/* linux/drivers/iommu/exynos_iommu.c * * Copyright (c) 2011 Samsung Electronics Co., Ltd. * http://www.samsung.com * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifdef CONFIG_EXYNOS_IOMMU_DEBUG #define DEBUG #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* We does not consider super section mapping (16MB) */ #define SECT_ORDER 20 #define LPAGE_ORDER 16 #define SPAGE_ORDER 12 #define SECT_SIZE (1 << SECT_ORDER) #define LPAGE_SIZE (1 << LPAGE_ORDER) #define SPAGE_SIZE (1 << SPAGE_ORDER) #define SECT_MASK (~(SECT_SIZE - 1)) #define LPAGE_MASK (~(LPAGE_SIZE - 1)) #define SPAGE_MASK (~(SPAGE_SIZE - 1)) #define lv1ent_fault(sent) (((*(sent) & 3) == 0) || ((*(sent) & 3) == 3)) #define lv1ent_page(sent) ((*(sent) & 3) == 1) #define lv1ent_section(sent) ((*(sent) & 3) == 2) #define lv2ent_fault(pent) ((*(pent) & 3) == 0) #define lv2ent_small(pent) ((*(pent) & 2) == 2) #define lv2ent_large(pent) ((*(pent) & 3) == 1) #define section_phys(sent) (*(sent) & SECT_MASK) #define section_offs(iova) ((iova) & 0xFFFFF) #define lpage_phys(pent) (*(pent) & LPAGE_MASK) #define lpage_offs(iova) ((iova) & 0xFFFF) #define spage_phys(pent) (*(pent) & SPAGE_MASK) #define spage_offs(iova) ((iova) & 0xFFF) #define lv1ent_offset(iova) ((iova) >> SECT_ORDER) #define lv2ent_offset(iova) (((iova) & 0xFF000) >> SPAGE_ORDER) #define NUM_LV1ENTRIES 4096 #define NUM_LV2ENTRIES 256 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(long)) #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE) #define lv2table_base(sent) (*(sent) & 0xFFFFFC00) #define mk_lv1ent_sect(pa) ((pa) | 2) #define mk_lv1ent_page(pa) ((pa) | 1) #define mk_lv2ent_lpage(pa) ((pa) | 1) #define mk_lv2ent_spage(pa) ((pa) | 2) #define CTRL_ENABLE 0x5 #define CTRL_BLOCK 0x7 #define CTRL_DISABLE 0x0 #define REG_MMU_CTRL 0x000 #define REG_MMU_CFG 0x004 #define REG_MMU_STATUS 0x008 #define REG_MMU_FLUSH 0x00C #define REG_MMU_FLUSH_ENTRY 0x010 #define REG_PT_BASE_ADDR 0x014 #define REG_INT_STATUS 0x018 #define REG_INT_CLEAR 0x01C #define REG_PAGE_FAULT_ADDR 0x024 #define REG_AW_FAULT_ADDR 0x028 #define REG_AR_FAULT_ADDR 0x02C #define REG_DEFAULT_SLAVE_ADDR 0x030 #define REG_MMU_VERSION 0x034 #define REG_PB0_SADDR 0x04C #define REG_PB0_EADDR 0x050 #define REG_PB1_SADDR 0x054 #define REG_PB1_EADDR 0x058 static unsigned long *section_entry(unsigned long *pgtable, unsigned long iova) { return pgtable + lv1ent_offset(iova); } static unsigned long *page_entry(unsigned long *sent, unsigned long iova) { return (unsigned long *)phys_to_virt( lv2table_base(sent)) + lv2ent_offset(iova); } enum exynos_sysmmu_inttype { SYSMMU_PAGEFAULT, SYSMMU_AR_MULTIHIT, SYSMMU_AW_MULTIHIT, SYSMMU_BUSERROR, SYSMMU_AR_SECURITY, SYSMMU_AR_ACCESS, SYSMMU_AW_SECURITY, SYSMMU_AW_PROTECTION, /* 7 */ SYSMMU_FAULT_UNKNOWN, SYSMMU_FAULTS_NUM }; /* * @itype: type of fault. * @pgtable_base: the physical address of page table base. This is 0 if @itype * is SYSMMU_BUSERROR. * @fault_addr: the device (virtual) address that the System MMU tried to * translated. This is 0 if @itype is SYSMMU_BUSERROR. */ typedef int (*sysmmu_fault_handler_t)(enum exynos_sysmmu_inttype itype, phys_addr_t