/* Driver for ST STV0299 demodulator Copyright (C) 2001-2002 Convergence Integrated Media GmbH , , Philips SU1278/SH Copyright (C) 2002 by Peter Schildmann LG TDQF-S001F Copyright (C) 2002 Felix Domke & Andreas Oberritter Support for Samsung TBMU24112IMB used on Technisat SkyStar2 rev. 2.6B Copyright (C) 2003 Vadim Catana : Support for Philips SU1278 on Technotrend hardware Copyright (C) 2004 Andrew de Quincey This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include "dvb_frontend.h" #include "stv0299.h" struct stv0299_state { struct i2c_adapter* i2c; const struct stv0299_config* config; struct dvb_frontend frontend; u8 initialised:1; u32 tuner_frequency; u32 symbol_rate; fe_code_rate_t fec_inner; int errmode; u32 ucblocks; u8 mcr_reg; }; #define STATUS_BER 0 #define STATUS_UCBLOCKS 1 static int debug; static int debug_legacy_dish_switch; #define dprintk(args...) \ do { \ if (debug) printk(KERN_DEBUG "stv0299: " args); \ } while (0) static int stv0299_writeregI (struct stv0299_state* state, u8 reg, u8 data) { int ret; u8 buf [] = { reg, data }; struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; ret = i2c_transfer (state->i2c, &msg, 1); if (ret != 1) dprintk("%s: writereg error (reg == 0x%02x, val == 0x%02x, " "ret == %i)\n", __func__, reg, data, ret); return (ret != 1) ? -EREMOTEIO : 0; } static int stv0299_write(struct dvb_frontend* fe, const u8 buf[], int len) { struct stv0299_state* state = fe->demodulator_priv; if (len != 2) return -EINVAL; return stv0299_writeregI(state, buf[0], buf[1]); } static u8 stv0299_readreg (struct stv0299_state* state, u8 reg) { int ret; u8 b0 [] = { reg }; u8 b1 [] = { 0 }; struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; ret = i2c_transfer (state->i2c, msg, 2); if (ret != 2) dprintk("%s: readreg error (reg == 0x%02x, ret == %i)\n", __func__, reg, ret); return b1[0]; } static int stv0299_readregs (struct stv0299_state* state, u8 reg1, u8 *b, u8 len) { int ret; struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = ®1, .len = 1 }, { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b, .len = len } }; ret = i2c_transfer (state->i2c, msg, 2); if (ret != 2) dprintk("%s: readreg error (ret == %i)\n", __func__, ret); return ret == 2 ? 0 : ret; } static int stv0299_set_FEC (struct stv0299_state* state, fe_code_rate_t fec) { dprintk ("%s\n", __func__); switch (fec) { case FEC_AUTO: { return stv0299_writeregI (state, 0x31, 0x1f); } case FEC_1_2: { return stv0299_writeregI (state, 0x31, 0x01); } case FEC_2_3: { return stv0299_writeregI (state, 0x31, 0x02); } case FEC_3_4: { return stv0299_writeregI (state, 0x31, 0x04); } case FEC_5_6: { return stv0299_writeregI (state, 0x31, 0x08); } case FEC_7_8: { return stv0299_writeregI (state, 0x31, 0x10); } default: { return -EINVAL; } } } static fe_code_rate_t stv0299_get_fec (struct stv0299_state* state) { static fe_code_rate_t fec_tab [] = { FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8, FEC_1_2 }; u8 index; dprintk ("%s\n", __func__); index = stv0299_readreg (state, 0x1b); index &= 0x7; if (index > 4) return FEC_AUTO; return fec_tab [index]; } static int stv0299_wait_diseqc_fifo (struct stv0299_state* state, int timeout) { unsigned long start = jiffies; dprintk ("%s\n", __func__); while (stv0299_readreg(state, 0x0a) & 1) { if (jiffies - start > timeout) { dprintk ("%s: timeout!!