/* * Copyright 2017 IBM Corp. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include "common.h" #define OCC_ERROR_COUNT_THRESHOLD 2 /* OCC HW defined */ #define OCC_STATE_SAFE 4 #define OCC_SAFE_TIMEOUT msecs_to_jiffies(60000) /* 1 min */ #define OCC_UPDATE_FREQUENCY msecs_to_jiffies(1000) #define OCC_TEMP_SENSOR_FAULT 0xFF #define OCC_FRU_TYPE_VRM 0x3 /* OCC status bits */ #define OCC_STAT_MASTER 0x80 #define OCC_STAT_ACTIVE 0x01 #define OCC_EXT_STAT_DVFS_OT 0x80 #define OCC_EXT_STAT_DVFS_POWER 0x40 #define OCC_EXT_STAT_MEM_THROTTLE 0x20 #define OCC_EXT_STAT_QUICK_DROP 0x10 /* OCC sensor type and version definitions */ struct temp_sensor_1 { u16 sensor_id; u16 value; } __packed; struct temp_sensor_2 { u32 sensor_id; u8 fru_type; u8 value; } __packed; struct freq_sensor_1 { u16 sensor_id; u16 value; } __packed; struct freq_sensor_2 { u32 sensor_id; u16 value; } __packed; struct power_sensor_1 { u16 sensor_id; u32 update_tag; u32 accumulator; u16 value; } __packed; struct power_sensor_2 { u32 sensor_id; u8 function_id; u8 apss_channel; u16 reserved; u32 update_tag; u64 accumulator; u16 value; } __packed; struct power_sensor_data { u16 value; u32 update_tag; u64 accumulator; } __packed; struct power_sensor_data_and_time { u16 update_time; u16 value; u32 update_tag; u64 accumulator; } __packed; struct power_sensor_a0 { u32 sensor_id; struct power_sensor_data_and_time system; u32 reserved; struct power_sensor_data_and_time proc; struct power_sensor_data vdd; struct power_sensor_data vdn; } __packed; struct caps_sensor_1 { u16 curr_powercap; u16 curr_powerreading; u16 norm_powercap; u16 max_powercap; u16 min_powercap; u16 user_powerlimit; } __packed; struct caps_sensor_2 { u16 curr_powercap; u16 curr_powerreading; u16 norm_powercap; u16 max_powercap; u16 min_powercap; u16 user_powerlimit; u8 user_powerlimit_source; } __packed; struct caps_sensor_3 { u16 curr_powercap; u16 curr_powerreading; u16 norm_powercap; u16 max_powercap; u16 hard_min_powercap; u16 soft_min_powercap; u16 user_powerlimit; u8 user_powerlimit_source; } __packed; struct extended_sensor { u8 name[4]; u8 flags; u8 reserved; u8 data[6]; } __packed; static ssize_t occ_show_error(struct device *dev, struct device_attribute *attr, char *buf) { struct occ *occ = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE - 1, "%d\n", occ->error); } static DEVICE_ATTR(occ_error, 0444, occ_show_error, NULL); static void occ_sysfs_notify(struct occ *occ); static int occ_poll(struct occ *occ) { struct occ_poll_response_header *header; u16 checksum = occ->poll_cmd_data + 1; u8 cmd[8]; int rc; /* big endian */ cmd[0] = 0; /* sequence number */ cmd[1] = 0; /* cmd type */ cmd[2] = 0; /* data length msb */ cmd[3] = 1; /* data length lsb */ cmd[4] = occ->poll_cmd_data; /* data */ cmd[5] = checksum >> 8; /* checksum msb */ cmd[6] = checksum & 0xFF; /* checksum lsb */ cmd[7] = 0; /* mutex should already be locked if necessary */ rc = occ->send_cmd(occ, cmd); if (rc) { if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD) occ->error = rc; goto done; } /* clear error since communication was successful */ occ->error_count = 0; occ->error = 0; /* check for safe state */ header = (struct occ_poll_response_header *)occ->resp.data; if (header->occ_state == OCC_STATE_SAFE) { if (occ->last_safe) { if (time_after(jiffies, occ->last_safe + OCC_SAFE_TIMEOUT)) occ->error = -EHOSTDOWN; } else { occ->last_safe = jiffies; } } else { occ->last_safe = 0; } done: occ_sysfs_notify(occ); return rc; } static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap) { int rc; u8 cmd[8]; u16 checksum = 0x24; __be16 user_power_cap_be = cpu_to_be16(user_power_cap); cmd[0] = 0; cmd[1] = 0x22; cmd[2] = 0; cmd[3] = 2; memcpy(&cmd[4], &user_power_cap_be, 2); checksum += cmd[4] + cmd[5]; cmd[6] = checksum >> 8; cmd[7] = checksum & 0xFF; rc = mutex_lock_interruptible(&occ->lock); if (rc) return rc; rc = occ->send_cmd(occ, cmd); mutex_unlock(&occ->lock); if (rc) { if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD) occ->error = rc; } else { /* successful communication so clear the error */ occ->error_count = 0; occ->error = 0; } return rc; } static int occ_update_response(struct occ *occ) { int rc = mutex_lock_interruptible(&occ->lock); if (rc) return rc; /* limit the maximum rate of polling the OCC */ if (time_after(jiffies, occ->last_update + OCC_UPDATE_FREQUENCY)) { rc = occ_poll(occ); occ->last_update = jiffies; } mutex_unlock(&occ->lock); return rc; } static ssize_t occ_show_temp_1(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u32 val = 0; struct temp_sensor_1 *temp; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index; switch (sattr->nr) { case 0: val = get_unaligned_be16(&temp->sensor_id); break; case 1: /* millidegrees */ val = get_unaligned_be16(&temp->value) * 1000; break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%u\n", val); } static ssize_t occ_show_temp_2(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u32 val = 0; struct temp_sensor_2 *temp; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index; switch (sattr->nr) { case 0: val = get_unaligned_be32(&temp->sensor_id); break; case 1: val = temp->value; if (val == OCC_TEMP_SENSOR_FAULT) return -EREMOTEIO; if (temp->fru_type != OCC_FRU_TYPE_VRM) { /* sensor not ready */ if (val == 0) return -EAGAIN; val *= 1000; /* millidegrees */ } break; case 2: val = temp->fru_type; break; case 3: val = temp->value == OCC_TEMP_SENSOR_FAULT; break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%u\n", val); } static ssize_t occ_show_freq_1(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u16 val = 0; struct freq_sensor_1 *freq; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index; switch (sattr->nr) { case 0: val = get_unaligned_be16(&freq->sensor_id); break; case 1: val = get_unaligned_be16(&freq->value); break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%u\n", val); } static ssize_t occ_show_freq_2(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u32 val = 0; struct freq_sensor_2 *freq; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index; switch (sattr->nr) { case 0: val = get_unaligned_be32(&freq->sensor_id); break; case 1: val = get_unaligned_be16(&freq->value); break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%u\n", val); } static ssize_t occ_show_power_1(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u64 val = 0; struct power_sensor_1 *power; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index; switch (sattr->nr) { case 0: val = get_unaligned_be16(&power->sensor_id); break; case 1: val = get_unaligned_be32(&power->update_tag); break; case 2: val = get_unaligned_be32(&power->accumulator); break; case 3: /* microwatts */ val = get_unaligned_be16(&power->value) * 1000000ULL; break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val); } static ssize_t occ_show_power_2(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u64 val = 0; struct power_sensor_2 *power; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index; switch (sattr->nr) { case 0: val = get_unaligned_be32(&power->sensor_id); break; case 1: val = get_unaligned_be32(&power->update_tag); break; case 2: val = get_unaligned_be64(&power->accumulator); break; case 3: /* microwatts */ val = get_unaligned_be16(&power->value) * 1000000ULL; break; case 4: val = power->function_id; break; case 5: val = power->apss_channel; break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val); } static ssize_t occ_show_power_a0(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u64 val = 0; struct power_sensor_a0 *power; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index; switch (sattr->nr) { case 0: val = get_unaligned_be32(&power->sensor_id); break; case 1: return snprintf(buf, PAGE_SIZE - 1, "system\n"); case 2: val = get_unaligned_be16(&power->system.update_time); break; case 3: /* microwatts */ val = get_unaligned_be16(&power->system.value) * 1000000ULL; break; case 4: val = get_unaligned_be32(&power->system.update_tag); break; case 