/* * Copyright 2012 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include #include #include #include "drmP.h" #include "radeon.h" #include "radeon_asic.h" #include "cikd.h" #include "atom.h" #include "cik_blit_shaders.h" #include "radeon_ucode.h" #include "clearstate_ci.h" MODULE_FIRMWARE("radeon/BONAIRE_pfp.bin"); MODULE_FIRMWARE("radeon/BONAIRE_me.bin"); MODULE_FIRMWARE("radeon/BONAIRE_ce.bin"); MODULE_FIRMWARE("radeon/BONAIRE_mec.bin"); MODULE_FIRMWARE("radeon/BONAIRE_mc.bin"); MODULE_FIRMWARE("radeon/BONAIRE_rlc.bin"); MODULE_FIRMWARE("radeon/BONAIRE_sdma.bin"); MODULE_FIRMWARE("radeon/BONAIRE_smc.bin"); MODULE_FIRMWARE("radeon/KAVERI_pfp.bin"); MODULE_FIRMWARE("radeon/KAVERI_me.bin"); MODULE_FIRMWARE("radeon/KAVERI_ce.bin"); MODULE_FIRMWARE("radeon/KAVERI_mec.bin"); MODULE_FIRMWARE("radeon/KAVERI_rlc.bin"); MODULE_FIRMWARE("radeon/KAVERI_sdma.bin"); MODULE_FIRMWARE("radeon/KABINI_pfp.bin"); MODULE_FIRMWARE("radeon/KABINI_me.bin"); MODULE_FIRMWARE("radeon/KABINI_ce.bin"); MODULE_FIRMWARE("radeon/KABINI_mec.bin"); MODULE_FIRMWARE("radeon/KABINI_rlc.bin"); MODULE_FIRMWARE("radeon/KABINI_sdma.bin"); extern int r600_ih_ring_alloc(struct radeon_device *rdev); extern void r600_ih_ring_fini(struct radeon_device *rdev); extern void evergreen_mc_stop(struct radeon_device *rdev, struct evergreen_mc_save *save); extern void evergreen_mc_resume(struct radeon_device *rdev, struct evergreen_mc_save *save); extern bool evergreen_is_display_hung(struct radeon_device *rdev); extern void sumo_rlc_fini(struct radeon_device *rdev); extern int sumo_rlc_init(struct radeon_device *rdev); extern void si_vram_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc); extern void si_rlc_reset(struct radeon_device *rdev); extern void si_init_uvd_internal_cg(struct radeon_device *rdev); static void cik_rlc_stop(struct radeon_device *rdev); static void cik_pcie_gen3_enable(struct radeon_device *rdev); static void cik_program_aspm(struct radeon_device *rdev); static void cik_init_pg(struct radeon_device *rdev); static void cik_init_cg(struct radeon_device *rdev); /* get temperature in millidegrees */ int ci_get_temp(struct radeon_device *rdev) { u32 temp; int actual_temp = 0; temp = (RREG32_SMC(CG_MULT_THERMAL_STATUS) & CTF_TEMP_MASK) >> CTF_TEMP_SHIFT; if (temp & 0x200) actual_temp = 255; else actual_temp = temp & 0x1ff; actual_temp = actual_temp * 1000; return actual_temp; } /* get temperature in millidegrees */ int kv_get_temp(struct radeon_device *rdev) { u32 temp; int actual_temp = 0; temp = RREG32_SMC(0xC0300E0C); if (temp) actual_temp = (temp / 8) - 49; else actual_temp = 0; actual_temp = actual_temp * 1000; return actual_temp; } /* * Indirect registers accessor */ u32 cik_pciep_rreg(struct radeon_device *rdev, u32 reg) { u32 r; WREG32(PCIE_INDEX, reg); (void)RREG32(PCIE_INDEX); r = RREG32(PCIE_DATA); return r; } void cik_pciep_wreg(struct radeon_device *rdev, u32 reg, u32 v) { WREG32(PCIE_INDEX, reg); (void)RREG32(PCIE_INDEX); WREG32(PCIE_DATA, v); (void)RREG32(PCIE_DATA); } static const u32 spectre_rlc_save_restore_register_list[] = { (0x0e00 << 16) | (0xc12c >> 2), 0x00000000, (0x0e00 << 16) | (0xc140 >> 2), 0x00000000, (0x0e00 << 16) | (0xc150 >> 2), 0x00000000, (0x0e00 << 16) | (0xc15c >> 2), 0x00000000, (0x0e00 << 16) | (0xc168 >> 2), 0x00000000, (0x0e00 << 16) | (0xc170 >> 2), 0x00000000, (0x0e00 << 16) | (0xc178 >> 2), 0x00000000, (0x0e00 << 16) | (0xc204 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2b4 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2b8 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2bc >> 2), 0x00000000, (0x0e00 << 16) | (0xc2c0 >> 2), 0x00000000, (0x0e00 << 16) | (0x8228 >> 2), 0x00000000, (0x0e00 << 16) | (0x829c >> 2), 0x00000000, (0x0e00 << 16) | (0x869c >> 2), 0x00000000, (0x0600 << 16) | (0x98f4 >> 2), 0x00000000, (0x0e00 << 16) | (0x98f8 >> 2), 0x00000000, (0x0e00 << 16) | (0x9900 >> 2), 0x00000000, (0x0e00 << 16) | (0xc260 >> 2), 0x00000000, (0x0e00 << 16) | (0x90e8 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c000 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c00c >> 2), 0x00000000, (0x0e00 << 16) | (0x8c1c >> 2), 0x00000000, (0x0e00 << 16) | (0x9700 >> 2), 0x00000000, (0x0e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x4e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x5e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x6e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x7e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x8e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x9e00 << 16) | (0xcd20 >> 2), 0x00000000, (0xae00 << 16) | (0xcd20 >> 2), 0x00000000, (0xbe00 << 16) | (0xcd20 >> 2), 0x00000000, (0x0e00 << 16) | (0x89bc >> 2), 0x00000000, (0x0e00 << 16) | (0x8900 >> 2), 0x00000000, 0x3, (0x0e00 << 16) | (0xc130 >> 2), 0x00000000, (0x0e00 << 16) | (0xc134 >> 2), 0x00000000, (0x0e00 << 16) | (0xc1fc >> 2), 0x00000000, (0x0e00 << 16) | (0xc208 >> 2), 0x00000000, (0x0e00 << 16) | (0xc264 >> 2), 0x00000000, (0x0e00 << 16) | (0xc268 >> 2), 0x00000000, (0x0e00 << 16) | (0xc26c >> 2), 0x00000000, (0x0e00 << 16) | (0xc270 >> 2), 0x00000000, (0x0e00 << 16) | (0xc274 >> 2), 0x00000000, (0x0e00 << 16) | (0xc278 >> 2), 0x00000000, (0x0e00 << 16) | (0xc27c >> 2), 0x00000000, (0x0e00 << 16) | (0xc280 >> 2), 0x00000000, (0x0e00 << 16) | (0xc284 >> 2), 0x00000000, (0x0e00 << 16) | (0xc288 >> 2), 0x00000000, (0x0e00 << 16) | (0xc28c >> 2), 0x00000000, (0x0e00 << 16) | (0xc290 >> 2), 0x00000000, (0x0e00 << 16) | (0xc294 >> 2), 0x00000000, (0x0e00 << 16) | (0xc298 >> 2), 0x00000000, (0x0e00 << 16) | (0xc29c >> 2), 0x00000000, (0x0e00 << 16) | (0xc2a0 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2a4 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2a8 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2ac >> 2), 0x00000000, (0x0e00 << 16) | (0xc2b0 >> 2), 0x00000000, (0x0e00 << 16) | (0x301d0 >> 2), 0x00000000, (0x0e00 << 16) | (0x30238 >> 2), 0x00000000, (0x0e00 << 16) | (0x30250 >> 2), 0x00000000, (0x0e00 << 16) | (0x30254 >> 2), 0x00000000, (0x0e00 << 16) | (0x30258 >> 2), 0x00000000, (0x0e00 << 16) | (0x3025c >> 2), 0x00000000, (0x4e00 << 16) | (0xc900 >> 2), 0x00000000, (0x5e00 << 16) | (0xc900 >> 2), 0x00000000, (0x6e00 << 16) | (0xc900 >> 2), 0x00000000, (0x7e00 << 16) | (0xc900 >> 2), 0x00000000, (0x8e00 << 16) | (0xc900 >> 2), 0x00000000, (0x9e00 << 16) | (0xc900 >> 2), 0x00000000, (0xae00 << 16) | (0xc900 >> 2), 0x00000000, (0xbe00 << 16) | (0xc900 >> 2), 0x00000000, (0x4e00 << 16) | (0xc904 >> 2), 0x00000000, (0x5e00 << 16) | (0xc904 >> 2), 0x00000000, (0x6e00 << 16) | (0xc904 >> 2), 0x00000000, (0x7e00 << 16) | (0xc904 >> 2), 0x00000000, (0x8e00 << 16) | (0xc904 >> 2), 0x00000000, (0x9e00 << 16) | (0xc904 >> 2), 0x00000000, (0xae00 << 16) | (0xc904 >> 2), 0x00000000, (0xbe00 << 16) | (0xc904 >> 2), 0x00000000, (0x4e00 << 16) | (0xc908 >> 2), 0x00000000, (0x5e00 << 16) | (0xc908 >> 2), 0x00000000, (0x6e00 << 16) | (0xc908 >> 2), 0x00000000, (0x7e00 << 16) | (0xc908 >> 2), 0x00000000, (0x8e00 << 16) | (0xc908 >> 2), 0x00000000, (0x9e00 << 16) | (0xc908 >> 2), 0x00000000, (0xae00 << 16) | (0xc908 >> 2), 0x00000000, (0xbe00 << 16) | (0xc908 >> 2), 0x00000000, (0x4e00 << 16) | (0xc90c >> 2), 0x00000000, (0x5e00 << 16) | (0xc90c >> 2), 0x00000000, (0x6e00 << 16) | (0xc90c >> 2), 0x00000000, (0x7e00 << 16) | (0xc90c >> 2), 0x00000000, (0x8e00 << 16) | (0xc90c >> 2), 0x00000000, (0x9e00 << 16) | (0xc90c >> 2), 0x00000000, (0xae00 << 16) | (0xc90c >> 2), 0x00000000, (0xbe00 << 16) | (0xc90c >> 2), 0x00000000, (0x4e00 << 16) | (0xc910 >> 2), 0x00000000, (0x5e00 << 16) | (0xc910 >> 2), 0x00000000, (0x6e00 << 16) | (0xc910 >> 2), 0x00000000, (0x7e00 << 16) | (0xc910 >> 2), 0x00000000, (0x8e00 << 16) | (0xc910 >> 2), 0x00000000, (0x9e00 << 16) | (0xc910 >> 2), 0x00000000, (0xae00 << 16) | (0xc910 >> 2), 0x00000000, (0xbe00 << 16) | (0xc910 >> 2), 0x00000000, (0x0e00 << 16) | (0xc99c >> 2), 0x00000000, (0x0e00 << 16) | (0x9834 >> 2), 0x00000000, (0x0000 << 16) | (0x30f00 >> 2), 0x00000000, (0x0001 << 16) | (0x30f00 >> 2), 0x00000000, (0x0000 << 16) | (0x30f04 >> 2), 0x00000000, (0x0001 << 16) | (0x30f04 >> 2), 0x00000000, (0x0000 << 16) | (0x30f08 >> 2), 0x00000000, (0x0001 << 16) | (0x30f08 >> 2), 0x00000000, (0x0000 << 16) | (0x30f0c >> 2), 0x00000000, (0x0001 << 16) | (0x30f0c >> 2), 0x00000000, (0x0600 << 16) | (0x9b7c >> 2), 0x00000000, (0x0e00 << 16) | (0x8a14 >> 2), 0x00000000, (0x0e00 << 16) | (0x8a18 >> 2), 0x00000000, (0x0600 << 16) | (0x30a00 >> 2), 0x00000000, (0x0e00 << 16) | (0x8bf0 >> 2), 0x00000000, (0x0e00 << 16) | (0x8bcc >> 2), 0x00000000, (0x0e00 << 16) | (0x8b24 >> 2), 0x00000000, (0x0e00 << 16) | (0x30a04 >> 2), 0x00000000, (0x0600 << 16) | (0x30a10 >> 2), 0x00000000, (0x0600 << 16) | (0x30a14 >> 2), 0x00000000, (0x0600 << 16) | (0x30a18 >> 2), 0x00000000, (0x0600 << 16) | (0x30a2c >> 2), 0x00000000, (0x0e00 << 16) | (0xc700 >> 2), 0x00000000, (0x0e00 << 16) | (0xc704 >> 2), 0x00000000, (0x0e00 << 16) | (0xc708 >> 2), 0x00000000, (0x0e00 << 16) | (0xc768 >> 2), 0x00000000, (0x0400 << 16) | (0xc770 >> 2), 0x00000000, (0x0400 << 16) | (0xc774 >> 2), 0x00000000, (0x0400 << 16) | (0xc778 >> 2), 0x00000000, (0x0400 << 16) | (0xc77c >> 2), 0x00000000, (0x0400 << 16) | (0xc780 >> 2), 0x00000000, (0x0400 << 16) | (0xc784 >> 2), 0x00000000, (0x0400 << 16) | (0xc788 >> 2), 0x00000000, (0x0400 << 16) | (0xc78c >> 2), 0x00000000, (0x0400 << 16) | (0xc798 >> 2), 0x00000000, (0x0400 << 16) | (0xc79c >> 2), 0x00000000, (0x0400 << 16) | (0xc7a0 >> 2), 0x00000000, (0x0400 << 16) | (0xc7a4 >> 2), 0x00000000, (0x0400 << 16) | (0xc7a8 >> 2), 0x00000000, (0x0400 << 16) | (0xc7ac >> 2), 0x00000000, (0x0400 << 16) | (0xc7b0 >> 2), 0x00000000, (0x0400 << 16) | (0xc7b4 >> 2), 0x00000000, (0x0e00 << 16) | (0x9100 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c010 >> 2), 0x00000000, (0x0e00 << 16) | (0x92a8 >> 2), 0x00000000, (0x0e00 << 16) | (0x92ac >> 2), 0x00000000, (0x0e00 << 16) | (0x92b4 >> 2), 0x00000000, (0x0e00 << 16) | (0x92b8 >> 2), 0x00000000, (0x0e00 << 16) | (0x92bc >> 2), 0x00000000, (0x0e00 << 16) | (0x92c0 >> 2), 0x00000000, (0x0e00 << 16) | (0x92c4 >> 2), 0x00000000, (0x0e00 << 16) | (0x92c8 >> 2), 0x00000000, (0x0e00 << 16) | (0x92cc >> 2), 0x00000000, (0x0e00 << 16) | (0x92d0 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c00 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c04 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c20 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c38 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c3c >> 2), 0x00000000, (0x0e00 << 16) | (0xae00 >> 2), 0x00000000, (0x0e00 << 16) | (0x9604 >> 2), 0x00000000, (0x0e00 << 16) | (0xac08 >> 2), 0x00000000, (0x0e00 << 16) | (0xac0c >> 2), 0x00000000, (0x0e00 << 16) | (0xac10 >> 2), 0x00000000, (0x0e00 << 16) | (0xac14 >> 2), 0x00000000, (0x0e00 << 16) | (0xac58 >> 2), 0x00000000, (0x0e00 << 16) | (0xac68 >> 2), 0x00000000, (0x0e00 << 16) | (0xac6c >> 2), 0x00000000, (0x0e00 << 16) | (0xac70 >> 2), 0x00000000, (0x0e00 << 16) | (0xac74 >> 2), 0x00000000, (0x0e00 << 16) | (0xac78 >> 2), 0x00000000, (0x0e00 << 16) | (0xac7c >> 2), 0x00000000, (0x0e00 << 16) | (0xac80 >> 2), 0x00000000, (0x0e00 << 16) | (0xac84 >> 2), 0x00000000, (0x0e00 << 16) | (0xac88 >> 2), 0x00000000, (0x0e00 << 16) | (0xac8c >> 2), 0x00000000, (0x0e00 << 16) | (0x970c >> 2), 0x00000000, (0x0e00 << 16) | (0x9714 >> 2), 0x00000000, (0x0e00 << 16) | (0x9718 >> 2), 0x00000000, (0x0e00 << 16) | (0x971c >> 2), 0x00000000, (0x0e00 << 16) | (0x31068 >> 2), 0x00000000, (0x4e00 << 16) | (0x31068 >> 2), 0x00000000, (0x5e00 << 16) | (0x31068 >> 2), 0x00000000, (0x6e00 << 16) | (0x31068 >> 2), 0x00000000, (0x7e00 << 16) | (0x31068 >> 2), 0x00000000, (0x8e00 << 16) | (0x31068 >> 2), 0x00000000, (0x9e00 << 16) | (0x31068 >> 2), 0x00000000, (0xae00 << 16) | (0x31068 >> 2), 0x00000000, (0xbe00 << 16) | (0x31068 >> 2), 0x00000000, (0x0e00 << 16) | (0xcd10 >> 2), 0x00000000, (0x0e00 << 16) | (0xcd14 >> 2), 0x00000000, (0x0e00 << 16) | (0x88b0 >> 2), 0x00000000, (0x0e00 << 16) | (0x88b4 >> 2), 0x00000000, (0x0e00 << 16) | (0x88b8 >> 2), 0x00000000, (0x0e00 << 16) | (0x88bc >> 2), 0x00000000, (0x0400 << 16) | (0x89c0 >> 2), 0x00000000, (0x0e00 << 16) | (0x88c4 >> 2), 0x00000000, (0x0e00 << 16) | (0x88c8 >> 2), 0x00000000, (0x0e00 << 16) | (0x88d0 >> 2), 0x00000000, (0x0e00 << 16) | (0x88d4 >> 2), 0x00000000, (0x0e00 << 