/* * Linux-DVB Driver for DiBcom's DiB0070 base-band RF Tuner. * * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * * This code is more or less generated from another driver, please * excuse some codingstyle oddities. * */ #include #include #include #include #include "dvb_frontend.h" #include "dib0070.h" #include "dibx000_common.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); #define dprintk(args...) do { \ if (debug) { \ printk(KERN_DEBUG "DiB0070: "); \ printk(args); \ printk("\n"); \ } \ } while (0) #define DIB0070_P1D 0x00 #define DIB0070_P1F 0x01 #define DIB0070_P1G 0x03 #define DIB0070S_P1A 0x02 struct dib0070_state { struct i2c_adapter *i2c; struct dvb_frontend *fe; const struct dib0070_config *cfg; u16 wbd_ff_offset; u8 revision; enum frontend_tune_state tune_state; u32 current_rf; /* for the captrim binary search */ s8 step; u16 adc_diff; s8 captrim; s8 fcaptrim; u16 lo4; const struct dib0070_tuning *current_tune_table_index; const struct dib0070_lna_match *lna_match; u8 wbd_gain_current; u16 wbd_offset_3_3[2]; /* for the I2C transfer */ struct i2c_msg msg[2]; u8 i2c_write_buffer[3]; u8 i2c_read_buffer[2]; struct mutex i2c_buffer_lock; }; static u16 dib0070_read_reg(struct dib0070_state *state, u8 reg) { u16 ret; if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { dprintk("could not acquire lock"); return 0; } state->i2c_write_buffer[0] = reg; memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); state->msg[0].addr = state->cfg->i2c_address; state->msg[0].flags = 0; state->msg[0].buf = state->i2c_write_buffer; state->msg[0].len = 1; state->msg[1].addr = state->cfg->i2c_address; state->msg[1].flags = I2C_M_RD; state->msg[1].buf = state->i2c_read_buffer; state->msg[1].len = 2; if (i2c_transfer(state->i2c, state->msg, 2) != 2) { printk(KERN_WARNING "DiB0070 I2C read failed\n"); ret = 0; } else ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; mutex_unlock(&state->i2c_buffer_lock); return ret; } static int dib0070_write_reg(struct dib0070_state *state, u8 reg, u16 val) { int ret; if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { dprintk("could not acquire lock"); return -EINVAL; } state->i2c_write_buffer[0] = reg; state->i2c_write_buffer[1] = val >> 8; state->i2c_write_buffer[2] = val & 0xff; memset(state->msg, 0, sizeof(struct i2c_msg)); state->msg[0].addr = state->cfg->i2c_address; state->msg[0].flags = 0; state->msg[0].buf = state->i2c_write_buffer; state->msg[0].len = 3; if (i2c_transfer(state->i2c, state->msg, 1) != 1) { printk(KERN_WARNING "DiB0070 I2C write failed\n"); ret = -EREMOTEIO; } else ret = 0; mutex_unlock(&state->i2c_buffer_lock); return ret; } #define HARD_RESET(state) do { \ state->cfg->sleep(state->fe, 0); \ if (state->cfg->reset) { \ state->cfg->reset(state->fe,1); msleep(10); \ state->cfg->reset(state->fe,0); msleep(10); \ } \ } while (0) static int dib0070_set_bandwidth(struct dvb_frontend *fe) { struct dib0070_state *state = fe->tuner_priv; u16 tmp = dib0070_read_reg(state, 0x02) & 0x3fff; if (state->fe->dtv_property_cache.bandwidth_hz/1000 > 7000) tmp |= (0 << 14); else if (state->fe->dtv_property_cache.bandwidth_hz/1000 > 6000) tmp |= (1 << 14); else if (state->fe->dtv_property_cache.bandwidth_hz/1000 > 5000) tmp |= (2 << 14); else tmp |= (3 << 14); dib0070_write_reg(state, 0x02, tmp); /* sharpen the BB filter in ISDB-T to have higher immunity to adjacent channels */ if (state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) { u16 value = dib0070_read_reg(state, 0x17); dib0070_write_reg(state, 0x17, value & 0xfffc); tmp = dib0070_read_reg(state, 0x01) & 0x01ff; dib0070_write_reg(state, 0x01, tmp | (60 << 9)); dib0070_write_reg(state, 0x17, value); } return 0; } static int dib0070_captrim(struct dib0070_state *state, enum frontend_tune_state *tune_state) { int8_t step_sign; u16 adc; int ret = 0; if (*tune_state == CT_TUNER_STEP_0) { dib0070_write_reg(state, 0x0f, 0xed10); dib0070_write_reg(state, 0x17, 0x0034); dib0070_write_reg(state, 0x18, 0x0032); state->step = state->captrim = state->fcaptrim = 64; state->adc_diff = 3000; ret = 20; *tune_state = CT_TUNER_STEP_1; } else if (*tune_state == CT_TUNER_STEP_1) { state->step /= 2; dib0070_write_reg(state, 0x14, state->lo4 | state->captrim); ret = 15; *tune_state = CT_TUNER_STEP_2; } else if (*tune_state == CT_TUNER_STEP_2) { adc = dib0070_read_reg(state, 0x19); dprintk("CAPTRIM=%hd; ADC = %hd (ADC) & %dmV", state->captrim, adc, (u32) adc*(u32)1800/(u32)1024); if (adc >= 400) { adc -= 400; step_sign = -1; } else { adc = 400 - adc; step_sign = 1; } if (adc < state->adc_diff) { dprintk("CAPTRIM=%hd is closer to target (%hd/%hd)", state->captrim, adc, state->adc_diff); state->adc_diff = adc; state->fcaptrim = state->captrim; } state->captrim += (step_sign * state->step); if (state->step >= 1) *tune_state = CT_TUNER_STEP_1; else *tune_state = CT_TUNER_STEP_3; } else if (*tune_state == CT_TUNER_STEP_3) { dib0070_write_reg(state, 0x14, state->lo4 | state->fcaptrim); dib0070_write_reg(state, 0x18, 0x07ff); *tune_state = CT_TUNER_STEP_4; } return ret; } static int dib0070_set_ctrl_lo5(struct dvb_frontend *fe, u8 vco_bias_trim, u8 hf_div_trim, u8 cp_current, u8 third_order_filt) { struct dib0070_state *state = fe->tuner_priv; u16 lo5 = (third_order_filt << 14) | (0 << 13) | (1 << 12) | (3 << 9) | (cp_current << 6) | (hf_div_trim << 3) | (vco_bias_trim << 0); dprintk("CTRL_LO5: 0x%x", lo5); return dib0070_write_reg(state, 0x15, lo5); } void dib0070_ctrl_agc_filter(struct dvb_frontend *fe, u8 open) { struct dib0070_state *state = fe->tuner_priv; if (open) { dib0070_write_reg(state, 0x1b, 0xff00); dib0070_write_reg(state, 0x1a, 0x0000); } else { dib0070_write_reg(state, 0x1b, 0x4112); if (state->cfg->vga_filter != 0) { dib0070_write_reg(state, 0x1a, state->cfg->vga_filter); dprintk("vga filter register is set to %x", state->cfg->vga_filter); } else dib0070_write_reg(state, 0x1a, 0x0009); } } EXPORT_SYMBOL(dib0070_ctrl_agc_filter); struct dib0070_tuning { u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */ u8 switch_trim; u8 vco_band; u8 hfdiv; u8 vco_multi; u8 presc; u8 wbdmux; u16 tuner_enable; }; struct dib0070_lna_match { u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */ u8 lna_band; }; static const struct dib0070_tuning