\n", __func__); return -ETIMEDOUT; } msleep(10); }; return 0; } static int stv0299_wait_diseqc_idle (struct stv0299_state* state, int timeout) { unsigned long start = jiffies; dprintk ("%s\n", __func__); while ((stv0299_readreg(state, 0x0a) & 3) != 2 ) { if (jiffies - start > timeout) { dprintk ("%s: timeout!!\n", __func__); return -ETIMEDOUT; } msleep(10); }; return 0; } static int stv0299_set_symbolrate (struct dvb_frontend* fe, u32 srate) { struct stv0299_state* state = fe->demodulator_priv; u64 big = srate; u32 ratio; // check rate is within limits if ((srate < 1000000) || (srate > 45000000)) return -EINVAL; // calculate value to program big = big << 20; big += (state->config->mclk-1); // round correctly do_div(big, state->config->mclk); ratio = big << 4; return state->config->set_symbol_rate(fe, srate, ratio); } static int stv0299_get_symbolrate (struct stv0299_state* state) { u32 Mclk = state->config->mclk / 4096L; u32 srate; s32 offset; u8 sfr[3]; s8 rtf; dprintk ("%s\n", __func__); stv0299_readregs (state, 0x1f, sfr, 3); stv0299_readregs (state, 0x1a, (u8 *)&rtf, 1); srate = (sfr[0] << 8) | sfr[1]; srate *= Mclk; srate /= 16; srate += (sfr[2] >> 4) * Mclk / 256; offset = (s32) rtf * (srate / 4096L); offset /= 128; dprintk ("%s : srate = %i\n", __func__, srate); dprintk ("%s : ofset = %i\n", __func__, offset); srate += offset; srate += 1000; srate /= 2000; srate *= 2000; return srate; } static int stv0299_send_diseqc_msg (struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *m) { struct stv0299_state* state = fe->demodulator_priv; u8 val; int i; dprintk ("%s\n", __func__); if (stv0299_wait_diseqc_idle (state, 100) < 0) return -ETIMEDOUT; val = stv0299_readreg (state, 0x08); if (stv0299_writeregI (state, 0x08, (val & ~0x7) | 0x6)) /* DiSEqC mode */ return -EREMOTEIO; for (i=0; imsg_len; i++) { if (stv0299_wait_diseqc_fifo (state, 100) < 0) return -ETIMEDOUT; if (stv0299_writeregI (state, 0x09, m->msg[i])) return -EREMOTEIO; } if (stv0299_wait_diseqc_idle (state, 100) < 0) return -ETIMEDOUT; return 0; } static int stv0299_send_diseqc_burst (struct dvb_frontend* fe, fe_sec_mini_cmd_t burst) { struct stv0299_state* state = fe->demodulator_priv; u8 val; dprintk ("%s\n", __func__); if (stv0299_wait_diseqc_idle (state, 100) < 0) return -ETIMEDOUT; val = stv0299_readreg (state, 0x08); if (stv0299_writeregI (state, 0x08, (val & ~0x7) | 0x2)) /* burst mode */ return -EREMOTEIO; if (stv0299_writeregI (state, 0x09, burst == SEC_MINI_A ? 0x00 : 0xff)) return -EREMOTEIO; if (stv0299_wait_diseqc_idle (state, 100) < 0) return -ETIMEDOUT; if (stv0299_writeregI (state, 0x08, val)) return -EREMOTEIO; return 0; } static int stv0299_set_tone (struct dvb_frontend* fe, fe_sec_tone_mode_t tone) { struct stv0299_state* state = fe->demodulator_priv; u8 val; if (stv0299_wait_diseqc_idle (state, 100) < 0) return -ETIMEDOUT; val = stv0299_readreg (state, 0x08); switch (tone) { case SEC_TONE_ON: return stv0299_writeregI (state, 0x08, val | 0x3); case SEC_TONE_OFF: return stv0299_writeregI (state, 0x08, (val & ~0x3) | 0x02); default: return -EINVAL; } } static int stv0299_set_voltage (struct dvb_frontend* fe, fe_sec_voltage_t voltage) { struct stv0299_state* state = fe->demodulator_priv; u8 reg0x08; u8 reg0x0c; dprintk("%s: %s\n", __func__, voltage == SEC_VOLTAGE_13 ? "SEC_VOLTAGE_13" : voltage == SEC_VOLTAGE_18 ? "SEC_VOLTAGE_18" : "??"); reg0x08 = stv0299_readreg (state, 0x08); reg0x0c = stv0299_readreg (state, 0x0c); /** * H/V switching over OP0, OP1 and OP2 are LNB power enable bits */ reg0x0c &= 0x0f; reg0x08 = (reg0x08 & 0x3f) | (state->config->lock_output << 6); switch (voltage) { case SEC_VOLTAGE_13: if (state->config->volt13_op0_op1 == STV0299_VOLT13_OP0) reg0x0c |= 0x10; /* OP1 off, OP0 on */ else reg0x0c |= 0x40; /* OP1 on, OP0 off */ break; case SEC_VOLTAGE_18: reg0x0c |= 0x50; /* OP1 on, OP0 on */ break; case SEC_VOLTAGE_OFF: /* LNB power off! */ reg0x08 = 0x00; reg0x0c = 0x00; break; default: return -EINVAL; }; if (state->config->op0_off) reg0x0c &= ~0x10; stv0299_writeregI(state, 0x08, reg0x08); return stv0299_writeregI(state, 0x0c, reg0x0c); } static int stv0299_send_legacy_dish_cmd (struct dvb_frontend* fe, unsigned long cmd) { struct stv0299_state* state = fe->demodulator_priv; u8 reg0x08; u8 reg0x0c; u8 lv_mask = 0x40; u8 last = 1; int i; struct timeval nexttime; struct timeval tv[10]; reg0x08 = stv0299_readreg (state, 0x08); reg0x0c = stv0299_readreg (state, 0x0c); reg0x0c &= 0x0f; stv0299_writeregI (state, 0x08, (reg0x08 & 0x3f) | (state->config->lock_output << 6)); if (state->config->volt13_op0_op1 == STV0299_VOLT13_OP0) lv_mask = 0x10; cmd = cmd << 1; if (debug_legacy_dish_switch) printk ("%s switch command: 0x%04lx\n",__func__, cmd); do_gettimeofday (&nexttime); if (debug_legacy_dish_switch) memcpy (&tv[0], &nexttime, sizeof (struct timeval)); stv0299_writeregI (state, 0x0c, reg0x0c | 0x50); /* set LNB to 18V */ dvb_frontend_sleep_until(&nexttime, 32000); for (i=0; i<9; i++) { if (debug_legacy_dish_switch) do_gettimeofday (&tv[i+1]); if((cmd & 0x01) != last) { /* set voltage to (last ? 13V : 18V) */ stv0299_writeregI (state, 0x0c, reg0x0c | (last ? lv_mask : 0x50)); last = (last) ? 0 : 1; } cmd = cmd >> 1; if (i != 8) dvb_frontend_sleep_until(&nexttime, 8000); } if (debug_legacy_dish_switch) { printk ("%s(%d): switch delay (should be 32k followed by all 8k\n", __func__, fe->dvb->num); for (i = 1; i < 10; i++) printk ("%d: %d\n", i, timeval_usec_diff(tv[i-1] , tv[i])); } return 0; } static int stv0299_init (struct dvb_frontend* fe) { struct stv0299_state* state = fe->demodulator_priv; int i; u8 reg; u8 val; dprintk("stv0299: init chip\n"); stv0299_writeregI(state, 0x02, 0x30 | state->mcr_reg); msleep(50); for (i = 0; ; i += 2) { reg = state->config->inittab[i]; val = state->config->inittab[i+1]; if (reg == 0xff && val == 0xff) break; if (reg == 0x0c && state->config->op0_off) val &= ~0x10; if (reg == 0x2) state->mcr_reg = val & 0xf; stv0299_writeregI(state, reg, val); } return 0; } static int stv0299_read_status(struct dvb_frontend* fe, fe_status_t* status) { struct stv0299_state* state = fe->demodulator_priv; u8 signal = 0xff - stv0299_readreg (state, 0x18); u8 sync = stv0299_readreg (state, 0x1b); dprintk ("%s : FE_READ_STATUS : VSTATUS: 0x%02x\n", __func__, sync); *status = 0; if (signal > 10) *status |= FE_HAS_SIGNAL; if (sync & 0x80) *status |= FE_HAS_CARRIER; if (sync & 0x10) *status |= FE_HAS_VITERBI; if (sync & 0x08) *status |= FE_HAS_SYNC; if ((sync & 0x98) == 0x98) *status |= FE_HAS_LOCK; return 0; } static int stv0299_read_ber(struct