16) | (0x88d8 >> 2), 0x00000000, (0x0e00 << 16) | (0x8980 >> 2), 0x00000000, (0x0e00 << 16) | (0x30938 >> 2), 0x00000000, (0x0e00 << 16) | (0x3093c >> 2), 0x00000000, (0x0e00 << 16) | (0x30940 >> 2), 0x00000000, (0x0e00 << 16) | (0x89a0 >> 2), 0x00000000, (0x0e00 << 16) | (0x30900 >> 2), 0x00000000, (0x0e00 << 16) | (0x30904 >> 2), 0x00000000, (0x0e00 << 16) | (0x89b4 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c210 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c214 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c218 >> 2), 0x00000000, (0x0e00 << 16) | (0x8904 >> 2), 0x00000000, 0x5, (0x0e00 << 16) | (0x8c28 >> 2), (0x0e00 << 16) | (0x8c2c >> 2), (0x0e00 << 16) | (0x8c30 >> 2), (0x0e00 << 16) | (0x8c34 >> 2), (0x0e00 << 16) | (0x9600 >> 2), }; static const u32 kalindi_rlc_save_restore_register_list[] = { (0x0e00 << 16) | (0xc12c >> 2), 0x00000000, (0x0e00 << 16) | (0xc140 >> 2), 0x00000000, (0x0e00 << 16) | (0xc150 >> 2), 0x00000000, (0x0e00 << 16) | (0xc15c >> 2), 0x00000000, (0x0e00 << 16) | (0xc168 >> 2), 0x00000000, (0x0e00 << 16) | (0xc170 >> 2), 0x00000000, (0x0e00 << 16) | (0xc204 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2b4 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2b8 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2bc >> 2), 0x00000000, (0x0e00 << 16) | (0xc2c0 >> 2), 0x00000000, (0x0e00 << 16) | (0x8228 >> 2), 0x00000000, (0x0e00 << 16) | (0x829c >> 2), 0x00000000, (0x0e00 << 16) | (0x869c >> 2), 0x00000000, (0x0600 << 16) | (0x98f4 >> 2), 0x00000000, (0x0e00 << 16) | (0x98f8 >> 2), 0x00000000, (0x0e00 << 16) | (0x9900 >> 2), 0x00000000, (0x0e00 << 16) | (0xc260 >> 2), 0x00000000, (0x0e00 << 16) | (0x90e8 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c000 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c00c >> 2), 0x00000000, (0x0e00 << 16) | (0x8c1c >> 2), 0x00000000, (0x0e00 << 16) | (0x9700 >> 2), 0x00000000, (0x0e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x4e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x5e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x6e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x7e00 << 16) | (0xcd20 >> 2), 0x00000000, (0x0e00 << 16) | (0x89bc >> 2), 0x00000000, (0x0e00 << 16) | (0x8900 >> 2), 0x00000000, 0x3, (0x0e00 << 16) | (0xc130 >> 2), 0x00000000, (0x0e00 << 16) | (0xc134 >> 2), 0x00000000, (0x0e00 << 16) | (0xc1fc >> 2), 0x00000000, (0x0e00 << 16) | (0xc208 >> 2), 0x00000000, (0x0e00 << 16) | (0xc264 >> 2), 0x00000000, (0x0e00 << 16) | (0xc268 >> 2), 0x00000000, (0x0e00 << 16) | (0xc26c >> 2), 0x00000000, (0x0e00 << 16) | (0xc270 >> 2), 0x00000000, (0x0e00 << 16) | (0xc274 >> 2), 0x00000000, (0x0e00 << 16) | (0xc28c >> 2), 0x00000000, (0x0e00 << 16) | (0xc290 >> 2), 0x00000000, (0x0e00 << 16) | (0xc294 >> 2), 0x00000000, (0x0e00 << 16) | (0xc298 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2a0 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2a4 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2a8 >> 2), 0x00000000, (0x0e00 << 16) | (0xc2ac >> 2), 0x00000000, (0x0e00 << 16) | (0x301d0 >> 2), 0x00000000, (0x0e00 << 16) | (0x30238 >> 2), 0x00000000, (0x0e00 << 16) | (0x30250 >> 2), 0x00000000, (0x0e00 << 16) | (0x30254 >> 2), 0x00000000, (0x0e00 << 16) | (0x30258 >> 2), 0x00000000, (0x0e00 << 16) | (0x3025c >> 2), 0x00000000, (0x4e00 << 16) | (0xc900 >> 2), 0x00000000, (0x5e00 << 16) | (0xc900 >> 2), 0x00000000, (0x6e00 << 16) | (0xc900 >> 2), 0x00000000, (0x7e00 << 16) | (0xc900 >> 2), 0x00000000, (0x4e00 << 16) | (0xc904 >> 2), 0x00000000, (0x5e00 << 16) | (0xc904 >> 2), 0x00000000, (0x6e00 << 16) | (0xc904 >> 2), 0x00000000, (0x7e00 << 16) | (0xc904 >> 2), 0x00000000, (0x4e00 << 16) | (0xc908 >> 2), 0x00000000, (0x5e00 << 16) | (0xc908 >> 2), 0x00000000, (0x6e00 << 16) | (0xc908 >> 2), 0x00000000, (0x7e00 << 16) | (0xc908 >> 2), 0x00000000, (0x4e00 << 16) | (0xc90c >> 2), 0x00000000, (0x5e00 << 16) | (0xc90c >> 2), 0x00000000, (0x6e00 << 16) | (0xc90c >> 2), 0x00000000, (0x7e00 << 16) | (0xc90c >> 2), 0x00000000, (0x4e00 << 16) | (0xc910 >> 2), 0x00000000, (0x5e00 << 16) | (0xc910 >> 2), 0x00000000, (0x6e00 << 16) | (0xc910 >> 2), 0x00000000, (0x7e00 << 16) | (0xc910 >> 2), 0x00000000, (0x0e00 << 16) | (0xc99c >> 2), 0x00000000, (0x0e00 << 16) | (0x9834 >> 2), 0x00000000, (0x0000 << 16) | (0x30f00 >> 2), 0x00000000, (0x0000 << 16) | (0x30f04 >> 2), 0x00000000, (0x0000 << 16) | (0x30f08 >> 2), 0x00000000, (0x0000 << 16) | (0x30f0c >> 2), 0x00000000, (0x0600 << 16) | (0x9b7c >> 2), 0x00000000, (0x0e00 << 16) | (0x8a14 >> 2), 0x00000000, (0x0e00 << 16) | (0x8a18 >> 2), 0x00000000, (0x0600 << 16) | (0x30a00 >> 2), 0x00000000, (0x0e00 << 16) | (0x8bf0 >> 2), 0x00000000, (0x0e00 << 16) | (0x8bcc >> 2), 0x00000000, (0x0e00 << 16) | (0x8b24 >> 2), 0x00000000, (0x0e00 << 16) | (0x30a04 >> 2), 0x00000000, (0x0600 << 16) | (0x30a10 >> 2), 0x00000000, (0x0600 << 16) | (0x30a14 >> 2), 0x00000000, (0x0600 << 16) | (0x30a18 >> 2), 0x00000000, (0x0600 << 16) | (0x30a2c >> 2), 0x00000000, (0x0e00 << 16) | (0xc700 >> 2), 0x00000000, (0x0e00 << 16) | (0xc704 >> 2), 0x00000000, (0x0e00 << 16) | (0xc708 >> 2), 0x00000000, (0x0e00 << 16) | (0xc768 >> 2), 0x00000000, (0x0400 << 16) | (0xc770 >> 2), 0x00000000, (0x0400 << 16) | (0xc774 >> 2), 0x00000000, (0x0400 << 16) | (0xc798 >> 2), 0x00000000, (0x0400 << 16) | (0xc79c >> 2), 0x00000000, (0x0e00 << 16) | (0x9100 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c010 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c00 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c04 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c20 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c38 >> 2), 0x00000000, (0x0e00 << 16) | (0x8c3c >> 2), 0x00000000, (0x0e00 << 16) | (0xae00 >> 2), 0x00000000, (0x0e00 << 16) | (0x9604 >> 2), 0x00000000, (0x0e00 << 16) | (0xac08 >> 2), 0x00000000, (0x0e00 << 16) | (0xac0c >> 2), 0x00000000, (0x0e00 << 16) | (0xac10 >> 2), 0x00000000, (0x0e00 << 16) | (0xac14 >> 2), 0x00000000, (0x0e00 << 16) | (0xac58 >> 2), 0x00000000, (0x0e00 << 16) | (0xac68 >> 2), 0x00000000, (0x0e00 << 16) | (0xac6c >> 2), 0x00000000, (0x0e00 << 16) | (0xac70 >> 2), 0x00000000, (0x0e00 << 16) | (0xac74 >> 2), 0x00000000, (0x0e00 << 16) | (0xac78 >> 2), 0x00000000, (0x0e00 << 16) | (0xac7c >> 2), 0x00000000, (0x0e00 << 16) | (0xac80 >> 2), 0x00000000, (0x0e00 << 16) | (0xac84 >> 2), 0x00000000, (0x0e00 << 16) | (0xac88 >> 2), 0x00000000, (0x0e00 << 16) | (0xac8c >> 2), 0x00000000, (0x0e00 << 16) | (0x970c >> 2), 0x00000000, (0x0e00 << 16) | (0x9714 >> 2), 0x00000000, (0x0e00 << 16) | (0x9718 >> 2), 0x00000000, (0x0e00 << 16) | (0x971c >> 2), 0x00000000, (0x0e00 << 16) | (0x31068 >> 2), 0x00000000, (0x4e00 << 16) | (0x31068 >> 2), 0x00000000, (0x5e00 << 16) | (0x31068 >> 2), 0x00000000, (0x6e00 << 16) | (0x31068 >> 2), 0x00000000, (0x7e00 << 16) | (0x31068 >> 2), 0x00000000, (0x0e00 << 16) | (0xcd10 >> 2), 0x00000000, (0x0e00 << 16) | (0xcd14 >> 2), 0x00000000, (0x0e00 << 16) | (0x88b0 >> 2), 0x00000000, (0x0e00 << 16) | (0x88b4 >> 2), 0x00000000, (0x0e00 << 16) | (0x88b8 >> 2), 0x00000000, (0x0e00 << 16) | (0x88bc >> 2), 0x00000000, (0x0400 << 16) | (0x89c0 >> 2), 0x00000000, (0x0e00 << 16) | (0x88c4 >> 2), 0x00000000, (0x0e00 << 16) | (0x88c8 >> 2), 0x00000000, (0x0e00 << 16) | (0x88d0 >> 2), 0x00000000, (0x0e00 << 16) | (0x88d4 >> 2), 0x00000000, (0x0e00 << 16) | (0x88d8 >> 2), 0x00000000, (0x0e00 << 16) | (0x8980 >> 2), 0x00000000, (0x0e00 << 16) | (0x30938 >> 2), 0x00000000, (0x0e00 << 16) | (0x3093c >> 2), 0x00000000, (0x0e00 << 16) | (0x30940 >> 2), 0x00000000, (0x0e00 << 16) | (0x89a0 >> 2), 0x00000000, (0x0e00 << 16) | (0x30900 >> 2), 0x00000000, (0x0e00 << 16) | (0x30904 >> 2), 0x00000000, (0x0e00 << 16) | (0x89b4 >> 2), 0x00000000, (0x0e00 << 16) | (0x3e1fc >> 2), 0x00000000, (0x0e00 << 16) | (0x3c210 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c214 >> 2), 0x00000000, (0x0e00 << 16) | (0x3c218 >> 2), 0x00000000, (0x0e00 << 16) | (0x8904 >> 2), 0x00000000, 0x5, (0x0e00 << 16) | (0x8c28 >> 2), (0x0e00 << 16) | (0x8c2c >> 2), (0x0e00 << 16) | (0x8c30 >> 2), (0x0e00 << 16) | (0x8c34 >> 2), (0x0e00 << 16) | (0x9600 >> 2), }; static const u32 bonaire_golden_spm_registers[] = { 0x30800, 0xe0ffffff, 0xe0000000 }; static const u32 bonaire_golden_common_registers[] = { 0xc770, 0xffffffff, 0x00000800, 0xc774, 0xffffffff, 0x00000800, 0xc798, 0xffffffff, 0x00007fbf, 0xc79c, 0xffffffff, 0x00007faf }; static const u32 bonaire_golden_registers[] = { 0x3354, 0x00000333, 0x00000333, 0x3350, 0x000c0fc0, 0x00040200, 0x9a10, 0x00010000, 0x00058208, 0x3c000, 0xffff1fff, 0x00140000, 0x3c200, 0xfdfc0fff, 0x00000100, 0x3c234, 0x40000000, 0x40000200, 0x9830, 0xffffffff, 0x00000000, 0x9834, 0xf00fffff, 0x00000400, 0x9838, 0x0002021c, 0x00020200, 0xc78, 0x00000080, 0x00000000, 0x5bb0, 0x000000f0, 0x00000070, 0x5bc0, 0xf0311fff, 0x80300000, 0x98f8, 0x73773777, 0x12010001, 0x350c, 0x00810000, 0x408af000, 0x7030, 0x31000111, 0x00000011, 0x2f48, 0x73773777, 0x12010001, 0x220c, 0x00007fb6, 0x0021a1b1, 0x2210, 0x00007fb6, 0x002021b1, 0x2180, 0x00007fb6, 0x00002191, 0x2218, 0x00007fb6, 0x002121b1, 0x221c, 0x00007fb6, 0x002021b1, 0x21dc, 0x00007fb6, 0x00002191, 0x21e0, 0x00007fb6, 0x00002191, 0x3628, 0x0000003f, 0x0000000a, 0x362c, 0x0000003f, 0x0000000a, 0x2ae4, 0x00073ffe, 0x000022a2, 0x240c, 0x000007ff, 0x00000000, 0x8a14, 0xf000003f, 0x00000007, 0x8bf0, 0x00002001, 0x00000001, 0x8b24, 0xffffffff, 0x00ffffff, 0x30a04, 0x0000ff0f, 0x00000000, 0x28a4c, 0x07ffffff, 0x06000000, 0x4d8, 0x00000fff, 0x00000100, 0x3e78, 0x00000001, 0x00000002, 0x9100, 0x03000000, 0x0362c688, 0x8c00, 0x000000ff, 0x00000001, 0xe40, 0x00001fff, 0x00001fff, 0x9060, 0x0000007f, 0x00000020, 0x9508, 0x00010000, 0x00010000, 0xac14, 0x000003ff, 0x000000f3, 0xac0c, 0xffffffff, 0x00001032 }; static const u32 bonaire_mgcg_cgcg_init[] = { 0xc420, 0xffffffff, 0xfffffffc, 0x30800, 0xffffffff, 0xe0000000, 0x3c2a0, 0xffffffff, 0x00000100, 0x3c208, 0xffffffff, 0x00000100, 0x3c2c0, 0xffffffff, 0xc0000100, 0x3c2c8, 0xffffffff, 0xc0000100, 0x3c2c4, 0xffffffff, 0xc0000100, 0x55e4, 0xffffffff, 0x00600100, 0x3c280, 0xffffffff, 0x00000100, 0x3c214, 0xffffffff, 0x06000100, 0x3c220, 0xffffffff, 0x00000100, 0x3c218, 0xffffffff, 0x06000100, 0x3c204, 0xffffffff, 0x00000100, 0x3c2e0, 0xffffffff, 0x00000100, 0x3c224, 0xffffffff, 0x00000100, 0x3c200, 0xffffffff, 0x00000100, 0x3c230, 0xffffffff, 0x00000100, 0x3c234, 0xffffffff, 0x00000100, 0x3c250, 0xffffffff, 0x00000100, 0x3c254, 0xffffffff, 0x00000100, 0x3c258, 0xffffffff, 0x00000100, 0x3c25c, 0xffffffff, 0x00000100, 0x3c260, 0xffffffff, 0x00000100, 0x3c27c, 0xffffffff, 0x00000100, 0x3c278, 0xffffffff, 0x00000100, 0x3c210, 0xffffffff, 0x06000100, 0x3c290, 0xffffffff, 0x00000100, 0x3c274, 0xffffffff, 0x00000100, 0x3c2b4, 0xffffffff, 0x00000100, 0x3c2b0, 0xffffffff, 0x00000100, 0x3c270, 0xffffffff, 0x00000100, 0x30800, 0xffffffff, 0xe0000000, 0x3c020, 0xffffffff, 0x00010000, 0x3c024, 0xffffffff, 0x00030002, 0x3c028, 0xffffffff, 0x00040007, 0x3c02c, 0xffffffff, 0x00060005, 0x3c030, 0xffffffff, 0x00090008, 0x3c034, 0xffffffff, 0x00010000, 0x3c038, 0xffffffff, 0x00030002, 0x3c03c, 0xffffffff, 0x00040007, 0x3c040, 0xffffffff, 0x00060005, 0x3c044, 0xffffffff, 0x00090008, 0x3c048, 0xffffffff, 0x00010000, 0x3c04c, 0xffffffff, 0x00030002, 0x3c050, 0xffffffff, 0x00040007, 0x3c054, 0xffffffff, 0x00060005, 0x3c058, 0xffffffff, 0x00090008, 0x3c05c, 0xffffffff, 0x00010000, 0x3c060, 0xffffffff, 0x00030002, 0x3c064, 0xffffffff, 0x00040007, 0x3c068, 0xffffffff, 0x00060005, 0x3c06c, 0xffffffff, 0x00090008, 0x3c070, 0xffffffff, 0x00010000, 0x3c074, 0xffffffff, 0x00030002, 0x3c078, 0xffffffff, 0x00040007, 0x3c07c, 0xffffffff, 0x00060005, 0x3c080, 0xffffffff, 0x00090008, 0x3c084, 0xffffffff, 0x00010000, 0x3c088, 0xffffffff, 0x00030002, 0x3c08c, 0xffffffff, 0x00040007, 0x3c090, 0xffffffff, 0x00060005, 0x3c094, 0xffffffff, 0x00090008, 0x3c098, 0xffffffff, 0x00010000, 0x3c09c, 0xffffffff, 0x00030002, 0x3c0a0, 0xffffffff, 0x00040007, 0x3c0a4, 0xffffffff, 0x00060005, 0x3c0a8, 0xffffffff, 0x00090008, 0x3c000, 0xffffffff, 0x96e00200, 0x8708, 0xffffffff, 0x00900100, 0xc424, 0xffffffff, 0x0020003f, 0x38, 0xffffffff, 0x0140001c, 0x3c, 0x000f0000, 0x000f0000, 0x220, 0xffffffff, 0xC060000C, 0x224, 0xc0000fff, 0x00000100, 0xf90, 0xffffffff, 0x00000100, 0xf98, 0x00000101, 0x00000000, 0x20a8, 0xffffffff, 0x00000104, 0x55e4, 0xff000fff, 