pgtable_base, unsigned long fault_addr); static unsigned short fault_reg_offset[SYSMMU_FAULTS_NUM] = { REG_PAGE_FAULT_ADDR, REG_AR_FAULT_ADDR, REG_AW_FAULT_ADDR, REG_DEFAULT_SLAVE_ADDR, REG_AR_FAULT_ADDR, REG_AR_FAULT_ADDR, REG_AW_FAULT_ADDR, REG_AW_FAULT_ADDR }; static char *sysmmu_fault_name[SYSMMU_FAULTS_NUM] = { "PAGE FAULT", "AR MULTI-HIT FAULT", "AW MULTI-HIT FAULT", "BUS ERROR", "AR SECURITY PROTECTION FAULT", "AR ACCESS PROTECTION FAULT", "AW SECURITY PROTECTION FAULT", "AW ACCESS PROTECTION FAULT", "UNKNOWN FAULT" }; struct exynos_iommu_domain { struct list_head clients; /* list of sysmmu_drvdata.node */ unsigned long *pgtable; /* lv1 page table, 16KB */ short *lv2entcnt; /* free lv2 entry counter for each section */ spinlock_t lock; /* lock for this structure */ spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */ }; struct sysmmu_drvdata { struct list_head node; /* entry of exynos_iommu_domain.clients */ struct device *sysmmu; /* System MMU's device descriptor */ struct device *dev; /* Owner of system MMU */ char *dbgname; void __iomem *sfrbase; struct clk *clk; int activations; rwlock_t lock; struct iommu_domain *domain; sysmmu_fault_handler_t fault_handler; phys_addr_t pgtable; }; static bool set_sysmmu_active(struct sysmmu_drvdata *data) { /* return true if the System MMU was not active previously and it needs to be initialized */ return ++data->activations == 1; } static bool set_sysmmu_inactive(struct sysmmu_drvdata *data) { /* return true if the System MMU is needed to be disabled */ BUG_ON(data->activations < 1); return --data->activations == 0; } static bool is_sysmmu_active(struct sysmmu_drvdata *data) { return data->activations > 0; } static void sysmmu_unblock(void __iomem *sfrbase) { __raw_writel(CTRL_ENABLE, sfrbase + REG_MMU_CTRL); } static bool sysmmu_block(void __iomem *sfrbase) { int i = 120; __raw_writel(CTRL_BLOCK, sfrbase + REG_MMU_CTRL); while ((i > 0) && !(__raw_readl(sfrbase + REG_MMU_STATUS) & 1)) --i; if (!(__raw_readl(sfrbase + REG_MMU_STATUS) & 1)) { sysmmu_unblock(sfrbase); return false; } return true; } static void __sysmmu_tlb_invalidate(void __iomem *sfrbase) { __raw_writel(0x1, sfrbase + REG_MMU_FLUSH); } static void __sysmmu_tlb_invalidate_entry(void __iomem *sfrbase, unsigned long iova) { __raw_writel((iova & SPAGE_MASK) | 1, sfrbase + REG_MMU_FLUSH_ENTRY); } static void __sysmmu_set_ptbase(void __iomem *sfrbase, unsigned long pgd) { __raw_writel(0x1, sfrbase + REG_MMU_CFG); /* 16KB LV1, LRU */ __raw_writel(pgd, sfrbase + REG_PT_BASE_ADDR); __sysmmu_tlb_invalidate(sfrbase); } static void __sysmmu_set_prefbuf(void __iomem *sfrbase, unsigned long base, unsigned long size, int idx) { __raw_writel(base, sfrbase + REG_PB0_SADDR + idx * 8); __raw_writel(size - 1 + base, sfrbase + REG_PB0_EADDR + idx * 8); } static void __set_fault_handler(struct sysmmu_drvdata *data, sysmmu_fault_handler_t handler) { unsigned long flags; write_lock_irqsave(&data->lock, flags); data->fault_handler = handler; write_unlock_irqrestore(&data->lock, flags); } void exynos_sysmmu_set_fault_handler(struct device *dev, sysmmu_fault_handler_t