5: val = get_unaligned_be64(&power->system.accumulator); break; case 6: return snprintf(buf, PAGE_SIZE - 1, "proc\n"); case 7: val = get_unaligned_be16(&power->proc.update_time); break; case 8: /* microwatts */ val = get_unaligned_be16(&power->proc.value) * 1000000ULL; break; case 9: val = get_unaligned_be32(&power->proc.update_tag); break; case 10: val = get_unaligned_be64(&power->proc.accumulator); break; case 11: return snprintf(buf, PAGE_SIZE - 1, "vdd\n"); case 12: /* microwatts */ val = get_unaligned_be16(&power->vdd.value) * 1000000ULL; break; case 13: val = get_unaligned_be32(&power->vdd.update_tag); break; case 14: val = get_unaligned_be64(&power->vdd.accumulator); break; case 15: return snprintf(buf, PAGE_SIZE - 1, "vdn\n"); case 16: /* microwatts */ val = get_unaligned_be16(&power->vdn.value) * 1000000ULL; break; case 17: val = get_unaligned_be32(&power->vdn.update_tag); break; case 18: val = get_unaligned_be64(&power->vdn.accumulator); break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val); } static ssize_t occ_show_caps_1(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u16 val = 0; struct caps_sensor_1 *caps; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; caps = ((struct caps_sensor_1 *)sensors->caps.data) + sattr->index; switch (sattr->nr) { case 0: val = get_unaligned_be16(&caps->curr_powercap); break; case 1: val = get_unaligned_be16(&caps->curr_powerreading); break; case 2: val = get_unaligned_be16(&caps->norm_powercap); break; case 3: val = get_unaligned_be16(&caps->max_powercap); break; case 4: val = get_unaligned_be16(&caps->min_powercap); break; case 5: val = get_unaligned_be16(&caps->user_powerlimit); break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%u\n", val); } static ssize_t occ_show_caps_2(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u16 val = 0; struct caps_sensor_2 *caps; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index; switch (sattr->nr) { case 0: val = get_unaligned_be16(&caps->curr_powercap); break; case 1: val = get_unaligned_be16(&caps->curr_powerreading); break; case 2: val = get_unaligned_be16(&caps->norm_powercap); break; case 3: val = get_unaligned_be16(&caps->max_powercap); break; case 4: val = get_unaligned_be16(&caps->min_powercap); break; case 5: val = get_unaligned_be16(&caps->user_powerlimit); break; case 6: val = caps->user_powerlimit_source; break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%u\n", val); } static ssize_t occ_show_caps_3(struct device *dev, struct device_attribute *attr, char *buf) { int rc; u16 val = 0; struct caps_sensor_3 *caps; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index; switch (sattr->nr) { case 0: val = get_unaligned_be16(&caps->curr_powercap); break; case 1: val = get_unaligned_be16(&caps->curr_powerreading); break; case 2: val = get_unaligned_be16(&caps->norm_powercap); break; case 3: val = get_unaligned_be16(&caps->max_powercap); break; case 4: val = get_unaligned_be16(&caps->hard_min_powercap); break; case 5: val = get_unaligned_be16(&caps->user_powerlimit); break; case 6: val = caps->user_powerlimit_source; break; case 7: val = get_unaligned_be16(&caps->soft_min_powercap); break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%u\n", val); } static ssize_t occ_store_caps_user(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int rc; u16 user_power_cap; struct occ *occ = dev_get_drvdata(dev); rc = kstrtou16(buf, 0, &user_power_cap); if (rc) return rc; rc = occ_set_user_power_cap(occ, user_power_cap); if (rc) return rc; return count; } static ssize_t occ_show_extended(struct device *dev, struct device_attribute *attr, char *buf) { int rc; struct extended_sensor *extn; struct occ *occ = dev_get_drvdata(dev); struct occ_sensors *sensors = &occ->sensors; struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr); rc = occ_update_response(occ); if (rc) return rc; extn = ((struct extended_sensor *)sensors->extended.data) + sattr->index; switch (sattr->nr) { case 0: rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x\n", extn->name[0], extn->name[1], extn->name[2], extn->name[3]); break; case 1: rc = snprintf(buf, PAGE_SIZE - 1, "%02x\n", extn->flags); break; case 2: rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x%02x%02x\n", extn->data[0], extn->data[1], extn->data[2], extn->data[3], extn->data[4], extn->data[5]); break; default: return -EINVAL; } return rc; } /* * Some helper macros to make it easier to define an occ_attribute. Since these * are dynamically allocated, we shouldn't use the existing kernel macros which * stringify the name argument. */ #define ATTR_OCC(_name, _mode, _show, _store) { \ .attr = { \ .name = _name, \ .mode = VERIFY_OCTAL_PERMISSIONS(_mode), \ }, \ .show = _show, \ .store = _store, \ } #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) { \ .dev_attr = ATTR_OCC(_name, _mode, _show, _store), \ .index = _index, \ .nr = _nr, \ } #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index) \ ((struct sensor_device_attribute_2) \ SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index)) /* * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to * use our own instead of the built-in hwmon attribute types. */ static int occ_setup_sensor_attrs(struct occ *occ) { unsigned int i, s, num_attrs = 0; struct device *dev = occ->bus_dev; struct occ_sensors *sensors = &occ->sensors; struct occ_attribute *attr; struct temp_sensor_2 *temp; ssize_t (*show_temp)(struct device *, struct device_attribute *, char *) = occ_show_temp_1; ssize_t (*show_freq)(struct device *, struct device_attribute *, char *) = occ_show_freq_1; ssize_t (*show_power)(struct device *, struct device_attribute *, char *) = occ_show_power_1; ssize_t (*show_caps)(struct device *, struct device_attribute *, char *) = occ_show_caps_1; switch (sensors->temp.version) { case 1: num_attrs += (sensors->temp.num_sensors * 2); break; case 2: num_attrs += (sensors->temp.num_sensors * 4); show_temp = occ_show_temp_2; break; default: sensors->temp.num_sensors = 0; } switch (sensors->freq.version) { case 2: show_freq = occ_show_freq_2; /* fall through */ case 1: num_attrs += (sensors->freq.num_sensors * 2); break; default: sensors->freq.num_sensors = 0; } switch (sensors->power.version) { case 1: num_attrs += (sensors->power.num_sensors * 4); break; case 2: num_attrs += (sensors->power.num_sensors * 6); show_power = occ_show_power_2; break; case 0xA0: num_attrs += (sensors->power.num_sensors * 19); show_power = occ_show_power_a0; break; default: sensors->power.num_sensors = 0; } switch (sensors->caps.version) { case 1: num_attrs += (sensors->caps.num_sensors * 6); break; case 2: num_attrs += (sensors->caps.num_sensors * 7); show_caps = occ_show_caps_2; break; case 3: num_attrs += (sensors->caps.num_sensors * 8); show_caps = occ_show_caps_3; break; default: sensors->caps.num_sensors = 0; } switch (sensors->extended.version) { case 1: num_attrs += (sensors->extended.num_sensors * 3); break; default: sensors->extended.num_sensors = 0; } occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs, GFP_KERNEL); if (!occ->attrs) return -ENOMEM; /* null-terminated list */ occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) * num_attrs + 1, GFP_KERNEL); if (!occ->group.attrs) return -ENOMEM; attr = occ->attrs; for (i = 0; i < sensors->temp.num_sensors; ++i) { s = i + 1; temp = ((struct temp_sensor_2 *)sensors->temp.data) + i; snprintf(attr->name, sizeof(attr->name), "temp%d_label", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL, 0, i); attr++; if (sensors->temp.version > 1 && temp->fru_type == OCC_FRU_TYPE_VRM) { snprintf(attr->name, sizeof(attr->name), "temp%d_alarm", s); } else { snprintf(attr->name, sizeof(attr->name), "temp%d_input", s); } attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL, 1, i); attr++; if (sensors->temp.version > 1) { snprintf(attr->name, sizeof(attr->name), "temp%d_fru_type", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL, 