0x00000100, 0x30cc, 0xc0000fff, 0x00000104, 0xc1e4, 0x00000001, 0x00000001, 0xd00c, 0xff000ff0, 0x00000100, 0xd80c, 0xff000ff0, 0x00000100 }; static const u32 spectre_golden_spm_registers[] = { 0x30800, 0xe0ffffff, 0xe0000000 }; static const u32 spectre_golden_common_registers[] = { 0xc770, 0xffffffff, 0x00000800, 0xc774, 0xffffffff, 0x00000800, 0xc798, 0xffffffff, 0x00007fbf, 0xc79c, 0xffffffff, 0x00007faf }; static const u32 spectre_golden_registers[] = { 0x3c000, 0xffff1fff, 0x96940200, 0x3c00c, 0xffff0001, 0xff000000, 0x3c200, 0xfffc0fff, 0x00000100, 0x6ed8, 0x00010101, 0x00010000, 0x9834, 0xf00fffff, 0x00000400, 0x9838, 0xfffffffc, 0x00020200, 0x5bb0, 0x000000f0, 0x00000070, 0x5bc0, 0xf0311fff, 0x80300000, 0x98f8, 0x73773777, 0x12010001, 0x9b7c, 0x00ff0000, 0x00fc0000, 0x2f48, 0x73773777, 0x12010001, 0x8a14, 0xf000003f, 0x00000007, 0x8b24, 0xffffffff, 0x00ffffff, 0x28350, 0x3f3f3fff, 0x00000082, 0x28355, 0x0000003f, 0x00000000, 0x3e78, 0x00000001, 0x00000002, 0x913c, 0xffff03df, 0x00000004, 0xc768, 0x00000008, 0x00000008, 0x8c00, 0x000008ff, 0x00000800, 0x9508, 0x00010000, 0x00010000, 0xac0c, 0xffffffff, 0x54763210, 0x214f8, 0x01ff01ff, 0x00000002, 0x21498, 0x007ff800, 0x00200000, 0x2015c, 0xffffffff, 0x00000f40, 0x30934, 0xffffffff, 0x00000001 }; static const u32 spectre_mgcg_cgcg_init[] = { 0xc420, 0xffffffff, 0xfffffffc, 0x30800, 0xffffffff, 0xe0000000, 0x3c2a0, 0xffffffff, 0x00000100, 0x3c208, 0xffffffff, 0x00000100, 0x3c2c0, 0xffffffff, 0x00000100, 0x3c2c8, 0xffffffff, 0x00000100, 0x3c2c4, 0xffffffff, 0x00000100, 0x55e4, 0xffffffff, 0x00600100, 0x3c280, 0xffffffff, 0x00000100, 0x3c214, 0xffffffff, 0x06000100, 0x3c220, 0xffffffff, 0x00000100, 0x3c218, 0xffffffff, 0x06000100, 0x3c204, 0xffffffff, 0x00000100, 0x3c2e0, 0xffffffff, 0x00000100, 0x3c224, 0xffffffff, 0x00000100, 0x3c200, 0xffffffff, 0x00000100, 0x3c230, 0xffffffff, 0x00000100, 0x3c234, 0xffffffff, 0x00000100, 0x3c250, 0xffffffff, 0x00000100, 0x3c254, 0xffffffff, 0x00000100, 0x3c258, 0xffffffff, 0x00000100, 0x3c25c, 0xffffffff, 0x00000100, 0x3c260, 0xffffffff, 0x00000100, 0x3c27c, 0xffffffff, 0x00000100, 0x3c278, 0xffffffff, 0x00000100, 0x3c210, 0xffffffff, 0x06000100, 0x3c290, 0xffffffff, 0x00000100, 0x3c274, 0xffffffff, 0x00000100, 0x3c2b4, 0xffffffff, 0x00000100, 0x3c2b0, 0xffffffff, 0x00000100, 0x3c270, 0xffffffff, 0x00000100, 0x30800, 0xffffffff, 0xe0000000, 0x3c020, 0xffffffff, 0x00010000, 0x3c024, 0xffffffff, 0x00030002, 0x3c028, 0xffffffff, 0x00040007, 0x3c02c, 0xffffffff, 0x00060005, 0x3c030, 0xffffffff, 0x00090008, 0x3c034, 0xffffffff, 0x00010000, 0x3c038, 0xffffffff, 0x00030002, 0x3c03c, 0xffffffff, 0x00040007, 0x3c040, 0xffffffff, 0x00060005, 0x3c044, 0xffffffff, 0x00090008, 0x3c048, 0xffffffff, 0x00010000, 0x3c04c, 0xffffffff, 0x00030002, 0x3c050, 0xffffffff, 0x00040007, 0x3c054, 0xffffffff, 0x00060005, 0x3c058, 0xffffffff, 0x00090008, 0x3c05c, 0xffffffff, 0x00010000, 0x3c060, 0xffffffff, 0x00030002, 0x3c064, 0xffffffff, 0x00040007, 0x3c068, 0xffffffff, 0x00060005, 0x3c06c, 0xffffffff, 0x00090008, 0x3c070, 0xffffffff, 0x00010000, 0x3c074, 0xffffffff, 0x00030002, 0x3c078, 0xffffffff, 0x00040007, 0x3c07c, 0xffffffff, 0x00060005, 0x3c080, 0xffffffff, 0x00090008, 0x3c084, 0xffffffff, 0x00010000, 0x3c088, 0xffffffff, 0x00030002, 0x3c08c, 0xffffffff, 0x00040007, 0x3c090, 0xffffffff, 0x00060005, 0x3c094, 0xffffffff, 0x00090008, 0x3c098, 0xffffffff, 0x00010000, 0x3c09c, 0xffffffff, 0x00030002, 0x3c0a0, 0xffffffff, 0x00040007, 0x3c0a4, 0xffffffff, 0x00060005, 0x3c0a8, 0xffffffff, 0x00090008, 0x3c0ac, 0xffffffff, 0x00010000, 0x3c0b0, 0xffffffff, 0x00030002, 0x3c0b4, 0xffffffff, 0x00040007, 0x3c0b8, 0xffffffff, 0x00060005, 0x3c0bc, 0xffffffff, 0x00090008, 0x3c000, 0xffffffff, 0x96e00200, 0x8708, 0xffffffff, 0x00900100, 0xc424, 0xffffffff, 0x0020003f, 0x38, 0xffffffff, 0x0140001c, 0x3c, 0x000f0000, 0x000f0000, 0x220, 0xffffffff, 0xC060000C, 0x224, 0xc0000fff, 0x00000100, 0xf90, 0xffffffff, 0x00000100, 0xf98, 0x00000101, 0x00000000, 0x20a8, 0xffffffff, 0x00000104, 0x55e4, 0xff000fff, 0x00000100, 0x30cc, 0xc0000fff, 0x00000104, 0xc1e4, 0x00000001, 0x00000001, 0xd00c, 0xff000ff0, 0x00000100, 0xd80c, 0xff000ff0, 0x00000100 }; static const u32 kalindi_golden_spm_registers[] = { 0x30800, 0xe0ffffff, 0xe0000000 }; static const u32 kalindi_golden_common_registers[] = { 0xc770, 0xffffffff, 0x00000800, 0xc774, 0xffffffff, 0x00000800, 0xc798, 0xffffffff, 0x00007fbf, 0xc79c, 0xffffffff, 0x00007faf }; static const u32 kalindi_golden_registers[] = { 0x3c000, 0xffffdfff, 0x6e944040, 0x55e4, 0xff607fff, 0xfc000100, 0x3c220, 0xff000fff, 0x00000100, 0x3c224, 0xff000fff, 0x00000100, 0x3c200, 0xfffc0fff, 0x00000100, 0x6ed8, 0x00010101, 0x00010000, 0x9830, 0xffffffff, 0x00000000, 0x9834, 0xf00fffff, 0x00000400, 0x5bb0, 0x000000f0, 0x00000070, 0x5bc0, 0xf0311fff, 0x80300000, 0x98f8, 0x73773777, 0x12010001, 0x98fc, 0xffffffff, 0x00000010, 0x9b7c, 0x00ff0000, 0x00fc0000, 0x8030, 0x00001f0f, 0x0000100a, 0x2f48, 0x73773777, 0x12010001, 0x2408, 0x000fffff, 0x000c007f, 0x8a14, 0xf000003f, 0x00000007, 0x8b24, 0x3fff3fff, 0x00ffcfff, 0x30a04, 0x0000ff0f, 0x00000000, 0x28a4c, 0x07ffffff, 0x06000000, 0x4d8, 0x00000fff, 0x00000100, 0x3e78, 0x00000001, 0x00000002, 0xc768, 0x00000008, 0x00000008, 0x8c00, 0x000000ff, 0x00000003, 0x214f8, 0x01ff01ff, 0x00000002, 0x21498, 0x007ff800, 0x00200000, 0x2015c, 0xffffffff, 0x00000f40, 0x88c4, 0x001f3ae3, 0x00000082, 0x88d4, 0x0000001f, 0x00000010, 0x30934, 0xffffffff, 0x00000000 }; static const u32 kalindi_mgcg_cgcg_init[] = { 0xc420, 0xffffffff, 0xfffffffc, 0x30800, 0xffffffff, 0xe0000000, 0x3c2a0, 0xffffffff, 0x00000100, 0x3c208, 0xffffffff, 0x00000100, 0x3c2c0, 0xffffffff, 0x00000100, 0x3c2c8, 0xffffffff, 0x00000100, 0x3c2c4, 0xffffffff, 0x00000100, 0x55e4, 0xffffffff, 0x00600100, 0x3c280, 0xffffffff, 0x00000100, 0x3c214, 0xffffffff, 0x06000100, 0x3c220, 0xffffffff, 0x00000100, 0x3c218, 0xffffffff, 0x06000100, 0x3c204, 0xffffffff, 0x00000100, 0x3c2e0, 0xffffffff, 0x00000100, 0x3c224, 0xffffffff, 0x00000100, 0x3c200, 0xffffffff, 0x00000100, 0x3c230, 0xffffffff, 0x00000100, 0x3c234, 0xffffffff, 0x00000100, 0x3c250, 0xffffffff, 0x00000100, 0x3c254, 0xffffffff, 0x00000100, 0x3c258, 0xffffffff, 0x00000100, 0x3c25c, 0xffffffff, 0x00000100, 0x3c260, 0xffffffff, 0x00000100, 0x3c27c, 0xffffffff, 0x00000100, 0x3c278, 0xffffffff, 0x00000100, 0x3c210, 0xffffffff, 0x06000100, 0x3c290, 0xffffffff, 0x00000100, 0x3c274, 0xffffffff, 0x00000100, 0x3c2b4, 0xffffffff, 0x00000100, 0x3c2b0, 0xffffffff, 0x00000100, 0x3c270, 0xffffffff, 0x00000100, 0x30800, 0xffffffff, 0xe0000000, 0x3c020, 0xffffffff, 0x00010000, 0x3c024, 0xffffffff, 0x00030002, 0x3c028, 0xffffffff, 0x00040007, 0x3c02c, 0xffffffff, 0x00060005, 0x3c030, 0xffffffff, 0x00090008, 0x3c034, 0xffffffff, 0x00010000, 0x3c038, 0xffffffff, 0x00030002, 0x3c03c, 0xffffffff, 0x00040007, 0x3c040, 0xffffffff, 0x00060005, 0x3c044, 0xffffffff, 0x00090008, 0x3c000, 0xffffffff, 0x96e00200, 0x8708, 0xffffffff, 0x00900100, 0xc424, 0xffffffff, 0x0020003f, 0x38, 0xffffffff, 0x0140001c, 0x3c, 0x000f0000, 0x000f0000, 0x220, 0xffffffff, 0xC060000C, 0x224, 0xc0000fff, 0x00000100, 0x20a8, 0xffffffff, 0x00000104, 0x55e4, 0xff000fff, 0x00000100, 0x30cc, 0xc0000fff, 0x00000104, 0xc1e4, 0x00000001, 0x00000001, 0xd00c, 0xff000ff0, 0x00000100, 0xd80c, 0xff000ff0, 0x00000100 }; static void cik_init_golden_registers(struct radeon_device *rdev) { switch (rdev->family) { case CHIP_BONAIRE: radeon_program_register_sequence(rdev, bonaire_mgcg_cgcg_init, (const u32)ARRAY_SIZE(bonaire_mgcg_cgcg_init)); radeon_program_register_sequence(rdev, bonaire_golden_registers, (const u32)ARRAY_SIZE(bonaire_golden_registers)); radeon_program_register_sequence(rdev, bonaire_golden_common_registers, (const u32)ARRAY_SIZE(bonaire_golden_common_registers)); radeon_program_register_sequence(rdev, bonaire_golden_spm_registers, (const u32)ARRAY_SIZE(bonaire_golden_spm_registers)); break; case CHIP_KABINI: radeon_program_register_sequence(rdev, kalindi_mgcg_cgcg_init, (const u32)ARRAY_SIZE(kalindi_mgcg_cgcg_init)); radeon_program_register_sequence(rdev, kalindi_golden_registers, (const u32)ARRAY_SIZE(kalindi_golden_registers)); radeon_program_register_sequence(rdev, kalindi_golden_common_registers, (const u32)ARRAY_SIZE(kalindi_golden_common_registers)); radeon_program_register_sequence(rdev, kalindi_golden_spm_registers, (const u32)ARRAY_SIZE(kalindi_golden_spm_registers)); break; case CHIP_KAVERI: radeon_program_register_sequence(rdev, spectre_mgcg_cgcg_init, (const u32)ARRAY_SIZE(spectre_mgcg_cgcg_init)); radeon_program_register_sequence(rdev, spectre_golden_registers, (const u32)ARRAY_SIZE(spectre_golden_registers)); radeon_program_register_sequence(rdev, spectre_golden_common_registers, (const u32)ARRAY_SIZE(spectre_golden_common_registers)); radeon_program_register_sequence(rdev, spectre_golden_spm_registers, (const u32)ARRAY_SIZE(spectre_golden_spm_registers)); break; default: break; } } /** * cik_get_xclk - get the xclk * * @rdev: radeon_device pointer * * Returns the reference clock used by the gfx engine * (CIK). */ u32 cik_get_xclk(struct radeon_device *rdev) { u32 reference_clock = rdev->clock.spll.reference_freq; if (rdev->flags & RADEON_IS_IGP) { if (RREG32_SMC(GENERAL_PWRMGT) & GPU_COUNTER_CLK) return reference_clock / 2; } else { if (RREG32_SMC(CG_CLKPIN_CNTL) & XTALIN_DIVIDE) return reference_clock / 4; } return reference_clock; } /** * cik_mm_rdoorbell - read a doorbell dword * * @rdev: radeon_device pointer * @offset: byte offset into the aperture * * Returns the value in the doorbell aperture at the * requested offset (CIK). */ u32 cik_mm_rdoorbell(struct radeon_device *rdev, u32 offset) { if (offset < rdev->doorbell.size) { return readl(((void __iomem *)rdev->doorbell.ptr) + offset); } else { DRM_ERROR("reading beyond doorbell aperture: 0x%08x!\n", offset); return 0; } } /** * cik_mm_wdoorbell - write a doorbell dword * * @rdev: radeon_device pointer * @offset: byte offset into the aperture * @v: value to write * * Writes @v to the doorbell aperture at the * requested offset (CIK). */ void cik_mm_wdoorbell(struct radeon_device *rdev, u32 offset, u32 v) { if (offset < rdev->doorbell.size) { writel(v, ((void __iomem *)rdev->doorbell.ptr) + offset); } else { DRM_ERROR("writing beyond doorbell aperture: 0x%08x!\n", offset); } } #define BONAIRE_IO_MC_REGS_SIZE 36 static const u32 bonaire_io_mc_regs[BONAIRE_IO_MC_REGS_SIZE][2] = { {0x00000070, 0x04400000}, {0x00000071, 0x80c01803}, {0x00000072, 0x00004004}, {0x00000073, 0x00000100}, {0x00000074, 0x00ff0000}, {0x00000075, 0x34000000}, {0x00000076, 0x08000014}, {0x00000077, 0x00cc08ec}, {0x00000078, 0x00000400}, {0x00000079, 0x00000000}, {0x0000007a, 0x04090000}, {0x0000007c, 0x00000000}, {0x0000007e, 0x4408a8e8}, {0x0000007f, 0x00000304}, {0x00000080, 0x00000000}, {0x00000082, 0x00000001}, {0x00000083, 0x00000002}, {0x00000084, 0xf3e4f400}, {0x00000085, 0x052024e3}, {0x00000087, 0x00000000}, {0x00000088, 0x01000000}, {0x0000008a, 0x1c0a0000}, {0x0000008b, 0xff010000}, {0x0000008d, 0xffffefff}, {0x0000008e, 0xfff3efff}, {0x0000008f, 0xfff3efbf}, {0x00000092, 0xf7ffffff}, {0x00000093, 0xffffff7f}, {0x00000095, 0x00101101}, {0x00000096, 0x00000fff}, {0x00000097, 0x00116fff}, {0x00000098, 0x60010000}, {0x00000099, 0x10010000}, {0x0000009a, 0x00006000}, {0x0000009b, 0x00001000}, {0x0000009f, 0x00b48000} }; /** * cik_srbm_select - select specific register instances * * @rdev: radeon_device pointer * @me: selected ME (micro engine) * @pipe: pipe * @queue: queue * @vmid: VMID * * Switches the currently active registers instances. Some * registers are instanced per VMID, others are instanced per * me/pipe/queue combination. */ static void cik_srbm_select(struct radeon_device *rdev, u32 me, u32 pipe, u32 queue, u32 vmid) { u32 srbm_gfx_cntl = (PIPEID(pipe & 0x3) | MEID(me & 0x3) | VMID(vmid & 0xf) | QUEUEID(queue & 0x7)); WREG32(SRBM_GFX_CNTL, srbm_gfx_cntl); } /* ucode loading */ /** * ci_mc_load_microcode - load MC ucode into the hw * * @rdev: radeon_device pointer * * Load the GDDR MC ucode into the hw (CIK). * Returns 0 on success, error on failure. */ static int ci_mc_load_microcode(struct radeon_device *rdev) { const __be32 *fw_data; u32 running, blackout = 0; u32 *io_mc_regs; int i, ucode_size, regs_size; if (!rdev->mc_fw) return -EINVAL; switch (rdev->family) { case CHIP_BONAIRE: default: io_mc_regs = (u32 *)&bonaire_io_mc_regs; ucode_size = CIK_MC_UCODE_SIZE; regs_size = BONAIRE_IO_MC_REGS_SIZE; break; } running = RREG32(MC_SEQ_SUP_CNTL) & RUN_MASK; if (running == 0) { if (running) { blackout = RREG32(MC_SHARED_BLACKOUT_CNTL); WREG32(MC_SHARED_BLACKOUT_CNTL, blackout | 1); } /* reset the engine and set to writable */ WREG32(MC_SEQ_SUP_CNTL, 0x00000008); WREG32(MC_SEQ_SUP_CNTL, 0x00000010); /* load mc io regs */ for (i = 0; i < regs_size; i++) { WREG32(MC_SEQ_IO_DEBUG_INDEX, io_mc_regs[(i << 1)]); WREG32(MC_SEQ_IO_DEBUG_DATA, io_mc_regs[(i << 1) + 1]); } /* load the MC ucode */ fw_data = (const __be32 *)rdev->mc_fw->data; for (i = 0; i < ucode_size; i++) WREG32(MC_SEQ_SUP_PGM, be32_to_cpup(fw_data++)); /* put the engine back into the active state */ WREG32(MC_SEQ_SUP_CNTL, 0x00000008); WREG32(MC_SEQ_SUP_CNTL, 0x00000004); WREG32(MC_SEQ_SUP_CNTL, 0x00000001); /* wait for training to complete */ for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D0) break; udelay(1); } for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D1) break; udelay(1); } if (running) WREG32(MC_SHARED_BLACKOUT_CNTL, blackout); } return 0; } /** * cik_init_microcode - load ucode images from disk * * @rdev: radeon_device pointer * * Use the firmware interface to load the ucode images into * the driver (not loaded into hw). * Returns 0 on success, error on failure. */ static int cik_init_microcode(struct radeon_device *rdev) { const char *chip_name; size_t pfp_req_size, me_req_size, ce_req_size, mec_req_size, rlc_req_size, mc_req_size, sdma_req_size, smc_req_size; char fw_name[30]; int err; DRM_DEBUG("\n"); switch (rdev->family) { case CHIP_BONAIRE: chip_name = "BONAIRE"; pfp_req_size = CIK_PFP_UCODE_SIZE * 4; me_req_size = CIK_ME_UCODE_SIZE * 4; ce_req_size = CIK_CE_UCODE_SIZE * 4; mec_req_size = CIK_MEC_UCODE_SIZE * 4; rlc_req_size = BONAIRE_RLC_UCODE_SIZE * 4; mc_req_size = CIK_MC_UCODE_SIZE * 4; sdma_req_size = CIK_SDMA_UCODE_SIZE * 4; smc_req_size = ALIGN(BONAIRE_SMC_UCODE_SIZE, 4); break; case CHIP_KAVERI: chip_name = "KAVERI"; pfp_req_size = CIK_PFP_UCODE_SIZE * 4; me_req_size = CIK_ME_UCODE_SIZE * 4; ce_req_size = CIK_CE_UCODE_SIZE * 4; mec_req_size = CIK_MEC_UCODE_SIZE * 4; rlc_req_size = KV_RLC_UCODE_SIZE * 4; sdma_req_size = CIK_SDMA_UCODE_SIZE * 4; break; case CHIP_KABINI: chip_name = "KABINI"; pfp_req_size = CIK_PFP_UCODE_SIZE * 4; me_req_size = CIK_ME_UCODE_SIZE * 4; ce_req_size = CIK_CE_UCODE_SIZE * 4; mec_req_size = CIK_MEC_UCODE_SIZE * 4; rlc_req_size = KB_RLC_UCODE_SIZE * 4; sdma_req_size = CIK_SDMA_UCODE_SIZE * 4; break; default: BUG(); } DRM_INFO("Loading %s Microcode\n", chip_name); snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name); err = request_firmware(&rdev->pfp_fw, fw_name, rdev->dev); if (err) goto out; if (rdev->pfp_fw->size != pfp_req_size) { printk(KERN_ERR "cik_cp: Bogus length %zu in firmware \"%s\"\n", rdev->pfp_fw->size, fw_name); err = -EINVAL; goto out; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name); err = request_firmware(&rdev->me_fw, fw_name, rdev->dev); if (err) goto out; if (rdev->me_fw->size != me_req_size) { printk(KERN_ERR "cik_cp: Bogus length %zu in firmware \"%s\"\n", rdev->me_fw->size, fw_name); err = -EINVAL; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_ce.bin", chip_name); err = request_firmware(&rdev->ce_fw, fw_name, rdev->dev); if (err) goto out; if (rdev->ce_fw->size != ce_req_size) { printk(KERN_ERR "cik_cp: Bogus length %zu in firmware \"%s\"\n", rdev->ce_fw->size, fw_name); err = -EINVAL; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_mec.bin", chip_name); err = request_firmware(&rdev->mec_fw, fw_name, rdev->dev); if (err) goto out; if (rdev->mec_fw->size != mec_req_size) { printk(KERN_ERR "cik_cp: Bogus length %zu in firmware \"%s\"\n", rdev->mec_fw->size, fw_name); err = -EINVAL; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", chip_name); err = request_firmware(&rdev->rlc_fw, fw_name, rdev->dev); if (err) goto out; if (rdev->rlc_fw->size != rlc_req_size) { printk(KERN_ERR "cik_rlc: Bogus length %zu in firmware \"%s\"\n", rdev->rlc_fw->size, fw_name); err = -EINVAL; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_sdma.bin", chip_name); err = request_firmware(&rdev->sdma_fw, fw_name, rdev->dev); if (err) goto out; if (rdev->sdma_fw->size != sdma_req_size) { printk(KERN_ERR "cik_sdma: Bogus length %zu in firmware \"%s\"\n", rdev->sdma_fw->size, fw_name); err = -EINVAL; } /* No SMC, MC ucode on APUs */ if (!(rdev->flags & RADEON_IS_IGP)) { snprintf(fw_name, sizeof(fw_name), "radeon/%s_mc.bin", chip_name); err = request_firmware(&rdev->mc_fw, fw_name, rdev->dev); if (err) goto out; if (rdev->mc_fw->size != mc_req_size) { printk(KERN_ERR "cik_mc: Bogus length %zu in firmware \"%s\"\n", rdev->mc_fw->size, fw_name); err = -EINVAL; } snprintf(fw_name, sizeof(fw_name), "radeon/%s_smc.bin", chip_name); err = request_firmware(&rdev->smc_fw, fw_name, rdev->dev); if (err) { printk(KERN_ERR "smc: error loading firmware \"%s\"\n", fw_name); release_firmware(rdev->smc_fw); rdev->smc_fw = NULL; } else if (rdev->smc_fw->size != smc_req_size) { printk(KERN_ERR "cik_smc: Bogus length %zu in firmware \"%s\"\n", rdev->smc_fw->size, fw_name); err = -EINVAL; } } out: if (err) { if (err != -EINVAL) printk(KERN_ERR "cik_cp: Failed to load firmware \"%s\"\n", fw_name); release_firmware(rdev->pfp_fw); rdev->pfp_fw = NULL; release_firmware(rdev->me_fw); rdev->me_fw = NULL; release_firmware(rdev->ce_fw); rdev->ce_fw = NULL; release_firmware(rdev->rlc_fw); rdev->rlc_fw = NULL; release_firmware(rdev->mc_fw); rdev->mc_fw = NULL; release_firmware(rdev->smc_fw); rdev->smc_fw = NULL; } return err; } /* * Core functions */ /** * cik_tiling_mode_table_init - init the hw tiling table * * @rdev: radeon_device pointer * * Starting with SI, the tiling setup is done globally in a * set of 32 tiling modes. Rather than selecting each set of * parameters per surface as on older asics, we just select * which index in the tiling table we want to use, and the * surface uses those parameters (CIK). */ static void cik_tiling_mode_table_init(struct radeon_device *rdev) { const u32 num_tile_mode_states = 32; const u32 num_secondary_tile_mode_states = 16; u32 reg_offset, gb_tile_moden, split_equal_to_row_size; u32 num_pipe_configs; u32 num_rbs = rdev->config.cik.max_backends_per_se * rdev->config.cik.max_shader_engines; switch (rdev->config.cik.mem_row_size_in_kb) { case 1: split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_1KB; break; case 2: default: split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_2KB; break; case 4: split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_4KB; break; } num_pipe_configs = rdev->config.cik.max_tile_pipes; if (num_pipe_configs > 8) num_pipe_configs = 8; /* ??? */ if (num_pipe_configs == 8) { for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) { switch (reg_offset) { case 0: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B)); break; case 1: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B)); break; case 2: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); break; case 3: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B)); break; case 4: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(split_equal_to_row_size)); break; case 5: gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); break; case 6: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); break; case 7: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(split_equal_to_row_size)); break; case 8: gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16)); break; case 9: gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING)); break; case 10: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 11: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 12: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 13: gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING)); break; case 14: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 16: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 17: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 27: gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING)); break; case 28: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 29: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 30: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; default: gb_tile_moden = 0; break; } rdev->config.cik.tile_mode_array[reg_offset] = gb_tile_moden; WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden); } for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) { switch (reg_offset) { case 0: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 1: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 2: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 3: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 4: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_8_BANK)); break; case 5: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_4_BANK)); break; case 6: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_2_BANK)); break; case 8: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 9: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 10: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 11: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 12: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_8_BANK)); break; case 13: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_4_BANK)); break; case 14: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_2_BANK)); break; default: gb_tile_moden = 0; break; } WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden); } } else if (num_pipe_configs == 4) { if (num_rbs == 4) { for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) { switch (reg_offset) { case 0: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B)); break; case 1: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B)); break; case 2: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); break; case 3: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B)); break; case 4: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(split_equal_to_row_size)); break; case 5: gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); break; case 6: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); break; case 7: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(split_equal_to_row_size)); break; case 8: gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | PIPE_CONFIG(ADDR_SURF_P4_16x16)); break; case 9: gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING)); break; case 10: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 11: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 12: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 13: gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING)); break; case 14: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 16: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 17: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 27: gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING)); break; case 28: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 29: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 30: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; default: gb_tile_moden = 0; break; } rdev->config.cik.tile_mode_array[reg_offset] = gb_tile_moden; WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden); } } else if (num_rbs < 4) { for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) { switch (reg_offset) { case 0: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B)); break; case 1: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B)); break; case 2: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); break; case 3: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B)); break; case 4: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(split_equal_to_row_size)); break; case 5: gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); break; case 6: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); break; case 7: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(split_equal_to_row_size)); break; case 8: gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | PIPE_CONFIG(ADDR_SURF_P4_8x16)); break; case 9: gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING)); break; case 10: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 11: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 12: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 13: gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING)); break; case 14: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 16: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 17: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 27: gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING)); break; case 28: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 29: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 30: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; default: gb_tile_moden = 0; break; } rdev->config.cik.tile_mode_array[reg_offset] = gb_tile_moden; WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden); } } for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) { switch (reg_offset) { case 0: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 1: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 2: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 3: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 4: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 5: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); break; case 6: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_4_BANK)); break; case 8: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 9: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 10: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 11: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 12: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 13: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); break; case 14: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_4_BANK)); break; default: gb_tile_moden = 0; break; } WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden); } } else if (num_pipe_configs == 2) { for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) { switch (reg_offset) { case 0: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B)); break; case 1: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B)); break; case 2: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); break; case 3: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B)); break; case 4: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(split_equal_to_row_size)); break; case 5: gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); break; case 6: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B)); break; case 7: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(split_equal_to_row_size)); break; case 8: gb_tile_moden = ARRAY_MODE(ARRAY_LINEAR_ALIGNED); break; case 9: gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING)); break; case 10: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P2) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 11: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P2) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 12: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P2) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 13: gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING)); break; case 14: gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P2) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 16: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P2) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 17: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P2) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 27: gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING)); break; case 28: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P2) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 29: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P2) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; case 30: gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P2) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); break; default: gb_tile_moden = 0; break; } rdev->config.cik.tile_mode_array[reg_offset] = gb_tile_moden; WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden); } for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) { switch (reg_offset) { case 0: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 1: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 2: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 3: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 4: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 5: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 6: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); break; case 8: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 9: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 10: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 11: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 12: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 13: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); break; case 14: gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); break; default: gb_tile_moden = 0; break; } WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden); } } else DRM_ERROR("unknown num pipe config: 0x%x\n", num_pipe_configs); } /** * cik_select_se_sh - select which SE, SH to address * * @rdev: radeon_device pointer * @se_num: shader engine to address * @sh_num: sh block to address * * Select which SE, SH combinations to address. Certain * registers are instanced per SE or SH. 0xffffffff means * broadcast to all SEs or SHs (CIK). */ static void cik_select_se_sh(struct radeon_device *rdev, u32 se_num, u32 sh_num) { u32 data = INSTANCE_BROADCAST_WRITES; if ((se_num == 0xffffffff) && (sh_num == 0xffffffff)) data |= SH_BROADCAST_WRITES | SE_BROADCAST_WRITES; else if (se_num == 0xffffffff) data |= SE_BROADCAST_WRITES | SH_INDEX(sh_num); else if (sh_num == 0xffffffff) data |= SH_BROADCAST_WRITES | SE_INDEX(se_num); else data |= SH_INDEX(sh_num) | SE_INDEX(se_num); WREG32(GRBM_GFX_INDEX, data); } /** * cik_create_bitmask - create a bitmask * * @bit_width: length of the mask * * create a variable length bit mask (CIK). * Returns the bitmask. */ static u32 cik_create_bitmask(u32 bit_width) { u32 i, mask = 0; for (i = 0; i < bit_width; i++) { mask <<= 1; mask |= 1; } return mask; } /** * cik_select_se_sh - select which SE, SH to address * * @rdev: radeon_device pointer * @max_rb_num: max RBs (render backends) for the asic * @se_num: number of SEs (shader engines) for the asic * @sh_per_se: number of SH blocks per SE for the asic * * Calculates the bitmask of disabled RBs (CIK). * Returns the disabled RB bitmask. */ static u32 cik_get_rb_disabled(struct radeon_device *rdev, u32 max_rb_num, u32 se_num, u32 sh_per_se) { u32 data, mask; data = RREG32(CC_RB_BACKEND_DISABLE); if (data & 1) data &= BACKEND_DISABLE_MASK; else data = 0; data |= RREG32(GC_USER_RB_BACKEND_DISABLE); data >>= BACKEND_DISABLE_SHIFT; mask = cik_create_bitmask(max_rb_num / se_num / sh_per_se); return data & mask; } /** * cik_setup_rb - setup the RBs on the asic * * @rdev: radeon_device pointer * @se_num: number of SEs (shader engines) for the asic * @sh_per_se: number of SH blocks per SE for the asic * @max_rb_num: max RBs (render backends) for the asic * * Configures per-SE/SH RB registers (CIK). */ static void cik_setup_rb(struct radeon_device *rdev, u32 se_num, u32 sh_per_se, u32 max_rb_num) { int i, j; u32 data, mask; u32 disabled_rbs = 0; u32 enabled_rbs = 0; for (i = 0; i < se_num; i++) { for (j = 0; j < sh_per_se; j++) { cik_select_se_sh(rdev, i, j); data = cik_get_rb_disabled(rdev, max_rb_num, se_num, sh_per_se); disabled_rbs |= data << ((i * sh_per_se + j) * CIK_RB_BITMAP_WIDTH_PER_SH); } } cik_select_se_sh(rdev, 0xffffffff, 0xffffffff); mask = 1; for (i = 0; i < max_rb_num; i++) { if (!(disabled_rbs & mask)) enabled_rbs |= mask; mask <<= 1; } for (i = 0; i < se_num; i++) { cik_select_se_sh(rdev, i, 0xffffffff); data = 0; for (j = 0; j < sh_per_se; j++) { switch (enabled_rbs & 3) { case 1: data |= (RASTER_CONFIG_RB_MAP_0 << (i * sh_per_se + j) * 2); break; case 2: data |= (RASTER_CONFIG_RB_MAP_3 << (i * sh_per_se + j) * 2); break; case 3: default: data |= (RASTER_CONFIG_RB_MAP_2 << (i * sh_per_se + j) * 2); break; } enabled_rbs >>= 2; } WREG32(PA_SC_RASTER_CONFIG, data); } cik_select_se_sh(rdev, 0xffffffff, 0xffffffff); } /** * cik_gpu_init - setup the 3D engine * * @rdev: radeon_device pointer * * Configures the 3D engine and tiling configuration * registers so that the 3D engine is usable. */ static void cik_gpu_init(struct radeon_device *rdev) { u32 gb_addr_config = RREG32(GB_ADDR_CONFIG); u32 mc_shared_chmap, mc_arb_ramcfg; u32 hdp_host_path_cntl; u32 tmp; int i, j; switch (rdev->family) { case CHIP_BONAIRE: rdev->config.cik.max_shader_engines = 2; rdev->config.cik.max_tile_pipes = 4; rdev->config.cik.max_cu_per_sh = 7; rdev->config.cik.max_sh_per_se = 1; rdev->config.cik.max_backends_per_se = 2; rdev->config.cik.max_texture_channel_caches = 4; rdev->config.cik.max_gprs = 256; rdev->config.cik.max_gs_threads = 32; rdev->config.cik.max_hw_contexts = 8; rdev->config.cik.sc_prim_fifo_size_frontend = 0x20; rdev->config.cik.sc_prim_fifo_size_backend = 0x100; rdev->config.cik.sc_hiz_tile_fifo_size = 0x30; rdev->config.cik.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_KAVERI: /* TODO */ break; case CHIP_KABINI: default: rdev->config.cik.max_shader_engines = 1; rdev->config.cik.max_tile_pipes = 2; rdev->config.cik.max_cu_per_sh = 2; rdev->config.cik.max_sh_per_se = 1; rdev->config.cik.max_backends_per_se = 1; rdev->config.cik.max_texture_channel_caches = 2; rdev->config.cik.max_gprs = 256; rdev->config.cik.max_gs_threads = 16; rdev->config.cik.max_hw_contexts = 8; rdev->config.cik.sc_prim_fifo_size_frontend = 0x20; rdev->config.cik.sc_prim_fifo_size_backend = 0x100; rdev->config.cik.sc_hiz_tile_fifo_size = 0x30; rdev->config.cik.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN; break; } /* Initialize HDP */ for (i = 0, j = 0; i < 32; i++, j += 0x18) { WREG32((0x2c14 + j), 0x00000000); WREG32((0x2c18 + j), 0x00000000); WREG32((0x2c1c + j), 0x00000000); WREG32((0x2c20 + j), 0x00000000); WREG32((0x2c24 + j), 0x00000000); } WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff)); WREG32(BIF_FB_EN, FB_READ_EN | FB_WRITE_EN); mc_shared_chmap = RREG32(MC_SHARED_CHMAP); mc_arb_ramcfg = RREG32(MC_ARB_RAMCFG); rdev->config.cik.num_tile_pipes = rdev->config.cik.max_tile_pipes; rdev->config.cik.mem_max_burst_length_bytes = 256; tmp = (mc_arb_ramcfg & NOOFCOLS_MASK) >> NOOFCOLS_SHIFT; rdev->config.cik.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024; if (rdev->config.cik.mem_row_size_in_kb > 4) rdev->config.cik.mem_row_size_in_kb = 4; /* XXX use MC settings? */ rdev->config.cik.shader_engine_tile_size = 32; rdev->config.cik.num_gpus = 1; rdev->config.cik.multi_gpu_tile_size = 64; /* fix up row size */ gb_addr_config &= ~ROW_SIZE_MASK; switch (rdev->config.cik.mem_row_size_in_kb) { case 1: default: gb_addr_config |= ROW_SIZE(0); break; case 2: gb_addr_config |= ROW_SIZE(1); break; case 4: gb_addr_config |= ROW_SIZE(2); break; } /* setup tiling info dword. gb_addr_config is not adequate since it does * not have bank info, so create a custom tiling dword. * bits 3:0 num_pipes * bits 7:4 num_banks * bits 11:8 group_size * bits 15:12 row_size */ rdev->config.cik.tile_config = 0; switch (rdev->config.cik.num_tile_pipes) { case 1: rdev->config.cik.tile_config |= (0 << 0); break; case 2: rdev->config.cik.tile_config |= (1 << 0); break; case 4: rdev->config.cik.tile_config |= (2 << 0); break; case 8: default: /* XXX what about 12? */ rdev->config.cik.tile_config |= (3 << 0); break; } if ((mc_arb_ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT) rdev->config.cik.tile_config |= 1 << 4; else rdev->config.cik.tile_config |= 0 << 4; rdev->config.cik.tile_config |= ((gb_addr_config & PIPE_INTERLEAVE_SIZE_MASK) >> PIPE_INTERLEAVE_SIZE_SHIFT) << 8; rdev->config.cik.tile_config |= ((gb_addr_config & ROW_SIZE_MASK) >> ROW_SIZE_SHIFT) << 12; WREG32(GB_ADDR_CONFIG, gb_addr_config); WREG32(HDP_ADDR_CONFIG, gb_addr_config); WREG32(DMIF_ADDR_CALC, gb_addr_config); WREG32(SDMA0_TILING_CONFIG + SDMA0_REGISTER_OFFSET, gb_addr_config & 0x70); WREG32(SDMA0_TILING_CONFIG + SDMA1_REGISTER_OFFSET, gb_addr_config & 0x70); WREG32(UVD_UDEC_ADDR_CONFIG, gb_addr_config); WREG32(UVD_UDEC_DB_ADDR_CONFIG, gb_addr_config); WREG32(UVD_UDEC_DBW_ADDR_CONFIG, gb_addr_config); cik_tiling_mode_table_init(rdev); cik_setup_rb(rdev, rdev->config.cik.max_shader_engines, rdev->config.cik.max_sh_per_se, rdev->config.cik.max_backends_per_se); /* set HW