC_MODE; break; default: reg &= ~((XENON_DQ_DDR_MODE_MASK << XENON_DQ_DDR_MODE_SHIFT) | XENON_CMD_DDR_MODE); reg |= XENON_DQ_ASYNC_MODE; } sdhci_writel(host, reg, phy_regs->func_ctrl); /* Enable bus clock */ reg = sdhci_readl(host, SDHCI_CLOCK_CONTROL); reg |= SDHCI_CLOCK_CARD_EN; sdhci_writew(host, reg, SDHCI_CLOCK_CONTROL); if (timing == MMC_TIMING_MMC_HS400) /* Hardware team recommend a value for HS400 */ sdhci_writel(host, XENON_LOGIC_TIMING_VALUE, phy_regs->logic_timing_adj); else xenon_emmc_phy_disable_data_strobe(host); phy_init: xenon_emmc_phy_init(host); dev_dbg(mmc_dev(host->mmc), "eMMC PHY setting completes\n"); } static int get_dt_pad_ctrl_data(struct sdhci_host *host, struct device_node *np, struct xenon_emmc_phy_params *params) { int ret = 0; const char *name; struct resource iomem; if (of_device_is_compatible(np, "marvell,armada-3700-sdhci")) params->pad_ctrl.set_soc_pad = armada_3700_soc_pad_voltage_set; else return 0; if (of_address_to_resource(np, 1, &iomem)) { dev_err(mmc_dev(host->mmc), "Unable to find SoC PAD ctrl register address for %s\n", np->name); return -EINVAL; } params->pad_ctrl.reg = devm_ioremap_resource(mmc_dev(host->mmc), &iomem); if (IS_ERR(params->pad_ctrl.reg)) { dev_err(mmc_dev(host->mmc), "Unable to get SoC PHY PAD ctrl register for %s\n", np->name); return PTR_ERR(params->pad_ctrl.reg); } ret = of_property_read_string(np, "marvell,pad-type", &name); if (ret) { dev_err(mmc_dev(host->mmc), "Unable to determine SoC PHY PAD ctrl type\n"); return ret; } if (!strcmp(name, "sd")) { params->pad_ctrl.pad_type = SOC_PAD_SD; } else if (!strcmp(name, "fixed-1-8v")) { params->pad_ctrl.pad_type = SOC_PAD_FIXED_1_8V; } else { dev_err(mmc_dev(host->mmc), "Unsupported SoC PHY PAD ctrl type %s\n", name); return -EINVAL; } return ret; } static int xenon_emmc_phy_parse_param_dt(struct sdhci_host *host, struct device_node *np, struct xenon_emmc_phy_params *params) { u32 value; params->slow_mode = false; if (of_property_read_bool(np, "marvell,xenon-phy-slow-mode")) params->slow_mode = true; params->znr = XENON_ZNR_DEF_VALUE; if (!of_property_read_u32(np, "marvell,xenon-phy-znr", &value)) params->znr = value & XENON_ZNR_MASK; params->zpr = XENON_ZPR_DEF_VALUE; if (!of_property_read_u32(np, "marvell,xenon-phy-zpr", &value)) params->zpr = value & XENON_ZPR_MASK; params->nr_tun_times = XENON_TUN_CONSECUTIVE_TIMES; if (!of_property_read_u32(np, "marvell,xenon-phy-nr-success-tun", &value)) params->nr_tun_times = value & XENON_TUN_CONSECUTIVE_TIMES_MASK; params->tun_step_divider = XENON_TUNING_STEP_DIVIDER; if (!of_property_read_u32(np, "marvell,xenon-phy-tun-step-divider", &value)) params->tun_step_divider = value & 0xFF; return get_dt_pad_ctrl_data(host, np, params); } /* Set SoC PHY Voltage PAD */ void xenon_soc_pad_ctrl(struct sdhci_host *host, unsigned char signal_voltage) { xenon_emmc_phy_set_soc_pad(host, signal_voltage); } /* * Setting PHY when card is working in High Speed Mode. * HS400 set data strobe line. * HS200/SDR104 set tuning config to prepare for tuning. */ static int xenon_hs_delay_adj(struct sdhci_host *host) { int ret = 0; if (WARN_ON(host->clock <= XENON_DEFAULT_SDCLK_FREQ)) return -EINVAL; switch (host->timing) { case MMC_TIMING_MMC_HS400: xenon_emmc_phy_strobe_delay_adj(host); return 0; case MMC_TIMING_MMC_HS200: case MMC_TIMING_UHS_SDR104: return xenon_emmc_phy_config_tuning(host); case MMC_TIMING_MMC_DDR52: case MMC_TIMING_UHS_DDR50: /* * DDR Mode requires driver to scan Sampling Fixed Delay Line, * to find out a perfect operation sampling point. * It is hard to implement such a scan in host driver * since initiating commands by host driver is not safe. * Thus so far just keep PHY Sampling Fixed Delay in * default value of DDR mode. * * If any timing issue occurs in DDR mode on Marvell products, * please contact maintainer for internal support in Marvell. */ dev_warn_once(mmc_dev(host->mmc), "Timing issue might occur in DDR mode\n"); return 0; } return ret; } /* * Adjust PHY setting. * PHY setting should be adjusted when SDCLK frequency, Bus Width * or Speed Mode is changed. * Additional config are required when card is working in High Speed mode, * after leaving Legacy Mode. */ int xenon_phy_adj(struct sdhci_host *host, struct mmc_ios *ios) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host); int ret = 0; if (!host->clock) { priv->clock = 0; return 0; } /* * The timing, frequency or bus width is changed, * better to set eMMC PHY based on current setting * and adjust Xenon SDHC delay. */ if ((host->clock == priv->clock) && (ios->bus_width == priv->bus_width) && (ios->timing == priv->timing)) return 0; xenon_emmc_phy_set(host, ios->timing); /* Update the record */ priv->bus_width = ios->bus_width; priv->timing = ios->timing; priv->clock = host->clock; /* Legacy mode is a special case */ if (ios->timing == MMC_TIMING_LEGACY) return 0; if (host->clock > XENON_DEFAULT_SDCLK_FREQ) ret = xenon_hs_delay_adj(host); return ret; } void xenon_clean_phy(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host); kfree(priv->phy_params); } static int xenon_add_phy(struct device_node *np, struct sdhci_host *host, const char *phy_name) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct xenon_priv *priv = sdhci_pltfm_priv(pltfm_host); int i, ret; for (i = 0; i < NR_PHY_TYPES; i++) { if (!strcmp(phy_name, phy_types[i])) { priv->phy_type = i; break; } } if (i == NR_PHY_TYPES) { dev_err(mmc_dev(host->mmc), "Unable to determine PHY name %s. Use default eMMC 5.1 PHY\n", phy_name); priv->phy_type = EMMC_5_1_PHY; } ret = xenon_alloc_emmc_phy(host); if (ret) return ret; ret = xenon_emmc_phy_parse_param_dt(host, np, priv->phy_params); if (ret) xenon_clean_phy(host); return ret; } int xenon_phy_parse_dt(struct device_node *np, struct sdhci_host *host) { const char *phy_type = NULL; if (!of_property_read_string(np, "marvell,xenon-phy-type", &phy_type)) return xenon_add_phy(np, host, phy_type); return xenon_add_phy(np, host, "emmc 5.1 phy"); }