handler) { struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu); __set_fault_handler(data, handler); } static int default_fault_handler(enum exynos_sysmmu_inttype itype, phys_addr_t pgtable_base, unsigned long fault_addr) { unsigned long *ent; if ((itype >= SYSMMU_FAULTS_NUM) || (itype < SYSMMU_PAGEFAULT)) itype = SYSMMU_FAULT_UNKNOWN; pr_err("%s occurred at 0x%lx(Page table base: %pa)\n", sysmmu_fault_name[itype], fault_addr, &pgtable_base); ent = section_entry(phys_to_virt(pgtable_base), fault_addr); pr_err("\tLv1 entry: 0x%lx\n", *ent); if (lv1ent_page(ent)) { ent = page_entry(ent, fault_addr); pr_err("\t Lv2 entry: 0x%lx\n", *ent); } pr_err("Generating Kernel OOPS... because it is unrecoverable.\n"); BUG(); return 0; } static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id) { /* SYSMMU is in blocked when interrupt occurred. */ struct sysmmu_drvdata *data = dev_id; enum exynos_sysmmu_inttype itype; unsigned long addr = -1; int ret = -ENOSYS; read_lock(&data->lock); WARN_ON(!is_sysmmu_active(data)); itype = (enum exynos_sysmmu_inttype) __ffs(__raw_readl(data->sfrbase + REG_INT_STATUS)); if (WARN_ON(!((itype >= 0) && (itype < SYSMMU_FAULT_UNKNOWN)))) itype = SYSMMU_FAULT_UNKNOWN; else addr = __raw_readl(data->sfrbase + fault_reg_offset[itype]); if (data->domain) ret = report_iommu_fault(data->domain, data->dev, addr, itype); if ((ret == -ENOSYS) && data->fault_handler) { unsigned long base = data->pgtable; if (itype != SYSMMU_FAULT_UNKNOWN) base = __raw_readl(data->sfrbase + REG_PT_BASE_ADDR); ret = data->fault_handler(itype, base, addr); } if (!ret && (itype != SYSMMU_FAULT_UNKNOWN)) __raw_writel(1 << itype, data->sfrbase + REG_INT_CLEAR); else dev_dbg(data->sysmmu, "(%s) %s is not handled.\n", data->dbgname, sysmmu_fault_name[itype]); if (itype != SYSMMU_FAULT_UNKNOWN) sysmmu_unblock(data->sfrbase); read_unlock(&data->lock); return IRQ_HANDLED; } static bool __exynos_sysmmu_disable(struct sysmmu_drvdata *data) { unsigned long flags; bool disabled = false; write_lock_irqsave(&data->lock, flags); if (!set_sysmmu_inactive(data)) goto finish; __raw_writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL); if (!IS_ERR(data->clk)) clk_disable(data->clk); disabled = true; data->pgtable = 0; data->domain = NULL; finish: write_unlock_irqrestore(&data->lock, flags); if (disabled) dev_dbg(data->sysmmu, "(%s) Disabled\n", data->dbgname); else dev_dbg(data->sysmmu, "(%s) %d times left to be disabled\n", data->dbgname, data->activations); return disabled; } /* __exynos_sysmmu_enable: Enables System MMU * * returns -error if an error occurred and System MMU is not enabled, * 0 if the System MMU has been just enabled and 1 if System MMU was already * enabled before. */ static int __exynos_sysmmu_enable(struct sysmmu_drvdata *data, unsigned long pgtable, struct iommu_domain *domain) { int ret = 0; unsigned long flags; write_lock_irqsave(&data->lock, flags); if (!set_sysmmu_active(data)) { if (WARN_ON(pgtable != data->pgtable)) { ret = -EBUSY; set_sysmmu_inactive(data); } else { ret = 1; } dev_dbg(data->sysmmu, "(%s) Already enabled\n", data->dbgname); goto finish; } if (!IS_ERR(data->clk)) clk_enable(data->clk); data->pgtable = pgtable; __sysmmu_set_ptbase(data->sfrbase, pgtable); if ((readl(data->sfrbase + REG_MMU_VERSION) >> 28) == 3) { /* System MMU version is 3.x */ __raw_writel((1 << 12) | (2 << 28), data->sfrbase + REG_MMU_CFG); __sysmmu_set_prefbuf(data->sfrbase, 0, -1, 0); __sysmmu_set_prefbuf(data->sfrbase, 0, -1, 1); } __raw_writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL); data->domain = domain; dev_dbg(data->sysmmu, "(%s) Enabled\n", data->dbgname); finish: write_unlock_irqrestore(&data->lock, flags); return ret; } int exynos_sysmmu_enable(struct device *dev, unsigned long pgtable) { struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu); int ret; BUG_ON(!memblock_is_memory(pgtable)); ret = pm_runtime_get_sync(data->sysmmu); if (ret < 0) { dev_dbg(data->sysmmu, "(%s) Failed to enable\n", data->dbgname); return ret; } ret = __exynos_sysmmu_enable(data, pgtable, NULL); if (WARN_ON(ret < 0)) { pm_runtime_put(data->sysmmu); dev_err(data->sysmmu, "(%s) Already enabled with page table %#x\n", data->dbgname, data->pgtable); } else { data->dev = dev; } return ret; } static bool exynos_sysmmu_disable(struct device *dev) { struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu); bool disabled; disabled = __exynos_sysmmu_disable(data); pm_runtime_put(data->sysmmu); return disabled; } static void sysmmu_tlb_invalidate_entry(struct device *dev, unsigned long iova) { unsigned long flags; struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu); read_lock_irqsave(&data->lock, flags); if (is_sysmmu_active(data)) { if (sysmmu_block(data->sfrbase)) { __sysmmu_tlb_invalidate_entry( data->sfrbase, iova); sysmmu_unblock(data->sfrbase); } } else { dev_dbg(data->sysmmu, "(%s) Disabled. Skipping invalidating TLB.\n", data->dbgname); } read_unlock_irqrestore(&data->lock, flags); } void exynos_sysmmu_tlb_invalidate(struct device *dev) { unsigned long flags; struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu); read_lock_irqsave(&data->lock, flags); if (is_sysmmu_active(data)) { if (sysmmu_block(data->sfrbase)) { __sysmmu_tlb_invalidate(data->sfrbase); sysmmu_unblock(data->sfrbase); } } else { dev_dbg(data->sysmmu, "(%s) Disabled. Skipping invalidating TLB.\n", data->dbgname); } read_unlock_irqrestore(&data->lock, flags); } static int exynos_sysmmu_probe(struct platform_device *pdev) { int ret; struct device *dev = &pdev->dev; struct sysmmu_drvdata *data; struct resource *res; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) { dev_dbg(dev, "Not enough memory\n"); ret = -ENOMEM; goto err_alloc; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_dbg(dev, "Unable to find IOMEM region\n"); ret = -ENOENT; goto err_init; } data->sfrbase = ioremap(res->start, resource_size(res)); if (!data->sfrbase) { dev_dbg(dev, "Unable to map IOMEM @ PA:%#x\n", res->start); ret = -ENOENT; goto err_res; } ret = platform_get_irq(pdev, 0); if (ret <= 0) { dev_dbg(dev, "Unable to find IRQ resource\n"); goto err_irq; } ret = request_irq(ret, exynos_sysmmu_irq, 0, dev_name(dev), data); if (ret) { dev_dbg(dev, "Unabled to register interrupt handler\n"); goto err_irq; } if (dev_get_platdata(dev)) { data->clk = clk_get(dev, "sysmmu"); if (IS_ERR(data->clk)) dev_dbg(dev, "No clock descriptor registered\n"); } data->sysmmu = dev; rwlock_init(&data->lock); INIT_LIST_HEAD(&data->node); __set_fault_handler(data, &default_fault_handler); platform_set_drvdata(pdev, data); if (dev->parent) pm_runtime_enable(dev); dev_dbg(dev, "(%s) Initialized\n", data->dbgname); return 0; err_irq: free_irq(platform_get_irq(pdev, 0), data); err_res: iounmap(data->sfrbase); err_init: kfree(data); err_alloc: dev_err(dev, "Failed to initialize\n"); return ret; } static struct platform_driver exynos_sysmmu_driver = { .probe = exynos_sysmmu_probe, .driver = { .owner = THIS_MODULE, .name = "exynos-sysmmu", } }; static inline void pgtable_flush(void *vastart, void *vaend) { dmac_flush_range(vastart, vaend); outer_flush_range(virt_to_phys(vastart), virt_to_phys(vaend)); } static int exynos_iommu_domain_init(struct iommu_domain *domain) { struct exynos_iommu_domain *priv; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->pgtable = (unsigned long *)__get_free_pages( GFP_KERNEL | __GFP_ZERO, 2); if (!priv->pgtable) goto err_pgtable; priv->lv2entcnt = (short *)__get_free_pages( GFP_KERNEL | __GFP_ZERO, 1); if (!priv->lv2entcnt) goto err_counter; pgtable_flush(priv->pgtable, priv->pgtable + NUM_LV1ENTRIES); spin_lock_init(&priv->lock); spin_lock_init(&priv->pgtablelock); INIT_LIST_HEAD(&priv->clients); domain->geometry.aperture_start = 0; domain->geometry.aperture_end = ~0UL; domain->geometry.force_aperture = true; domain->priv = priv; return 0; err_counter: free_pages((unsigned long)priv->pgtable, 2); err_pgtable: kfree(priv); return -ENOMEM; } static void exynos_iommu_domain_destroy(struct iommu_domain *domain) { struct exynos_iommu_domain *priv = domain->priv; struct sysmmu_drvdata *data; unsigned long flags; int i; WARN_ON(!list_empty(&priv->clients)); spin_lock_irqsave(&priv->lock, flags); list_for_each_entry(data, &priv->clients, node) { while (!exynos_sysmmu_disable(data->dev)) ; /* until System MMU is actually disabled */ } spin_unlock_irqrestore(&priv->lock, flags); for (i = 0; i < NUM_LV1ENTRIES; i++) if (lv1ent_page(priv->pgtable + i)) kfree(phys_to_virt(lv2table_base(priv->pgtable + i))); free_pages((unsigned long)priv->pgtable, 2); free_pages((unsigned long)priv->lv2entcnt, 1); kfree(domain->priv); domain->priv = NULL; } static int exynos_iommu_attach_device(struct iommu_domain *domain, struct device *dev) { struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu); struct exynos_iommu_domain *priv = domain->priv; phys_addr_t pagetable = virt_to_phys(priv->pgtable); unsigned long flags; int ret; ret = pm_runtime_get_sync(data->sysmmu); if (ret < 0) return ret; ret = 0; spin_lock_irqsave(&priv->lock, flags); ret = __exynos_sysmmu_enable(data, pagetable, domain); if (ret == 0) { /* 'data->node' must not be appeared in priv->clients */ BUG_ON(!list_empty(&data->node)); data->dev = dev; list_add_tail(&data->node, &priv->clients); } spin_unlock_irqrestore(&priv->lock, flags); if (ret < 0) { dev_err(dev, "%s: Failed to attach IOMMU with pgtable %pa\n", __func__, &pagetable); pm_runtime_put(data->sysmmu); return