2, i); attr++; snprintf(attr->name, sizeof(attr->name), "temp%d_fault", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL, 3, i); attr++; } } for (i = 0; i < sensors->freq.num_sensors; ++i) { s = i + 1; snprintf(attr->name, sizeof(attr->name), "freq%d_label", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL, 0, i); attr++; snprintf(attr->name, sizeof(attr->name), "freq%d_input", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL, 1, i); attr++; } if (sensors->power.version == 0xA0) { /* Special case for many-attribute power sensor. Split it into * a sensor number per power type, emulating several sensors. */ for (i = 0; i < sensors->power.num_sensors; ++i) { s = (i * 4) + 1; snprintf(attr->name, sizeof(attr->name), "power%d_id", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 0, i); attr++; /* system power attributes */ snprintf(attr->name, sizeof(attr->name), "power%d_label", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 1, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_update_time", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 2, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_input", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 3, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_update_tag", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 4, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_accumulator", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 5, i); attr++; s++; /* processor power attributes */ snprintf(attr->name, sizeof(attr->name), "power%d_label", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 6, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_update_time", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 7, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_input", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 8, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_update_tag", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 9, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_accumulator", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 10, i); attr++; s++; /* vdd power attributes */ snprintf(attr->name, sizeof(attr->name), "power%d_label", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 11, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_input", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 12, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_update_tag", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 13, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_accumulator", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 14, i); attr++; s++; /* vdn power attributes */ snprintf(attr->name, sizeof(attr->name), "power%d_label", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 15, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_input", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 16, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_update_tag", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 17, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_accumulator", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 18, i); attr++; } } else { for (i = 0; i < sensors->power.num_sensors; ++i) { s = i + 1; snprintf(attr->name, sizeof(attr->name), "power%d_label", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 0, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_update_tag", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 1, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_accumulator", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 2, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_input", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 3, i); attr++; if (sensors->power.version > 1) { snprintf(attr->name, sizeof(attr->name), "power%d_function_id", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 4, i); attr++; snprintf(attr->name, sizeof(attr->name), "power%d_apss_channel", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_power, NULL, 