dvb_frontend* fe, u32* ber) { struct stv0299_state* state = fe->demodulator_priv; if (state->errmode != STATUS_BER) return -ENOSYS; *ber = stv0299_readreg(state, 0x1e) | (stv0299_readreg(state, 0x1d) << 8); return 0; } static int stv0299_read_signal_strength(struct dvb_frontend* fe, u16* strength) { struct stv0299_state* state = fe->demodulator_priv; s32 signal = 0xffff - ((stv0299_readreg (state, 0x18) << 8) | stv0299_readreg (state, 0x19)); dprintk ("%s : FE_READ_SIGNAL_STRENGTH : AGC2I: 0x%02x%02x, signal=0x%04x\n", __func__, stv0299_readreg (state, 0x18), stv0299_readreg (state, 0x19), (int) signal); signal = signal * 5 / 4; *strength = (signal > 0xffff) ? 0xffff : (signal < 0) ? 0 : signal; return 0; } static int stv0299_read_snr(struct dvb_frontend* fe, u16* snr) { struct stv0299_state* state = fe->demodulator_priv; s32 xsnr = 0xffff - ((stv0299_readreg (state, 0x24) << 8) | stv0299_readreg (state, 0x25)); xsnr = 3 * (xsnr - 0xa100); *snr = (xsnr > 0xffff) ? 0xffff : (xsnr < 0) ? 0 : xsnr; return 0; } static int stv0299_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) { struct stv0299_state* state = fe->demodulator_priv; if (state->errmode != STATUS_UCBLOCKS) return -ENOSYS; state->ucblocks += stv0299_readreg(state, 0x1e); state->ucblocks += (stv0299_readreg(state, 0x1d) << 8); *ucblocks = state->ucblocks; return 0; } static int stv0299_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters * p) { struct stv0299_state* state = fe->demodulator_priv; int invval = 0; dprintk ("%s : FE_SET_FRONTEND\n", __func__); if (state->config->set_ts_params) state->config->set_ts_params(fe, 0); // set the inversion if (p->inversion == INVERSION_OFF) invval = 0; else if (p->inversion == INVERSION_ON) invval = 1; else { printk("stv0299 does not support auto-inversion\n"); return -EINVAL; } if (state->config->invert) invval = (~invval) & 1; stv0299_writeregI(state, 0x0c, (stv0299_readreg(state, 0x0c) & 0xfe) | invval); if (fe->ops.tuner_ops.set_params) { fe->ops.tuner_ops.set_params(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } stv0299_set_FEC (state, p->u.qpsk.fec_inner); stv0299_set_symbolrate (fe, p->u.qpsk.symbol_rate); stv0299_writeregI(state, 0x22, 0x00); stv0299_writeregI(state, 0x23, 0x00); state->tuner_frequency = p->frequency; state->fec_inner = p->u.qpsk.fec_inner; state->symbol_rate = p->u.qpsk.symbol_rate; return 0; } static int stv0299_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters * p) { struct stv0299_state* state = fe->demodulator_priv; s32 derot_freq; int invval; derot_freq = (s32)(s16) ((stv0299_readreg (state, 0x22) << 8) | stv0299_readreg (state, 0x23)); derot_freq *= (state->config->mclk >> 16); derot_freq += 500; derot_freq /= 1000; p->frequency += derot_freq; invval = stv0299_readreg (state, 0x0c) & 1; if (state->config->invert) invval = (~invval) & 1; p->inversion = invval ? INVERSION_ON : INVERSION_OFF; p->u.qpsk.fec_inner = stv0299_get_fec (state); p->u.qpsk.symbol_rate = stv0299_get_symbolrate (state); return 0; } static int stv0299_sleep(struct dvb_frontend* fe) { struct stv0299_state* state = fe->demodulator_priv; stv0299_writeregI(state, 0x02, 0xb0 | state->mcr_reg); state->initialised = 0; return 0; } static int stv0299_i2c_gate_ctrl(struct dvb_frontend* fe, int enable) { struct stv0299_state* state = fe->demodulator_priv; if (enable) { stv0299_writeregI(state, 0x05, 0xb5); } else { stv0299_writeregI(state, 0x05, 0x35); } udelay(1); return 0; } static int stv0299_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings) { struct stv0299_state* state = fe->demodulator_priv; fesettings->min_delay_ms = state->config->min_delay_ms; if (fesettings->parameters.u.qpsk.symbol_rate < 10000000) { fesettings->step_size = fesettings->parameters.u.qpsk.symbol_rate / 32000; fesettings->max_drift = 5000; } else { fesettings->step_size = fesettings->parameters.u.qpsk.symbol_rate / 16000; fesettings->max_drift = fesettings->parameters.u.qpsk.symbol_rate / 2000; } return 0; } static void stv0299_release(struct dvb_frontend* fe) { struct stv0299_state* state = fe->demodulator_priv; kfree(state); } static struct dvb_frontend_ops stv0299_ops; struct dvb_frontend* stv0299_attach(const struct stv0299_config* config, struct i2c_adapter* i2c) { struct stv0299_state* state = NULL; int id; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct stv0299_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->config = config; state->i2c = i2c; state->initialised = 0; state->tuner_frequency = 0; state->symbol_rate = 0; state->fec_inner = 0; state->errmode = STATUS_BER; /* check if the demod is there */ stv0299_writeregI(state, 0x02, 0x30); /* standby off */ msleep(200); id = stv0299_readreg(state, 0x00); /* register 0x00 contains 0xa1 for STV0299 and STV0299B */ /* register 0x00 might contain 0x80 when returning from standby */ if (id != 0xa1 && id != 0x80) goto error; /* create dvb_frontend */ memcpy(&state->frontend.ops, &stv0299_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; return &state->frontend; error: kfree(state); return NULL; } static struct dvb_frontend_ops stv0299_ops = { .info = { .name = "ST STV0299 DVB-S", .type = FE_QPSK, .frequency_min = 950000, .frequency_max = 2150000, .frequency_stepsize = 125, /* kHz for QPSK frontends */ .frequency_tolerance = 0, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, .symbol_rate_tolerance = 500, /* ppm */ .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_QPSK | FE_CAN_FEC_AUTO }, .release = stv0299_release, .init = stv0299_init, .sleep = stv0299_sleep, .write = stv0299_write, .i2c_gate_ctrl = stv0299_i2c_gate_ctrl, .set_frontend_legacy = stv0299_set_frontend, .get_frontend = stv0299_get_frontend, .get_tune_settings = stv0299_get_tune_settings, .read_status = stv0299_read_status, .read_ber = stv0299_read_ber, .read_signal_strength = stv0299_read_signal_strength, .read_snr = stv0299_read_snr, .read_ucblocks = stv0299_read_ucblocks, .diseqc_send_master_cmd = stv0299_send_diseqc_msg, .diseqc_send_burst = stv0299_send_diseqc_burst, .set_tone = stv0299_set_tone, .set_voltage = stv0299_set_voltage, .dishnetwork_send_legacy_command = stv0299_send_legacy_dish_cmd, }; module_param(debug_legacy_dish_switch, int, 0444); MODULE_PARM_DESC(debug_legacy_dish_switch, "Enable timing analysis for Dish Network legacy switches"); module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); MODULE_DESCRIPTION("ST STV0299 DVB Demodulator driver"); MODULE_AUTHOR("Ralph Metzler, Holger Waechtler, Peter Schildmann, Felix Domke, " "Andreas Oberritter, Andrew de Quincey, Kenneth Aafly"); MODULE_LICENSE("GPL"); EXPORT_SYMBOL(stv0299_attach);