defaults for 3D engine */ WREG32(CP_MEQ_THRESHOLDS, MEQ1_START(0x30) | MEQ2_START(0x60)); WREG32(SX_DEBUG_1, 0x20); WREG32(TA_CNTL_AUX, 0x00010000); tmp = RREG32(SPI_CONFIG_CNTL); tmp |= 0x03000000; WREG32(SPI_CONFIG_CNTL, tmp); WREG32(SQ_CONFIG, 1); WREG32(DB_DEBUG, 0); tmp = RREG32(DB_DEBUG2) & ~0xf00fffff; tmp |= 0x00000400; WREG32(DB_DEBUG2, tmp); tmp = RREG32(DB_DEBUG3) & ~0x0002021c; tmp |= 0x00020200; WREG32(DB_DEBUG3, tmp); tmp = RREG32(CB_HW_CONTROL) & ~0x00010000; tmp |= 0x00018208; WREG32(CB_HW_CONTROL, tmp); WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(4)); WREG32(PA_SC_FIFO_SIZE, (SC_FRONTEND_PRIM_FIFO_SIZE(rdev->config.cik.sc_prim_fifo_size_frontend) | SC_BACKEND_PRIM_FIFO_SIZE(rdev->config.cik.sc_prim_fifo_size_backend) | SC_HIZ_TILE_FIFO_SIZE(rdev->config.cik.sc_hiz_tile_fifo_size) | SC_EARLYZ_TILE_FIFO_SIZE(rdev->config.cik.sc_earlyz_tile_fifo_size))); WREG32(VGT_NUM_INSTANCES, 1); WREG32(CP_PERFMON_CNTL, 0); WREG32(SQ_CONFIG, 0); WREG32(PA_SC_FORCE_EOV_MAX_CNTS, (FORCE_EOV_MAX_CLK_CNT(4095) | FORCE_EOV_MAX_REZ_CNT(255))); WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC) | AUTO_INVLD_EN(ES_AND_GS_AUTO)); WREG32(VGT_GS_VERTEX_REUSE, 16); WREG32(PA_SC_LINE_STIPPLE_STATE, 0); tmp = RREG32(HDP_MISC_CNTL); tmp |= HDP_FLUSH_INVALIDATE_CACHE; WREG32(HDP_MISC_CNTL, tmp); hdp_host_path_cntl = RREG32(HDP_HOST_PATH_CNTL); WREG32(HDP_HOST_PATH_CNTL, hdp_host_path_cntl); WREG32(PA_CL_ENHANCE, CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3)); WREG32(PA_SC_ENHANCE, ENABLE_PA_SC_OUT_OF_ORDER); udelay(50); } /* * GPU scratch registers helpers function. */ /** * cik_scratch_init - setup driver info for CP scratch regs * * @rdev: radeon_device pointer * * Set up the number and offset of the CP scratch registers. * NOTE: use of CP scratch registers is a legacy inferface and * is not used by default on newer asics (r6xx+). On newer asics, * memory buffers are used for fences rather than scratch regs. */ static void cik_scratch_init(struct radeon_device *rdev) { int i; rdev->scratch.num_reg = 7; rdev->scratch.reg_base = SCRATCH_REG0; for (i = 0; i < rdev->scratch.num_reg; i++) { rdev->scratch.free[i] = true; rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4); } } /** * cik_ring_test - basic gfx ring test * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Allocate a scratch register and write to it using the gfx ring (CIK). * Provides a basic gfx ring test to verify that the ring is working. * Used by cik_cp_gfx_resume(); * Returns 0 on success, error on failure. */ int cik_ring_test(struct radeon_device *rdev, struct radeon_ring *ring) { uint32_t scratch; uint32_t tmp = 0; unsigned i; int r; r = radeon_scratch_get(rdev, &scratch); if (r) { DRM_ERROR("radeon: cp failed to get scratch reg (%d).\n", r); return r; } WREG32(scratch, 0xCAFEDEAD); r = radeon_ring_lock(rdev, ring, 3); if (r) { DRM_ERROR("radeon: cp failed to lock ring %d (%d).\n", ring->idx, r); radeon_scratch_free(rdev, scratch); return r; } radeon_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1)); radeon_ring_write(ring, ((scratch - PACKET3_SET_UCONFIG_REG_START) >> 2)); radeon_ring_write(ring, 0xDEADBEEF); radeon_ring_unlock_commit(rdev, ring); for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < rdev->usec_timeout) { DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); } else { DRM_ERROR("radeon: ring %d test failed (scratch(0x%04X)=0x%08X)\n", ring->idx, scratch, tmp); r = -EINVAL; } radeon_scratch_free(rdev, scratch); return r; } /** * cik_fence_gfx_ring_emit - emit a fence on the gfx ring * * @rdev: radeon_device pointer * @fence: radeon fence object * * Emits a fence sequnce number on the gfx ring and flushes * GPU caches. */ void cik_fence_gfx_ring_emit(struct radeon_device *rdev, struct radeon_fence *fence) { struct radeon_ring *ring = &rdev->ring[fence->ring]; u64 addr = rdev->fence_drv[fence->ring].gpu_addr; /* EVENT_WRITE_EOP - flush caches, send int */ radeon_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4)); radeon_ring_write(ring, (EOP_TCL1_ACTION_EN | EOP_TC_ACTION_EN | EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | EVENT_INDEX(5))); radeon_ring_write(ring, addr & 0xfffffffc); radeon_ring_write(ring, (upper_32_bits(addr) & 0xffff) | DATA_SEL(1) | INT_SEL(2)); radeon_ring_write(ring, fence->seq); radeon_ring_write(ring, 0); /* HDP flush */ /* We should be using the new WAIT_REG_MEM special op packet here * but it causes the CP to hang */ radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, 0); } /** * cik_fence_compute_ring_emit - emit a fence on the compute ring * * @rdev: radeon_device pointer * @fence: radeon fence object * * Emits a fence sequnce number on the compute ring and flushes * GPU caches. */ void cik_fence_compute_ring_emit(struct radeon_device *rdev, struct radeon_fence *fence) { struct radeon_ring *ring = &rdev->ring[fence->ring]; u64 addr = rdev->fence_drv[fence->ring].gpu_addr; /* RELEASE_MEM - flush caches, send int */ radeon_ring_write(ring, PACKET3(PACKET3_RELEASE_MEM, 5)); radeon_ring_write(ring, (EOP_TCL1_ACTION_EN | EOP_TC_ACTION_EN | EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | EVENT_INDEX(5))); radeon_ring_write(ring, DATA_SEL(1) | INT_SEL(2)); radeon_ring_write(ring, addr & 0xfffffffc); radeon_ring_write(ring, upper_32_bits(addr)); radeon_ring_write(ring, fence->seq); radeon_ring_write(ring, 0); /* HDP flush */ /* We should be using the new WAIT_REG_MEM special op packet here * but it causes the CP to hang */ radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, 0); } void cik_semaphore_ring_emit(struct radeon_device *rdev, struct radeon_ring *ring, struct radeon_semaphore *semaphore, bool emit_wait) { uint64_t addr = semaphore->gpu_addr; unsigned sel = emit_wait ? PACKET3_SEM_SEL_WAIT : PACKET3_SEM_SEL_SIGNAL; radeon_ring_write(ring, PACKET3(PACKET3_MEM_SEMAPHORE, 1)); radeon_ring_write(ring, addr & 0xffffffff); radeon_ring_write(ring, (upper_32_bits(addr) & 0xffff) | sel); } /* * IB stuff */ /** * cik_ring_ib_execute - emit an IB (Indirect Buffer) on the gfx ring * * @rdev: radeon_device pointer * @ib: radeon indirect buffer object * * Emits an DE (drawing engine) or CE (constant engine) IB * on the gfx ring. IBs are usually generated by userspace * acceleration drivers and submitted to the kernel for * sheduling on the ring. This function schedules the IB * on the gfx ring for execution by the GPU. */ void cik_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib) { struct radeon_ring *ring = &rdev->ring[ib->ring]; u32 header, control = INDIRECT_BUFFER_VALID; if (ib->is_const_ib) { /* set switch buffer packet before const IB */ radeon_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0)); radeon_ring_write(ring, 0); header = PACKET3(PACKET3_INDIRECT_BUFFER_CONST, 2); } else { u32 next_rptr; if (ring->rptr_save_reg) { next_rptr = ring->wptr + 3 + 4; radeon_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1)); radeon_ring_write(ring, ((ring->rptr_save_reg - PACKET3_SET_UCONFIG_REG_START) >> 2)); radeon_ring_write(ring, next_rptr); } else if (rdev->wb.enabled) { next_rptr = ring->wptr + 5 + 4; radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); radeon_ring_write(ring, WRITE_DATA_DST_SEL(1)); radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc); radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xffffffff); radeon_ring_write(ring, next_rptr); } header = PACKET3(PACKET3_INDIRECT_BUFFER, 2); } control |= ib->length_dw | (ib->vm ? (ib->vm->id << 24) : 0); radeon_ring_write(ring, header); radeon_ring_write(ring, #ifdef __BIG_ENDIAN (2 << 0) | #endif (ib->gpu_addr & 0xFFFFFFFC)); radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF); radeon_ring_write(ring, control); } /** * cik_ib_test - basic gfx ring IB test * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Allocate an IB and execute it on the gfx ring (CIK). * Provides a basic gfx ring test to verify that IBs are working. * Returns 0 on success, error on failure. */ int cik_ib_test(struct radeon_device *rdev, struct radeon_ring *ring) { struct radeon_ib ib; uint32_t scratch; uint32_t tmp = 0; unsigned i; int r; r = radeon_scratch_get(rdev, &scratch); if (r) { DRM_ERROR("radeon: failed to get scratch reg (%d).\n", r); return r; } WREG32(scratch, 0xCAFEDEAD); r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256); if (r) { DRM_ERROR("radeon: failed to get ib (%d).\n", r); return r; } ib.ptr[0] = PACKET3(PACKET3_SET_UCONFIG_REG, 1); ib.ptr[1] = ((scratch - PACKET3_SET_UCONFIG_REG_START) >> 2); ib.ptr[2] = 0xDEADBEEF; ib.length_dw = 3; r = radeon_ib_schedule(rdev, &ib, NULL); if (r) { radeon_scratch_free(rdev, scratch); radeon_ib_free(rdev, &ib); DRM_ERROR("radeon: failed to schedule ib (%d).\n", r); return r; } r = radeon_fence_wait(ib.fence, false); if (r) { DRM_ERROR("radeon: fence wait failed (%d).\n", r); return r; } for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < rdev->usec_timeout) { DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i); } else { DRM_ERROR("radeon: ib test failed (scratch(0x%04X)=0x%08X)\n", scratch, tmp); r = -EINVAL; } radeon_scratch_free(rdev, scratch); radeon_ib_free(rdev, &ib); return r; } /* * CP. * On CIK, gfx and compute now have independant command processors. * * GFX * Gfx consists of a single ring and can process both gfx jobs and * compute jobs. The gfx CP consists of three microengines (ME): * PFP - Pre-Fetch Parser * ME - Micro Engine * CE - Constant Engine * The PFP and ME make up what is considered the Drawing Engine (DE). * The CE is an asynchronous engine used for updating buffer desciptors * used by the DE so that they can be loaded into cache in parallel * while the DE is processing state update packets. * * Compute * The compute CP consists of two microengines (ME): * MEC1 - Compute MicroEngine 1 * MEC2 - Compute MicroEngine 2 * Each MEC supports 4 compute pipes and each pipe supports 8 queues. * The queues are exposed to userspace and are programmed directly * by the compute runtime. */ /** * cik_cp_gfx_enable - enable/disable the gfx CP MEs * * @rdev: radeon_device pointer * @enable: enable or disable the MEs * * Halts or unhalts the gfx MEs. */ static void cik_cp_gfx_enable(struct radeon_device *rdev, bool enable) { if (enable) WREG32(CP_ME_CNTL, 0); else { WREG32(CP_ME_CNTL, (CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT)); rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false; } udelay(50); } /** * cik_cp_gfx_load_microcode - load the gfx CP ME ucode * * @rdev: radeon_device pointer * * Loads the gfx PFP, ME, and CE ucode. * Returns 0 for success, -EINVAL if the ucode is not available. */ static int cik_cp_gfx_load_microcode(struct radeon_device *rdev) { const __be32 *fw_data; int i; if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw) return -EINVAL; cik_cp_gfx_enable(rdev, false); /* PFP */ fw_data = (const __be32 *)rdev->pfp_fw->data; WREG32(CP_PFP_UCODE_ADDR, 0); for (i = 0; i < CIK_PFP_UCODE_SIZE; i++) WREG32(CP_PFP_UCODE_DATA, be32_to_cpup(fw_data++)); WREG32(CP_PFP_UCODE_ADDR, 0); /* CE */ fw_data = (const __be32 *)rdev->ce_fw->data; WREG32(CP_CE_UCODE_ADDR, 0); for (i = 0; i < CIK_CE_UCODE_SIZE; i++) WREG32(CP_CE_UCODE_DATA, be32_to_cpup(fw_data++)); WREG32(CP_CE_UCODE_ADDR, 0); /* ME */ fw_data = (const __be32 *)rdev->me_fw->data; WREG32(CP_ME_RAM_WADDR, 0); for (i = 0; i < CIK_ME_UCODE_SIZE; i++) WREG32(CP_ME_RAM_DATA, be32_to_cpup(fw_data++)); WREG32(CP_ME_RAM_WADDR, 0); WREG32(CP_PFP_UCODE_ADDR, 0); WREG32(CP_CE_UCODE_ADDR, 0); WREG32(CP_ME_RAM_WADDR, 0); WREG32(CP_ME_RAM_RADDR, 0); return 0; } /** * cik_cp_gfx_start - start the gfx ring * * @rdev: radeon_device pointer * * Enables the ring and loads the clear state context and other * packets required to init the ring. * Returns 0 for success, error for failure. */ static int cik_cp_gfx_start(struct radeon_device *rdev) { struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; int r, i; /* init the CP */ WREG32(CP_MAX_CONTEXT, rdev->config.cik.max_hw_contexts - 1); WREG32(CP_ENDIAN_SWAP, 0); WREG32(CP_DEVICE_ID, 1); cik_cp_gfx_enable(rdev, true); r = radeon_ring_lock(rdev, ring, cik_default_size + 17); if (r) { DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r); return r; } /* init the CE partitions. CE only used for gfx on CIK */ radeon_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2)); radeon_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE)); radeon_ring_write(ring, 