ret; } dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa %s\n", __func__, &pagetable, (ret == 0) ? "" : ", again"); return ret; } static void exynos_iommu_detach_device(struct iommu_domain *domain, struct device *dev) { struct sysmmu_drvdata *data = dev_get_drvdata(dev->archdata.iommu); struct exynos_iommu_domain *priv = domain->priv; struct list_head *pos; phys_addr_t pagetable = virt_to_phys(priv->pgtable); unsigned long flags; bool found = false; spin_lock_irqsave(&priv->lock, flags); list_for_each(pos, &priv->clients) { if (list_entry(pos, struct sysmmu_drvdata, node) == data) { found = true; break; } } if (!found) goto finish; if (__exynos_sysmmu_disable(data)) { dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__, &pagetable); list_del_init(&data->node); } else { dev_dbg(dev, "%s: Detaching IOMMU with pgtable %pa delayed", __func__, &pagetable); } finish: spin_unlock_irqrestore(&priv->lock, flags); if (found) pm_runtime_put(data->sysmmu); } static unsigned long *alloc_lv2entry(unsigned long *sent, unsigned long iova, short *pgcounter) { if (lv1ent_section(sent)) { WARN(1, "Trying mapping on %#08lx mapped with 1MiB page", iova); return ERR_PTR(-EADDRINUSE); } if (lv1ent_fault(sent)) { unsigned long *pent; pent = kzalloc(LV2TABLE_SIZE, GFP_ATOMIC); BUG_ON((unsigned long)pent & (LV2TABLE_SIZE - 1)); if (!pent) return ERR_PTR(-ENOMEM); *sent = mk_lv1ent_page(virt_to_phys(pent)); *pgcounter = NUM_LV2ENTRIES; pgtable_flush(pent, pent + NUM_LV2ENTRIES); pgtable_flush(sent, sent + 1); } return page_entry(sent, iova); } static int lv1set_section(unsigned long *sent, unsigned long iova, phys_addr_t paddr, short *pgcnt) { if (lv1ent_section(sent)) { WARN(1, "Trying mapping on 1MiB@%#08lx that is mapped", iova); return -EADDRINUSE; } if (lv1ent_page(sent)) { if (*pgcnt != NUM_LV2ENTRIES) { WARN(1, "Trying mapping on 1MiB@%#08lx that is mapped", iova); return -EADDRINUSE; } kfree(page_entry(sent, 0)); *pgcnt = 0; } *sent = mk_lv1ent_sect(paddr); pgtable_flush(sent, sent + 1); return 0; } static int lv2set_page(unsigned long *pent, phys_addr_t paddr, size_t size, short *pgcnt) { if (size == SPAGE_SIZE) { if (!lv2ent_fault(pent)) { WARN(1, "Trying mapping on 4KiB where mapping exists"); return -EADDRINUSE; } *pent = mk_lv2ent_spage(paddr); pgtable_flush(pent, pent + 1); *pgcnt -= 1; } else { /* size == LPAGE_SIZE */ int i; for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) { if (!lv2ent_fault(pent)) { WARN(1, "Trying mapping on 64KiB where mapping exists"); if (i > 0) memset(pent - i, 0, sizeof(*pent) * i); return -EADDRINUSE; } *pent = mk_lv2ent_lpage(paddr); } pgtable_flush(pent - SPAGES_PER_LPAGE, pent); *pgcnt -= SPAGES_PER_LPAGE; } return 0; } static int exynos_iommu_map(struct iommu_domain *domain, unsigned long iova, phys_addr_t paddr, size_t size, int prot) { struct exynos_iommu_domain *priv = domain->priv; unsigned long *entry; unsigned long flags; int ret = -ENOMEM; BUG_ON(priv->pgtable == NULL); spin_lock_irqsave(&priv->pgtablelock, flags); entry = section_entry(priv->pgtable, iova); if (size == SECT_SIZE) { ret = lv1set_section(entry, iova, paddr, &priv->lv2entcnt[lv1ent_offset(iova)]); } else { unsigned long *pent; pent = alloc_lv2entry(entry, iova, &priv->lv2entcnt[lv1ent_offset(iova)]); if (IS_ERR(pent)) ret = PTR_ERR(pent); else ret = lv2set_page(pent, paddr, size, &priv->lv2entcnt[lv1ent_offset(iova)]); } if (ret) pr_debug("%s: Failed to map iova 0x%lx/0x%x bytes\n", __func__, iova, size); spin_unlock_irqrestore(&priv->pgtablelock, flags); return ret; } static size_t exynos_iommu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size) { struct exynos_iommu_domain *priv = domain->priv; struct sysmmu_drvdata *data; unsigned long flags; unsigned long *ent; size_t err_pgsize; BUG_ON(priv->pgtable == NULL); spin_lock_irqsave(&priv->pgtablelock, flags); ent = section_entry(priv->pgtable, iova); if (lv1ent_section(ent)) { if (size < SECT_SIZE) { err_pgsize = SECT_SIZE; goto err; } *ent = 0; pgtable_flush(ent, ent + 1); size = SECT_SIZE; goto done; } if (unlikely(lv1ent_fault(ent))) { if (size > SECT_SIZE) size = SECT_SIZE; goto done; } /* lv1ent_page(sent) == true here */ ent = page_entry(ent, iova); if (unlikely(lv2ent_fault(ent))) { size = SPAGE_SIZE; goto done; } if (lv2ent_small(ent)) { *ent = 0; size = SPAGE_SIZE; priv->lv2entcnt[lv1ent_offset(iova)] += 1; goto done; } /* lv1ent_large(ent) == true here */ if (size < LPAGE_SIZE) { err_pgsize = LPAGE_SIZE; goto err; } memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE); size = LPAGE_SIZE; priv->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE; done: spin_unlock_irqrestore(&priv->pgtablelock, flags); spin_lock_irqsave(&priv->lock, flags); list_for_each_entry(data, &priv->clients, node) sysmmu_tlb_invalidate_entry(data->dev, iova); spin_unlock_irqrestore(&priv->lock, flags); return size; err: spin_unlock_irqrestore(&priv->pgtablelock, flags); WARN(1, "%s: Failed due to size(%#x) @ %#08lx is smaller than page size %#x\n", __func__, size, iova, err_pgsize); return 0; } static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) { struct exynos_iommu_domain *priv = domain->priv; unsigned long *entry; unsigned long flags; phys_addr_t phys = 0; spin_lock_irqsave(&priv->pgtablelock, flags); entry = section_entry(priv->pgtable, iova); if (lv1ent_section(entry)) { phys = section_phys(entry) + section_offs(iova); } else if (lv1ent_page(entry)) { entry = page_entry(entry, iova); if (lv2ent_large(entry)) phys = lpage_phys(entry) + lpage_offs(iova); else if (lv2ent_small(entry)) phys = spage_phys(entry) + spage_offs(iova); } spin_unlock_irqrestore(&priv->pgtablelock, flags); return phys; } static struct iommu_ops exynos_iommu_ops = { .domain_init = &exynos_iommu_domain_init, .domain_destroy = &exynos_iommu_domain_destroy, .attach_dev = &exynos_iommu_attach_device, .detach_dev = &exynos_iommu_detach_device, .map = &exynos_iommu_map, .unmap = &exynos_iommu_unmap, .iova_to_phys = &exynos_iommu_iova_to_phys, .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE, }; static int __init exynos_iommu_init(void) { int ret; ret = platform_driver_register(&exynos_sysmmu_driver); if (ret == 0) bus_set_iommu(&platform_bus_type, &exynos_iommu_ops); return ret; } subsys_initcall(exynos_iommu_init);