5, i); attr++; } } } for (i = 0; i < sensors->caps.num_sensors; ++i) { s = i + 1; snprintf(attr->name, sizeof(attr->name), "caps%d_current", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 0, i); attr++; snprintf(attr->name, sizeof(attr->name), "caps%d_reading", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 1, i); attr++; snprintf(attr->name, sizeof(attr->name), "caps%d_norm", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 2, i); attr++; snprintf(attr->name, sizeof(attr->name), "caps%d_max", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 3, i); attr++; if (sensors->caps.version > 2) { snprintf(attr->name, sizeof(attr->name), "caps%d_min_hard", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 4, i); attr++; snprintf(attr->name, sizeof(attr->name), "caps%d_min_soft", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 7, i); attr++; } else { snprintf(attr->name, sizeof(attr->name), "caps%d_min", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 4, i); attr++; } snprintf(attr->name, sizeof(attr->name), "caps%d_user", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps, occ_store_caps_user, 5, i); attr++; if (sensors->caps.version > 1) { snprintf(attr->name, sizeof(attr->name), "caps%d_user_source", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL, 6, i); attr++; } } for (i = 0; i < sensors->extended.num_sensors; ++i) { s = i + 1; snprintf(attr->name, sizeof(attr->name), "extn%d_label", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, occ_show_extended, NULL, 0, i); attr++; snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, occ_show_extended, NULL, 1, i); attr++; snprintf(attr->name, sizeof(attr->name), "extn%d_input", s); attr->sensor = OCC_INIT_ATTR(attr->name, 0444, occ_show_extended, NULL, 2, i); attr++; } /* put the sensors in the group */ for (i = 0; i < num_attrs; ++i) occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr; return 0; } static ssize_t occ_show_status(struct device *dev, struct device_attribute *attr, char *buf) { int rc; int val = 0; struct occ *occ = dev_get_drvdata(dev); struct occ_poll_response_header *header; struct sensor_device_attribute *sattr = to_sensor_dev_attr(attr); rc = occ_update_response(occ); if (rc) return rc; header = (struct occ_poll_response_header *)occ->resp.data; switch (sattr->index) { case 0: val = (header->status & OCC_STAT_MASTER) ? 1 : 0; break; case 1: val = (header->status & OCC_STAT_ACTIVE) ? 1 : 0; break; case 2: val = (header->ext_status & OCC_EXT_STAT_DVFS_OT) ? 1 : 0; break; case 3: val = (header->ext_status & OCC_EXT_STAT_DVFS_POWER) ? 1 : 0; break; case 4: val = (header->ext_status & OCC_EXT_STAT_MEM_THROTTLE) ? 1 : 0; break; case 5: val = (header->ext_status & OCC_EXT_STAT_QUICK_DROP) ? 1 : 0; break; case 6: val = header->occ_state; break; case 7: if (header->status & OCC_STAT_MASTER) val = hweight8(header->occs_present); else val = 1; break; default: return -EINVAL; } return snprintf(buf, PAGE_SIZE - 1, "%d\n", val); } static SENSOR_DEVICE_ATTR(occ_master, 0444, occ_show_status, NULL, 0); static SENSOR_DEVICE_ATTR(occ_active, 0444, occ_show_status, NULL, 1); static SENSOR_DEVICE_ATTR(occ_dvfs_ot, 0444, occ_show_status, NULL, 2); static SENSOR_DEVICE_ATTR(occ_dvfs_power, 0444, occ_show_status, NULL, 3); static SENSOR_DEVICE_ATTR(occ_mem_throttle, 0444, occ_show_status, NULL, 4); static SENSOR_DEVICE_ATTR(occ_quick_drop, 0444, occ_show_status, NULL, 5); static SENSOR_DEVICE_ATTR(occ_status, 0444, occ_show_status, NULL, 6); static SENSOR_DEVICE_ATTR(occs_present, 0444, occ_show_status, NULL, 7); static struct attribute *occ_attributes[] = { &sensor_dev_attr_occ_master.dev_attr.attr, &sensor_dev_attr_occ_active.dev_attr.attr, &sensor_dev_attr_occ_dvfs_ot.dev_attr.attr, &sensor_dev_attr_occ_dvfs_power.dev_attr.attr, &sensor_dev_attr_occ_mem_throttle.dev_attr.attr, &sensor_dev_attr_occ_quick_drop.dev_attr.attr, &sensor_dev_attr_occ_status.dev_attr.attr, &sensor_dev_attr_occs_present.dev_attr.attr, &dev_attr_occ_error.attr, NULL }; static const struct attribute_group occ_attr_group = { .attrs = occ_attributes, }; static void occ_sysfs_notify(struct occ *occ) { const char *name; struct occ_poll_response_header *header = (struct occ_poll_response_header *)occ->resp.data; /* sysfs attributes aren't loaded yet; don't proceed */ if (!occ->hwmon) goto done; if (header->occs_present != occ->previous_occs_present && (header->status & OCC_STAT_MASTER)) { name = sensor_dev_attr_occs_present.dev_attr.attr.name; sysfs_notify(&occ->bus_dev->kobj, NULL, name); } if ((header->ext_status & OCC_EXT_STAT_DVFS_OT) != (occ->previous_ext_status & OCC_EXT_STAT_DVFS_OT)) { name = sensor_dev_attr_occ_dvfs_ot.dev_attr.attr.name; sysfs_notify(&occ->bus_dev->kobj, NULL, name); } if ((header->ext_status & OCC_EXT_STAT_DVFS_POWER) != (occ->previous_ext_status & OCC_EXT_STAT_DVFS_POWER)) { name = sensor_dev_attr_occ_dvfs_power.dev_attr.attr.name; sysfs_notify(&occ->bus_dev->kobj, NULL, name); } if ((header->ext_status & OCC_EXT_STAT_MEM_THROTTLE) != (occ->previous_ext_status & OCC_EXT_STAT_MEM_THROTTLE)) { name = sensor_dev_attr_occ_mem_throttle.dev_attr.attr.name; sysfs_notify(&occ->bus_dev->kobj, NULL, name); } if (occ->error && occ->error != occ->previous_error) { name = dev_attr_occ_error.attr.name; sysfs_notify(&occ->bus_dev->kobj, NULL, name); } done: occ->previous_error = occ->error; occ->previous_ext_status = header->ext_status; occ->previous_occs_present = header->occs_present; } /* only need to do this once at startup, as OCC won't change sensors on us */ static void occ_parse_poll_response(struct occ *occ) { unsigned int i, offset = 0, size = 0; struct occ_sensor *sensor; struct occ_sensors *sensors = &occ->sensors; struct occ_response *resp = &occ->resp; struct occ_poll_response *poll = (struct occ_poll_response *)&resp->data[0]; struct occ_poll_response_header *header = &poll->header; struct occ_sensor_data_block *block = &poll->block; for (i = 0; i < header->num_sensor_data_blocks; ++i) { block = (struct occ_sensor_data_block *)((u8 *)block + offset); offset = (block->header.num_sensors * block->header.sensor_length) + sizeof(block->header); size += offset; /* validate all the length/size fields */ if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) { dev_warn(occ->bus_dev, "exceeded response buffer\n"); return; } /* match sensor block type */ if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0) sensor = &sensors->temp; else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0) sensor = &sensors->freq; else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0) sensor = &sensors->power; else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0) sensor = &sensors->caps; else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0) sensor = &sensors->extended; else { dev_warn(occ->bus_dev, "sensor not supported %.4s\n", block->header.eye_catcher); continue; } sensor->num_sensors = block->header.num_sensors; sensor->version = block->header.sensor_format; sensor->data = &block->data; } } int occ_setup(struct occ *occ, const char *name) { int rc; mutex_init(&occ->lock); occ->groups[0] = &occ->group; /* no need to lock */ rc = occ_poll(occ); if (rc < 0) { /* ENODEV is expected to occur during boot when OCC is not yet online */ if (rc != -ENODEV) dev_err(occ->bus_dev, "failed to get OCC poll response: %d\n", rc); return rc; } occ_parse_poll_response(occ); rc = occ_setup_sensor_attrs(occ); if (rc) { dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n", rc); return rc; } occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name, occ, occ->groups); if (IS_ERR(occ->hwmon)) { rc = PTR_ERR(occ->hwmon); dev_err(occ->bus_dev, "failed to register hwmon device: %d\n", rc); return rc; } rc = sysfs_create_group(&occ->bus_dev->kobj, &occ_attr_group); if (rc) dev_warn(occ->bus_dev, "failed to create status attrs: %d\n", rc); return 0; } void occ_shutdown(struct occ *occ) { sysfs_remove_group(&occ->bus_dev->kobj, &occ_attr_group); } MODULE_LICENSE("GPL");