0xc000); radeon_ring_write(ring, 0xc000); /* setup clear context state */ radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); radeon_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); radeon_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1)); radeon_ring_write(ring, 0x80000000); radeon_ring_write(ring, 0x80000000); for (i = 0; i < cik_default_size; i++) radeon_ring_write(ring, cik_default_state[i]); radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); radeon_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE); /* set clear context state */ radeon_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0)); radeon_ring_write(ring, 0); radeon_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 2)); radeon_ring_write(ring, 0x00000316); radeon_ring_write(ring, 0x0000000e); /* VGT_VERTEX_REUSE_BLOCK_CNTL */ radeon_ring_write(ring, 0x00000010); /* VGT_OUT_DEALLOC_CNTL */ radeon_ring_unlock_commit(rdev, ring); return 0; } /** * cik_cp_gfx_fini - stop the gfx ring * * @rdev: radeon_device pointer * * Stop the gfx ring and tear down the driver ring * info. */ static void cik_cp_gfx_fini(struct radeon_device *rdev) { cik_cp_gfx_enable(rdev, false); radeon_ring_fini(rdev, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]); } /** * cik_cp_gfx_resume - setup the gfx ring buffer registers * * @rdev: radeon_device pointer * * Program the location and size of the gfx ring buffer * and test it to make sure it's working. * Returns 0 for success, error for failure. */ static int cik_cp_gfx_resume(struct radeon_device *rdev) { struct radeon_ring *ring; u32 tmp; u32 rb_bufsz; u64 rb_addr; int r; WREG32(CP_SEM_WAIT_TIMER, 0x0); WREG32(CP_SEM_INCOMPLETE_TIMER_CNTL, 0x0); /* Set the write pointer delay */ WREG32(CP_RB_WPTR_DELAY, 0); /* set the RB to use vmid 0 */ WREG32(CP_RB_VMID, 0); WREG32(SCRATCH_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET) >> 8) & 0xFFFFFFFF); /* ring 0 - compute and gfx */ /* Set ring buffer size */ ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; rb_bufsz = drm_order(ring->ring_size / 8); tmp = (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz; #ifdef __BIG_ENDIAN tmp |= BUF_SWAP_32BIT; #endif WREG32(CP_RB0_CNTL, tmp); /* Initialize the ring buffer's read and write pointers */ WREG32(CP_RB0_CNTL, tmp | RB_RPTR_WR_ENA); ring->wptr = 0; WREG32(CP_RB0_WPTR, ring->wptr); /* set the wb address wether it's enabled or not */ WREG32(CP_RB0_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFFFFFFFC); WREG32(CP_RB0_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFF); /* scratch register shadowing is no longer supported */ WREG32(SCRATCH_UMSK, 0); if (!rdev->wb.enabled) tmp |= RB_NO_UPDATE; mdelay(1); WREG32(CP_RB0_CNTL, tmp); rb_addr = ring->gpu_addr >> 8; WREG32(CP_RB0_BASE, rb_addr); WREG32(CP_RB0_BASE_HI, upper_32_bits(rb_addr)); ring->rptr = RREG32(CP_RB0_RPTR); /* start the ring */ cik_cp_gfx_start(rdev); rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = true; r = radeon_ring_test(rdev, RADEON_RING_TYPE_GFX_INDEX, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]); if (r) { rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false; return r; } return 0; } u32 cik_compute_ring_get_rptr(struct radeon_device *rdev, struct radeon_ring *ring) { u32 rptr; if (rdev->wb.enabled) { rptr = le32_to_cpu(rdev->wb.wb[ring->rptr_offs/4]); } else { mutex_lock(&rdev->srbm_mutex); cik_srbm_select(rdev, ring->me, ring->pipe, ring->queue, 0); rptr = RREG32(CP_HQD_PQ_RPTR); cik_srbm_select(rdev, 0, 0, 0, 0); mutex_unlock(&rdev->srbm_mutex); } return rptr; } u32 cik_compute_ring_get_wptr(struct radeon_device *rdev, struct radeon_ring *ring) { u32 wptr; if (rdev->wb.enabled) { wptr = le32_to_cpu(rdev->wb.wb[ring->wptr_offs/4]); } else { mutex_lock(&rdev->srbm_mutex); cik_srbm_select(rdev, ring->me, ring->pipe, ring->queue, 0); wptr = RREG32(CP_HQD_PQ_WPTR); cik_srbm_select(rdev, 0, 0, 0, 0); mutex_unlock(&rdev->srbm_mutex); } return wptr; } void cik_compute_ring_set_wptr(struct radeon_device *rdev, struct radeon_ring *ring) { rdev->wb.wb[ring->wptr_offs/4] = cpu_to_le32(ring->wptr); WDOORBELL32(ring->doorbell_offset, ring->wptr); } /** * cik_cp_compute_enable - enable/disable the compute CP MEs * * @rdev: radeon_device pointer * @enable: enable or disable the MEs * * Halts or unhalts the compute MEs. */ static void cik_cp_compute_enable(struct radeon_device *rdev, bool enable) { if (enable) WREG32(CP_MEC_CNTL, 0); else WREG32(CP_MEC_CNTL, (MEC_ME1_HALT | MEC_ME2_HALT)); udelay(50); } /** * cik_cp_compute_load_microcode - load the compute CP ME ucode * * @rdev: radeon_device pointer * * Loads the compute MEC1&2 ucode. * Returns 0 for success, -EINVAL if the ucode is not available. */ static int cik_cp_compute_load_microcode(struct radeon_device *rdev) { const __be32 *fw_data; int i; if (!rdev->mec_fw) return -EINVAL; cik_cp_compute_enable(rdev, false); /* MEC1 */ fw_data = (const __be32 *)rdev->mec_fw->data; WREG32(CP_MEC_ME1_UCODE_ADDR, 0); for (i = 0; i < CIK_MEC_UCODE_SIZE; i++) WREG32(CP_MEC_ME1_UCODE_DATA, be32_to_cpup(fw_data++)); WREG32(CP_MEC_ME1_UCODE_ADDR, 0); if (rdev->family == CHIP_KAVERI) { /* MEC2 */ fw_data = (const __be32 *)rdev->mec_fw->data; WREG32(CP_MEC_ME2_UCODE_ADDR, 0); for (i = 0; i < CIK_MEC_UCODE_SIZE; i++) WREG32(CP_MEC_ME2_UCODE_DATA, be32_to_cpup(fw_data++)); WREG32(CP_MEC_ME2_UCODE_ADDR, 0); } return 0; } /** * cik_cp_compute_start - start the compute queues * * @rdev: radeon_device pointer * * Enable the compute queues. * Returns 0 for success, error for failure. */ static int cik_cp_compute_start(struct radeon_device *rdev) { cik_cp_compute_enable(rdev, true); return 0; } /** * cik_cp_compute_fini - stop the compute queues * * @rdev: radeon_device pointer * * Stop the compute queues and tear down the driver queue * info. */ static void cik_cp_compute_fini(struct radeon_device *rdev) { int i, idx, r; cik_cp_compute_enable(rdev, false); for (i = 0; i < 2; i++) { if (i == 0) idx = CAYMAN_RING_TYPE_CP1_INDEX; else idx = CAYMAN_RING_TYPE_CP2_INDEX; if (rdev->ring[idx].mqd_obj) { r = radeon_bo_reserve(rdev->ring[idx].mqd_obj, false); if (unlikely(r != 0)) dev_warn(rdev->dev, "(%d) reserve MQD bo failed\n", r); radeon_bo_unpin(rdev->ring[idx].mqd_obj); radeon_bo_unreserve(rdev->ring[idx].mqd_obj); radeon_bo_unref(&rdev->ring[idx].mqd_obj); rdev->ring[idx].mqd_obj = NULL; } } } static void cik_mec_fini(struct radeon_device *rdev) { int r; if (rdev->mec.hpd_eop_obj) { r = radeon_bo_reserve(rdev->mec.hpd_eop_obj, false); if (unlikely(r != 0)) dev_warn(rdev->dev, "(%d) reserve HPD EOP bo failed\n", r); radeon_bo_unpin(rdev->mec.hpd_eop_obj); radeon_bo_unreserve(rdev->mec.hpd_eop_obj); radeon_bo_unref(&rdev->mec.hpd_eop_obj); rdev->mec.hpd_eop_obj = NULL; } } #define MEC_HPD_SIZE 2048 static int cik_mec_init(struct radeon_device *rdev) { int r; u32 *hpd; /* * KV: 2 MEC, 4 Pipes/MEC, 8 Queues/Pipe - 64 Queues total * CI/KB: 1 MEC, 4 Pipes/MEC, 8 Queues/Pipe - 32 Queues total */ if (rdev->family == CHIP_KAVERI) rdev->mec.num_mec = 2; else rdev->mec.num_mec = 1; rdev->mec.num_pipe = 4; rdev->mec.num_queue = rdev->mec.num_mec * rdev->mec.num_pipe * 8; if (rdev->mec.hpd_eop_obj == NULL) { r = radeon_bo_create(rdev, rdev->mec.num_mec *rdev->mec.num_pipe * MEC_HPD_SIZE * 2, PAGE_SIZE, true, RADEON_GEM_DOMAIN_GTT, NULL, &rdev->mec.hpd_eop_obj); if (r) { dev_warn(rdev->dev, "(%d) create HDP EOP bo failed\n", r); return r; } } r = radeon_bo_reserve(rdev->mec.hpd_eop_obj, false); if (unlikely(r != 0)) { cik_mec_fini(rdev); return r; } r = radeon_bo_pin(rdev->mec.hpd_eop_obj, RADEON_GEM_DOMAIN_GTT, &rdev->mec.hpd_eop_gpu_addr); if (r) { dev_warn(rdev->dev, "(%d) pin HDP EOP bo failed\n", r); cik_mec_fini(rdev); return r; } r = radeon_bo_kmap(rdev->mec.hpd_eop_obj, (void **)&hpd); if (r) { dev_warn(rdev->dev, "(%d) map HDP EOP bo failed\n", r); cik_mec_fini(rdev); return r; } /* clear memory. Not sure if this is required or not */ memset(hpd, 0, rdev->mec.num_mec *rdev->mec.num_pipe * MEC_HPD_SIZE * 2); radeon_bo_kunmap(rdev->mec.hpd_eop_obj); radeon_bo_unreserve(rdev->mec.hpd_eop_obj); return 0; } struct hqd_registers { u32 cp_mqd_base_addr; u32 cp_mqd_base_addr_hi; u32 cp_hqd_active; u32 cp_hqd_vmid; u32 cp_hqd_persistent_state; u32 cp_hqd_pipe_priority; u32 cp_hqd_queue_priority; u32 cp_hqd_quantum; u32 cp_hqd_pq_base; u32 cp_hqd_pq_base_hi; u32 cp_hqd_pq_rptr; u32 cp_hqd_pq_rptr_report_addr; u32 cp_hqd_pq_rptr_report_addr_hi; u32 cp_hqd_pq_wptr_poll_addr; u32 cp_hqd_pq_wptr_poll_addr_hi; u32 cp_hqd_pq_doorbell_control; u32 cp_hqd_pq_wptr; u32 cp_hqd_pq_control; u32 cp_hqd_ib_base_addr; u32 cp_hqd_ib_base_addr_hi; u32 cp_hqd_ib_rptr; u32 cp_hqd_ib_control; u32 cp_hqd_iq_timer; u32 cp_hqd_iq_rptr; u32 cp_hqd_dequeue_request; u32 cp_hqd_dma_offload; u32 cp_hqd_sema_cmd; u32 cp_hqd_msg_type; u32 cp_hqd_atomic0_preop_lo; u32 cp_hqd_atomic0_preop_hi; u32 cp_hqd_atomic1_preop_lo; u32 cp_hqd_atomic1_preop_hi; u32 cp_hqd_hq_scheduler0; u32 cp_hqd_hq_scheduler1; u32 cp_mqd_control; }; struct bonaire_mqd { u32 header; u32 dispatch_initiator; u32 dimensions[3]; u32 start_idx[3]; u32 num_threads[3]; u32 pipeline_stat_enable; u32 perf_counter_enable; u32 pgm[2]; u32 tba[2]; u32 tma[2]; u32 pgm_rsrc[2]; u32 vmid; u32 resource_limits; u32 static_thread_mgmt01[2]; u32 tmp_ring_size; u32 static_thread_mgmt23[2]; u32 restart[3]; u32 thread_trace_enable; u32 reserved1; u32 user_data[16]; u32 vgtcs_invoke_count[2]; struct hqd_registers queue_state; u32 dequeue_cntr; u32 interrupt_queue[64]; }; /** * cik_cp_compute_resume - setup the compute queue registers * * @rdev: radeon_device pointer * * Program the compute queues and test them to make sure they * are working. * Returns 0 for success, error for failure. */ static int cik_cp_compute_resume(struct radeon_device *rdev) { int r, i, idx; u32 tmp; bool use_doorbell = true; u64 hqd_gpu_addr; u64 mqd_gpu_addr; u64 eop_gpu_addr; u64 wb_gpu_addr; u32 *buf; struct bonaire_mqd *mqd; r = cik_cp_compute_start(rdev); if (r) return r; /* fix up chicken bits */ tmp = RREG32(CP_CPF_DEBUG); tmp |= (1 << 23); WREG32(CP_CPF_DEBUG, tmp); /* init the pipes */ mutex_lock(&rdev->srbm_mutex); for (i = 0; i < (rdev->mec.num_pipe * rdev->mec.num_mec); i++) { int me = (i < 4) ? 1 : 2; int pipe = (i < 4) ? i : (i - 4); eop_gpu_addr = rdev->mec.hpd_eop_gpu_addr + (i * MEC_HPD_SIZE * 2); cik_srbm_select(rdev, me, pipe, 0, 0); /* write the EOP addr */ WREG32(CP_HPD_EOP_BASE_ADDR, eop_gpu_addr >> 8); WREG32(CP_HPD_EOP_BASE_ADDR_HI, upper_32_bits(eop_gpu_addr) >> 8); /* set the VMID assigned */ WREG32(CP_HPD_EOP_VMID, 0); /* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */ tmp = RREG32(CP_HPD_EOP_CONTROL); tmp &= ~EOP_SIZE_MASK; tmp |= drm_order(MEC_HPD_SIZE / 8); WREG32(CP_HPD_EOP_CONTROL, tmp); } cik_srbm_select(rdev, 0, 0, 0, 0); mutex_unlock(&rdev->srbm_mutex); /* init the queues. Just two for now. */ for (i = 0; i < 2; i++) { if (i == 0) idx = CAYMAN_RING_TYPE_CP1_INDEX; else idx = CAYMAN_RING_TYPE_CP2_INDEX; if (rdev->ring[idx].mqd_obj == NULL) { r = radeon_bo_create(rdev, sizeof(struct bonaire_mqd), PAGE_SIZE, true, RADEON_GEM_DOMAIN_GTT, NULL, &rdev->ring[idx].mqd_obj); if (r) { dev_warn(rdev->dev, "(%d) create MQD bo failed\n", r); return r; } } r = radeon_bo_reserve(rdev->ring[idx].mqd_obj, false); if (unlikely(r != 0)) { cik_cp_compute_fini(rdev); return r; } r = radeon_bo_pin(rdev->ring[idx].mqd_obj, RADEON_GEM_DOMAIN_GTT, &mqd_gpu_addr); if (r) { dev_warn(rdev->dev, "(%d) pin MQD bo failed\n", r); cik_cp_compute_fini(rdev); return r; } r = radeon_bo_kmap(rdev->ring[idx].mqd_obj, (void **)&buf); if (r) { dev_warn(rdev->dev, "(%d) map MQD bo failed\n", r); cik_cp_compute_fini(rdev); return r; } /* doorbell offset */ rdev->ring[idx].doorbell_offset = (rdev->ring[idx].doorbell_page_num * PAGE_SIZE) + 0; /* init the mqd struct */ memset(buf, 0, sizeof(struct bonaire_mqd)); mqd = (struct bonaire_mqd *)buf; mqd->header = 0xC0310800; mqd->static_thread_mgmt01[0] = 0xffffffff; mqd->static_thread_mgmt01[1] = 0xffffffff; mqd->static_thread_mgmt23[0] = 0xffffffff; mqd->static_thread_mgmt23[1] = 0xffffffff; mutex_lock(&rdev->srbm_mutex); cik_srbm_select(rdev, rdev->ring[idx].me, rdev->ring[idx].pipe, rdev->ring[idx].queue, 0); /* disable wptr polling */ tmp = RREG32(CP_PQ_WPTR_POLL_CNTL); tmp &= ~WPTR_POLL_EN; WREG32(CP_PQ_WPTR_POLL_CNTL, tmp); /* enable doorbell? */ mqd->queue_state.cp_hqd_pq_doorbell_control = RREG32(CP_HQD_PQ_DOORBELL_CONTROL); if (use_doorbell) mqd->queue_state.cp_hqd_pq_doorbell_control |= DOORBELL_EN; else mqd->queue_state.cp_hqd_pq_doorbell_control &= ~DOORBELL_EN; WREG32(CP_HQD_PQ_DOORBELL_CONTROL, mqd->queue_state.cp_hqd_pq_doorbell_control); /* disable the queue if it's active */ mqd->queue_state.cp_hqd_dequeue_request = 0; mqd->queue_state.cp_hqd_pq_rptr = 0; mqd->queue_state.cp_hqd_pq_wptr= 0; if (RREG32(CP_HQD_ACTIVE) & 1) { WREG32(CP_HQD_DEQUEUE_REQUEST, 1); for (i = 0; i < rdev->usec_timeout; i++) { if (!