dib0070s_tuning_table[] = { { 570000, 2, 1, 3, 6, 6, 2, 0x4000 | 0x0800 }, /* UHF */ { 700000, 2, 0, 2, 4, 2, 2, 0x4000 | 0x0800 }, { 863999, 2, 1, 2, 4, 2, 2, 0x4000 | 0x0800 }, { 1500000, 0, 1, 1, 2, 2, 4, 0x2000 | 0x0400 }, /* LBAND */ { 1600000, 0, 1, 1, 2, 2, 4, 0x2000 | 0x0400 }, { 2000000, 0, 1, 1, 2, 2, 4, 0x2000 | 0x0400 }, { 0xffffffff, 0, 0, 8, 1, 2, 1, 0x8000 | 0x1000 }, /* SBAND */ }; static const struct dib0070_tuning dib0070_tuning_table[] = { { 115000, 1, 0, 7, 24, 2, 1, 0x8000 | 0x1000 }, /* FM below 92MHz cannot be tuned */ { 179500, 1, 0, 3, 16, 2, 1, 0x8000 | 0x1000 }, /* VHF */ { 189999, 1, 1, 3, 16, 2, 1, 0x8000 | 0x1000 }, { 250000, 1, 0, 6, 12, 2, 1, 0x8000 | 0x1000 }, { 569999, 2, 1, 5, 6, 2, 2, 0x4000 | 0x0800 }, /* UHF */ { 699999, 2, 0, 1, 4, 2, 2, 0x4000 | 0x0800 }, { 863999, 2, 1, 1, 4, 2, 2, 0x4000 | 0x0800 }, { 0xffffffff, 0, 1, 0, 2, 2, 4, 0x2000 | 0x0400 }, /* LBAND or everything higher than UHF */ }; static const struct dib0070_lna_match dib0070_lna_flip_chip[] = { { 180000, 0 }, /* VHF */ { 188000, 1 }, { 196400, 2 }, { 250000, 3 }, { 550000, 0 }, /* UHF */ { 590000, 1 }, { 666000, 3 }, { 864000, 5 }, { 1500000, 0 }, /* LBAND or everything higher than UHF */ { 1600000, 1 }, { 2000000, 3 }, { 0xffffffff, 7 }, }; static const struct dib0070_lna_match dib0070_lna[] = { { 180000, 0 }, /* VHF */ { 188000, 1 }, { 196400, 2 }, { 250000, 3 }, { 550000, 2 }, /* UHF */ { 650000, 3 }, { 750000, 5 }, { 850000, 6 }, { 864000, 7 }, { 1500000, 0 }, /* LBAND or everything higher than UHF */ { 1600000, 1 }, { 2000000, 3 }, { 0xffffffff, 7 }, }; #define LPF 100 static int dib0070_tune_digital(struct dvb_frontend *fe) { struct dib0070_state *state = fe->tuner_priv; const struct dib0070_tuning *tune; const struct dib0070_lna_match *lna_match; enum frontend_tune_state *tune_state = &state->tune_state; int ret = 10; /* 1ms is the default delay most of the time */ u8 band = (u8)BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency/1000); u32 freq = fe->dtv_property_cache.frequency/1000 + (band == BAND_VHF ? state->cfg->freq_offset_khz_vhf : state->cfg->freq_offset_khz_uhf); #ifdef CONFIG_SYS_ISDBT if (state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1) if (((state->fe->dtv_property_cache.isdbt_sb_segment_count % 2) && (state->fe->dtv_property_cache.isdbt_sb_segment_idx == ((state->fe->dtv_property_cache.isdbt_sb_segment_count / 2) + 1))) || (((state->fe->dtv_property_cache.isdbt_sb_segment_count % 2) == 0) && (state->fe->dtv_property_cache.isdbt_sb_segment_idx == (state->fe->dtv_property_cache.isdbt_sb_segment_count / 2))) || (((state->fe->dtv_property_cache.isdbt_sb_segment_count % 2) == 0) && (state->fe->dtv_property_cache.isdbt_sb_segment_idx == ((state->fe->dtv_property_cache.isdbt_sb_segment_count / 2) + 1)))) freq += 850; #endif if (state->current_rf != freq) { switch (state->revision) { case DIB0070S_P1A: tune = dib0070s_tuning_table; lna_match = dib0070_lna; break; default: tune = dib0070_tuning_table; if (state->cfg->flip_chip) lna_match = dib0070_lna_flip_chip; else lna_match = dib0070_lna; break; } while (freq > tune->max_freq) /* find the right one */ tune++; while (freq > lna_match->max_freq) /* find the right one */ lna_match++; state->current_tune_table_index = tune; state->lna_match = lna_match; } if (*tune_state == CT_TUNER_START) { dprintk("Tuning for Band: %hd (%d kHz)", band, freq); if (state->current_rf != freq) { u8 REFDIV; u32 FBDiv, Rest, FREF, VCOF_kHz; u8 Den; state->current_rf = freq; state->lo4 = (state->current_tune_table_index->vco_band << 11) | (state->current_tune_table_index->hfdiv << 7); dib0070_write_reg(state, 0x17, 0x30); VCOF_kHz = state->current_tune_table_index->vco_multi * freq * 2; switch (band) { case BAND_VHF: REFDIV = (u8) ((state->cfg->clock_khz + 9999) / 10000); break; case BAND_FM: REFDIV = (u8) ((state->cfg->clock_khz) / 1000); break; default: REFDIV = (u8) (state->cfg->clock_khz / 10000); break; } FREF = state->cfg->clock_khz / REFDIV; switch (state->revision) { case DIB0070S_P1A: FBDiv = (VCOF_kHz / state->current_tune_table_index->presc / FREF); Rest = (VCOF_kHz / state->current_tune_table_index->presc) - FBDiv * FREF; break; case DIB0070_P1G: case DIB0070_P1F: default: FBDiv = (freq / (FREF / 2)); Rest = 2 * freq - FBDiv * FREF; break; } if (Rest < LPF) Rest = 0; else if (Rest < 2 * LPF) Rest = 2 * LPF; else if (Rest > (FREF - LPF)) { Rest = 0; FBDiv += 1; } else if (Rest > (FREF - 2 * LPF)) Rest = FREF - 2 * LPF; Rest = (Rest * 6528) / (FREF / 10); Den = 1; if (Rest > 0) { state->lo4 |= (1 << 14) | (1 << 12); Den = 255; } dib0070_write_reg(state, 0x11, (u16)FBDiv); dib0070_write_reg(state, 0x12, (Den << 8) | REFDIV); dib0070_write_reg(state, 0x13, (u16) Rest); if (state->revision == DIB0070S_P1A) { if (band == BAND_SBAND) { dib0070_set_ctrl_lo5(fe, 2, 4, 3, 0); dib0070_write_reg(state, 0x1d, 0xFFFF); } else dib0070_set_ctrl_lo5(fe, 5, 4, 3, 1); } dib0070_write_reg(state, 0x20, 0x0040 | 0x0020 | 0x0010 | 0x0008 | 0x0002 | 0x0001 | state->current_tune_table_index->tuner_enable); dprintk("REFDIV: %hd, FREF: %d", REFDIV, FREF); dprintk("FBDIV: %d, Rest: %d", FBDiv, Rest); dprintk("Num: %hd, Den: %hd, SD: %hd", (u16) Rest, Den, (state->lo4 >> 12) & 0x1); dprintk("HFDIV code: %hd", state->current_tune_table_index->hfdiv); dprintk("VCO = %hd", state->current_tune_table_index->vco_band); dprintk("VCOF: ((%hd*%d) << 1))", state->current_tune_table_index->vco_multi, freq); *tune_state = CT_TUNER_STEP_0; } else { /* we are already tuned to this frequency - the configuration is correct */ ret = 50; /* wakeup time */ *tune_state = CT_TUNER_STEP_5; } } else if ((*tune_state > CT_TUNER_START) && (*tune_state < CT_TUNER_STEP_4)) { ret = dib0070_captrim(state, tune_state); } else if (*tune_state == CT_TUNER_STEP_4) { const struct dib0070_wbd_gain_cfg *tmp = state->cfg->wbd_gain; if (tmp != NULL) { while (freq/1000 > tmp->freq) /* find the right one */ tmp++; dib0070_write_reg(state, 0x0f, (0 << 15) | (1 << 14) | (3 << 12) | (tmp->wbd_gain_val << 9) | (0 << 8) | (1 << 7) | (state->current_tune_table_index->wbdmux << 0)); state->wbd_gain_current = tmp->wbd_gain_val; } else { dib0070_write_reg(state, 0x0f, (0 << 15) | (1 << 14) | (3 << 12) | (6 << 9) | (0 << 8) | (1 << 7) | (state->current_tune_table_index-> wbdmux << 0)); state->wbd_gain_current = 6; } dib0070_write_reg(state, 0x06, 0x3fff); dib0070_write_reg(state, 0x07, (state->current_tune_table_index->switch_trim << 11) | (7 << 8) | (state->lna_match->lna_band << 3) | (3 << 0)); dib0070_write_reg(state, 0x08, (state->lna_match->lna_band << 10) | (3 << 7) | (127)); dib0070_write_reg(state, 0x0d, 0x0d80); dib0070_write_reg(state, 0x18, 0x07ff); dib0070_write_reg(state, 0x17, 0x0033); *tune_state = CT_TUNER_STEP_5; } else if (*tune_state == CT_TUNER_STEP_5) { dib0070_set_bandwidth(fe); *tune_state = CT_TUNER_STOP; } else { ret = FE_CALLBACK_TIME_NEVER; /* tuner finished, time to call again infinite */ } return ret; } static int dib0070_tune(struct dvb_frontend *fe, struct dvb_frontend_parameters *p) { struct dib0070_state *state = fe->tuner_priv; uint32_t ret; state->tune_state = CT_TUNER_START; do { ret = dib0070_tune_digital(fe); if (ret != FE_CALLBACK_TIME_NEVER) msleep(ret/10); else break; } while (state->tune_state != CT_TUNER_STOP); return 0; } static int dib0070_wakeup(struct dvb_frontend *fe) { struct dib0070_state *state = fe->tuner_priv; if (state->cfg->sleep) state->cfg->sleep(fe, 0); return 0; } static int dib0070_sleep(struct dvb_frontend *fe) { struct dib0070_state *state = fe->tuner_priv; if (state->cfg->sleep) state->cfg->sleep(fe, 1); return 0; } u8 dib0070_get_rf_output(struct dvb_frontend *fe) { struct dib0070_state *state = fe->tuner_priv; return (dib0070_read_reg(state, 0x07) >> 11) & 0x3; } EXPORT_SYMBOL(dib0070_get_rf_output); int dib0070_set_rf_output(struct dvb_frontend *fe, u8 no) { struct dib0070_state *state = fe->tuner_priv; u16 rxrf2 = dib0070_read_reg(state, 0x07) & 0xfe7ff; if (no > 3) no = 3; if (no < 1) no = 1; return dib0070_write_reg(state, 0x07, rxrf2 | (no << 11)); } EXPORT_SYMBOL(dib0070_set_rf_output); static const u16 dib0070_p1f_defaults[] = { 7, 0x02, 0x0008, 0x0000, 0x0000, 0x0000, 0x0000, 0x0002, 0x0100, 3, 0x0d, 0x0d80, 0x0001, 0x0000, 4, 0x11, 0x0000, 0x0103, 0x0000, 0x0000, 3, 0x16, 0x0004 | 0x0040, 0x0030, 0x07ff, 6, 0x1b, 0x4112, 0xff00, 0xc07f, 0x0000, 0x0180, 0x4000 | 0x0800 | 0x0040 | 0x0020 | 0x0010 | 0x0008 | 0x0002 | 0x0001, 0, }; static u16 dib0070_read_wbd_offset(struct dib0070_state *state, u8 gain) { u16 tuner_en = dib0070_read_reg(state, 0x20); u16 offset; dib0070_write_reg(state, 0x18, 0x07ff); dib0070_write_reg(state, 0x20, 0x0800 | 0x4000 | 0x0040 | 0x0020 | 0x0010 | 0x0008 | 0x0002 | 0x0001); dib0070_write_reg(state, 0x0f, (1 << 14) | (2 << 12) | (gain << 9) | (1 << 8) | (1 << 7) | (0 << 0)); msleep(9); offset = dib0070_read_reg(state, 0x19); dib0070_write_reg(state, 0x20, tuner_en); return offset; } static void dib0070_wbd_offset_calibration(struct dib0070_state *state) { u8 gain; for (gain = 6; gain < 8; gain++) { state->wbd_offset_3_3[gain - 6] = ((dib0070_read_wbd_offset(state, gain) * 8 * 18 / 33 + 1) / 2); dprintk("Gain: %d, WBDOffset (3.3V) = %hd", gain, state->wbd_offset_3_3[gain-6]); } } u16 dib0070_wbd_offset(struct dvb_frontend *fe) { struct dib0070_state *state = fe->tuner_priv; const struct dib0070_wbd_gain_cfg *tmp = state->cfg->wbd_gain; u32 freq = fe->dtv_property_cache.frequency/1000; if (tmp != NULL) { while (freq/1000 > tmp->freq) /* find the right one */ tmp++; state->wbd_gain_current = tmp->wbd_gain_val; } else state->wbd_gain_current = 6; return state->wbd_offset_3_3[state->wbd_gain_current - 6]; } EXPORT_SYMBOL(dib0070_wbd_offset); #define pgm_read_word(w) (*w) static int dib0070_reset(struct dvb_frontend *fe) { struct dib0070_state *state = fe->tuner_priv; u16 l, r, *n; HARD_RESET(state); #ifndef FORCE_SBAND_TUNER if ((dib0070_read_reg(state, 0x22) >> 9) & 0x1) state->revision = (dib0070_read_reg(state, 0x1f) >> 8) & 0xff; else #else #warning forcing SBAND #endif state->revision = DIB0070S_P1A; /* P1F or not */ dprintk("Revision: %x", state->revision); if (state->revision == DIB0070_P1D) { dprintk("Error: this driver is not to be used meant for P1D or earlier"); return -EINVAL; } n = (u16 *) dib0070_p1f_defaults; l = pgm_read_word(n++); while (l) { r = pgm_read_word(n++); do { dib0070_write_reg(state, (u8)r, pgm_read_word(n++)); r++; } while (--l); l = pgm_read_word(n++); } if (state->cfg->force_crystal_mode != 0) r = state->cfg->force_crystal_mode; else if (state->cfg->clock_khz >= 24000) r = 1; else r = 2; r |= state->cfg->osc_buffer_state << 3; dib0070_write_reg(state, 0x10, r); dib0070_write_reg(state, 0x1f, (1 << 8) | ((state->cfg->clock_pad_drive & 0xf) << 5)); if (state->cfg->invert_iq) { r = dib0070_read_reg(state, 0x02) & 0xffdf; dib0070_write_reg(state, 0x02, r | (1 << 5)); } if (state->revision == DIB0070S_P1A) dib0070_set_ctrl_lo5(fe, 2, 4, 3, 0); else dib0070_set_ctrl_lo5(fe, 5, 4, state->cfg->charge_pump, state->cfg->enable_third_order_filter); dib0070_write_reg(state, 0x01, (54 << 9) | 0xc8); dib0070_wbd_offset_calibration(state); return 0; } static int dib0070_get_frequency(struct dvb_frontend *fe, u32 *frequency) { struct dib0070_state *state = fe->tuner_priv; *frequency = 1000 * state->current_rf; return 0; } static int dib0070_release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; return 0; } static const struct dvb_tuner_ops dib0070_ops = { .info = { .name = "DiBcom DiB0070", .frequency_min = 45000000, .frequency_max = 860000000, .frequency_step = 1000, }, .release = dib0070_release, .init = dib0070_wakeup, .sleep = dib0070_sleep, .set_params = dib0070_tune, .get_frequency = dib0070_get_frequency, // .get_bandwidth = dib0070_get_bandwidth }; struct dvb_frontend *dib0070_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct dib0070_config *cfg) { struct dib0070_state *state = kzalloc(sizeof(struct dib0070_state), GFP_KERNEL); if (state == NULL) return NULL; state->cfg = cfg; state->i2c = i2c; state->fe = fe; mutex_init(&state->i2c_buffer_lock); fe->tuner_priv = state; if (dib0070_reset(fe) != 0) goto free_mem; printk(KERN_INFO "DiB0070: successfully identified\n"); memcpy(&fe->ops.tuner_ops, &dib0070_ops, sizeof(struct dvb_tuner_ops)); fe->tuner_priv = state; return fe; free_mem: kfree(state); fe->tuner_priv = NULL; return NULL; } EXPORT_SYMBOL(dib0070_attach); MODULE_AUTHOR("Patrick Boettcher "); MODULE_DESCRIPTION("Driver for the DiBcom 0070 base-band RF Tuner"); MODULE_LICENSE("GPL");