(RREG32(CP_HQD_ACTIVE) & 1)) break; udelay(1); } WREG32(CP_HQD_DEQUEUE_REQUEST, mqd->queue_state.cp_hqd_dequeue_request); WREG32(CP_HQD_PQ_RPTR, mqd->queue_state.cp_hqd_pq_rptr); WREG32(CP_HQD_PQ_WPTR, mqd->queue_state.cp_hqd_pq_wptr); } /* set the pointer to the MQD */ mqd->queue_state.cp_mqd_base_addr = mqd_gpu_addr & 0xfffffffc; mqd->queue_state.cp_mqd_base_addr_hi = upper_32_bits(mqd_gpu_addr); WREG32(CP_MQD_BASE_ADDR, mqd->queue_state.cp_mqd_base_addr); WREG32(CP_MQD_BASE_ADDR_HI, mqd->queue_state.cp_mqd_base_addr_hi); /* set MQD vmid to 0 */ mqd->queue_state.cp_mqd_control = RREG32(CP_MQD_CONTROL); mqd->queue_state.cp_mqd_control &= ~MQD_VMID_MASK; WREG32(CP_MQD_CONTROL, mqd->queue_state.cp_mqd_control); /* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */ hqd_gpu_addr = rdev->ring[idx].gpu_addr >> 8; mqd->queue_state.cp_hqd_pq_base = hqd_gpu_addr; mqd->queue_state.cp_hqd_pq_base_hi = upper_32_bits(hqd_gpu_addr); WREG32(CP_HQD_PQ_BASE, mqd->queue_state.cp_hqd_pq_base); WREG32(CP_HQD_PQ_BASE_HI, mqd->queue_state.cp_hqd_pq_base_hi); /* set up the HQD, this is similar to CP_RB0_CNTL */ mqd->queue_state.cp_hqd_pq_control = RREG32(CP_HQD_PQ_CONTROL); mqd->queue_state.cp_hqd_pq_control &= ~(QUEUE_SIZE_MASK | RPTR_BLOCK_SIZE_MASK); mqd->queue_state.cp_hqd_pq_control |= drm_order(rdev->ring[idx].ring_size / 8); mqd->queue_state.cp_hqd_pq_control |= (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8); #ifdef __BIG_ENDIAN mqd->queue_state.cp_hqd_pq_control |= BUF_SWAP_32BIT; #endif mqd->queue_state.cp_hqd_pq_control &= ~(UNORD_DISPATCH | ROQ_PQ_IB_FLIP | PQ_VOLATILE); mqd->queue_state.cp_hqd_pq_control |= PRIV_STATE | KMD_QUEUE; /* assuming kernel queue control */ WREG32(CP_HQD_PQ_CONTROL, mqd->queue_state.cp_hqd_pq_control); /* only used if CP_PQ_WPTR_POLL_CNTL.WPTR_POLL_EN=1 */ if (i == 0) wb_gpu_addr = rdev->wb.gpu_addr + CIK_WB_CP1_WPTR_OFFSET; else wb_gpu_addr = rdev->wb.gpu_addr + CIK_WB_CP2_WPTR_OFFSET; mqd->queue_state.cp_hqd_pq_wptr_poll_addr = wb_gpu_addr & 0xfffffffc; mqd->queue_state.cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; WREG32(CP_HQD_PQ_WPTR_POLL_ADDR, mqd->queue_state.cp_hqd_pq_wptr_poll_addr); WREG32(CP_HQD_PQ_WPTR_POLL_ADDR_HI, mqd->queue_state.cp_hqd_pq_wptr_poll_addr_hi); /* set the wb address wether it's enabled or not */ if (i == 0) wb_gpu_addr = rdev->wb.gpu_addr + RADEON_WB_CP1_RPTR_OFFSET; else wb_gpu_addr = rdev->wb.gpu_addr + RADEON_WB_CP2_RPTR_OFFSET; mqd->queue_state.cp_hqd_pq_rptr_report_addr = wb_gpu_addr & 0xfffffffc; mqd->queue_state.cp_hqd_pq_rptr_report_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; WREG32(CP_HQD_PQ_RPTR_REPORT_ADDR, mqd->queue_state.cp_hqd_pq_rptr_report_addr); WREG32(CP_HQD_PQ_RPTR_REPORT_ADDR_HI, mqd->queue_state.cp_hqd_pq_rptr_report_addr_hi); /* enable the doorbell if requested */ if (use_doorbell) { mqd->queue_state.cp_hqd_pq_doorbell_control = RREG32(CP_HQD_PQ_DOORBELL_CONTROL); mqd->queue_state.cp_hqd_pq_doorbell_control &= ~DOORBELL_OFFSET_MASK; mqd->queue_state.cp_hqd_pq_doorbell_control |= DOORBELL_OFFSET(rdev->ring[idx].doorbell_offset / 4); mqd->queue_state.cp_hqd_pq_doorbell_control |= DOORBELL_EN; mqd->queue_state.cp_hqd_pq_doorbell_control &= ~(DOORBELL_SOURCE | DOORBELL_HIT); } else { mqd->queue_state.cp_hqd_pq_doorbell_control = 0; } WREG32(CP_HQD_PQ_DOORBELL_CONTROL, mqd->queue_state.cp_hqd_pq_doorbell_control); /* read and write pointers, similar to CP_RB0_WPTR/_RPTR */ rdev->ring[idx].wptr = 0; mqd->queue_state.cp_hqd_pq_wptr = rdev->ring[idx].wptr; WREG32(CP_HQD_PQ_WPTR, mqd->queue_state.cp_hqd_pq_wptr); rdev->ring[idx].rptr = RREG32(CP_HQD_PQ_RPTR); mqd->queue_state.cp_hqd_pq_rptr = rdev->ring[idx].rptr; /* set the vmid for the queue */ mqd->queue_state.cp_hqd_vmid = 0; WREG32(CP_HQD_VMID, mqd->queue_state.cp_hqd_vmid); /* activate the queue */ mqd->queue_state.cp_hqd_active = 1; WREG32(CP_HQD_ACTIVE, mqd->queue_state.cp_hqd_active); cik_srbm_select(rdev, 0, 0, 0, 0); mutex_unlock(&rdev->srbm_mutex); radeon_bo_kunmap(rdev->ring[idx].mqd_obj); radeon_bo_unreserve(rdev->ring[idx].mqd_obj); rdev->ring[idx].ready = true; r = radeon_ring_test(rdev, idx, &rdev->ring[idx]); if (r) rdev->ring[idx].ready = false; } return 0; } static void cik_cp_enable(struct radeon_device *rdev, bool enable) { cik_cp_gfx_enable(rdev, enable); cik_cp_compute_enable(rdev, enable); } static int cik_cp_load_microcode(struct radeon_device *rdev) { int r; r = cik_cp_gfx_load_microcode(rdev); if (r) return r; r = cik_cp_compute_load_microcode(rdev); if (r) return r; return 0; } static void cik_cp_fini(struct radeon_device *rdev) { cik_cp_gfx_fini(rdev); cik_cp_compute_fini(rdev); } static int cik_cp_resume(struct radeon_device *rdev) { int r; /* Reset all cp blocks */ WREG32(GRBM_SOFT_RESET, SOFT_RESET_CP); RREG32(GRBM_SOFT_RESET); mdelay(15); WREG32(GRBM_SOFT_RESET, 0); RREG32(GRBM_SOFT_RESET); r = cik_cp_load_microcode(rdev); if (r) return r; r = cik_cp_gfx_resume(rdev); if (r) return r; r = cik_cp_compute_resume(rdev); if (r) return r; return 0; } /* * sDMA - System DMA * Starting with CIK, the GPU has new asynchronous * DMA engines. These engines are used for compute * and gfx. There are two DMA engines (SDMA0, SDMA1) * and each one supports 1 ring buffer used for gfx * and 2 queues used for compute. * * The programming model is very similar to the CP * (ring buffer, IBs, etc.), but sDMA has it's own * packet format that is different from the PM4 format * used by the CP. sDMA supports copying data, writing * embedded data, solid fills, and a number of other * things. It also has support for tiling/detiling of * buffers. */ /** * cik_sdma_ring_ib_execute - Schedule an IB on the DMA engine * * @rdev: radeon_device pointer * @ib: IB object to schedule * * Schedule an IB in the DMA ring (CIK). */ void cik_sdma_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib) { struct radeon_ring *ring = &rdev->ring[ib->ring]; u32 extra_bits = (ib->vm ? ib->vm->id : 0) & 0xf; if (rdev->wb.enabled) { u32 next_rptr = ring->wptr + 5; while ((next_rptr & 7) != 4) next_rptr++; next_rptr += 4; radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0)); radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc); radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xffffffff); radeon_ring_write(ring, 1); /* number of DWs to follow */ radeon_ring_write(ring, next_rptr); } /* IB packet must end on a 8 DW boundary */ while ((ring->wptr & 7) != 4) radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0)); radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_INDIRECT_BUFFER, 0, extra_bits)); radeon_ring_write(ring, ib->gpu_addr & 0xffffffe0); /* base must be 32 byte aligned */ radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xffffffff); radeon_ring_write(ring, ib->length_dw); } /** * cik_sdma_fence_ring_emit - emit a fence on the DMA ring * * @rdev: radeon_device pointer * @fence: radeon fence object * * Add a DMA fence packet to the ring to write * the fence seq number and DMA trap packet to generate * an interrupt if needed (CIK). */ void cik_sdma_fence_ring_emit(struct radeon_device *rdev, struct radeon_fence *fence) { struct radeon_ring *ring = &rdev->ring[fence->ring]; u64 addr = rdev->fence_drv[fence->ring].gpu_addr; u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) | SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */ u32 ref_and_mask; if (fence->ring == R600_RING_TYPE_DMA_INDEX) ref_and_mask = SDMA0; else ref_and_mask = SDMA1; /* write the fence */ radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0)); radeon_ring_write(ring, addr & 0xffffffff); radeon_ring_write(ring, upper_32_bits(addr) & 0xffffffff); radeon_ring_write(ring, fence->seq); /* generate an interrupt */ radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_TRAP, 0, 0)); /* flush HDP */ radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits)); radeon_ring_write(ring, GPU_HDP_FLUSH_DONE); radeon_ring_write(ring, GPU_HDP_FLUSH_REQ); radeon_ring_write(ring, ref_and_mask); /* REFERENCE */ radeon_ring_write(ring, ref_and_mask); /* MASK */ radeon_ring_write(ring, (4 << 16) | 10); /* RETRY_COUNT, POLL_INTERVAL */ } /** * cik_sdma_semaphore_ring_emit - emit a semaphore on the dma ring * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * @semaphore: radeon semaphore object * @emit_wait: wait or signal semaphore * * Add a DMA semaphore packet to the ring wait on or signal * other rings (CIK). */ void cik_sdma_semaphore_ring_emit(struct radeon_device *rdev, struct radeon_ring *ring, struct radeon_semaphore *semaphore, bool emit_wait) { u64 addr = semaphore->gpu_addr; u32 extra_bits = emit_wait ? 0 : SDMA_SEMAPHORE_EXTRA_S; radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SEMAPHORE, 0, extra_bits)); radeon_ring_write(ring, addr & 0xfffffff8); radeon_ring_write(ring, upper_32_bits(addr) & 0xffffffff); } /** * cik_sdma_gfx_stop - stop the gfx async dma engines * * @rdev: radeon_device pointer * * Stop the gfx async dma ring buffers (CIK). */ static void cik_sdma_gfx_stop(struct radeon_device *rdev) { u32 rb_cntl, reg_offset; int i; radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size); for (i = 0; i < 2; i++) { if (i == 0) reg_offset = SDMA0_REGISTER_OFFSET; else reg_offset = SDMA1_REGISTER_OFFSET; rb_cntl = RREG32(SDMA0_GFX_RB_CNTL + reg_offset); rb_cntl &= ~SDMA_RB_ENABLE; WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl); WREG32(SDMA0_GFX_IB_CNTL + reg_offset, 0); } } /** * cik_sdma_rlc_stop - stop the compute async dma engines * * @rdev: radeon_device pointer * * Stop the compute async dma queues (CIK). */ static void cik_sdma_rlc_stop(struct radeon_device *rdev) { /* XXX todo */ } /** * cik_sdma_enable - stop the async dma engines * * @rdev: radeon_device pointer * @enable: enable/disable the DMA MEs. * * Halt or unhalt the async dma engines (CIK). */ static void cik_sdma_enable(struct radeon_device *rdev, bool enable) { u32 me_cntl, reg_offset; int i; for (i = 0; i < 2; i++) { if (i == 0) reg_offset = SDMA0_REGISTER_OFFSET; else reg_offset = SDMA1_REGISTER_OFFSET; me_cntl = RREG32(SDMA0_ME_CNTL + reg_offset); if (enable) me_cntl &= ~SDMA_HALT; else me_cntl |= SDMA_HALT; WREG32(SDMA0_ME_CNTL + reg_offset, me_cntl); } } /** * cik_sdma_gfx_resume - setup and start the async dma engines * * @rdev: radeon_device pointer * * Set up the gfx DMA ring buffers and enable them (CIK). * Returns 0 for success, error for failure. */ static int cik_sdma_gfx_resume(struct radeon_device *rdev) { struct radeon_ring *ring; u32 rb_cntl, ib_cntl; u32 rb_bufsz; u32 reg_offset, wb_offset; int i, r; for (i = 0; i < 2; i++) { if (i == 0) { ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; reg_offset = SDMA0_REGISTER_OFFSET; wb_offset = R600_WB_DMA_RPTR_OFFSET; } else { ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]; reg_offset = SDMA1_REGISTER_OFFSET; wb_offset = CAYMAN_WB_DMA1_RPTR_OFFSET; } WREG32(SDMA0_SEM_INCOMPLETE_TIMER_CNTL + reg_offset, 0); WREG32(SDMA0_SEM_WAIT_FAIL_TIMER_CNTL + reg_offset, 0); /* Set ring buffer size in dwords */ rb_bufsz = drm_order(ring->ring_size / 4); rb_cntl = rb_bufsz << 1; #ifdef __BIG_ENDIAN rb_cntl |= SDMA_RB_SWAP_ENABLE | SDMA_RPTR_WRITEBACK_SWAP_ENABLE; #endif WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl); /* Initialize the ring buffer's read and write pointers */ WREG32(SDMA0_GFX_RB_RPTR + reg_offset, 0); WREG32(SDMA0_GFX_RB_WPTR + reg_offset, 0); /* set the wb address whether it's enabled or not */ WREG32(SDMA0_GFX_RB_RPTR_ADDR_HI + reg_offset, upper_32_bits(rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); WREG32(SDMA0_GFX_RB_RPTR_ADDR_LO + reg_offset, ((rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC)); if (rdev->wb.enabled) rb_cntl |= SDMA_RPTR_WRITEBACK_ENABLE; WREG32(SDMA0_GFX_RB_BASE + reg_offset, ring->gpu_addr >> 8); WREG32(SDMA0_GFX_RB_BASE_HI + reg_offset, ring->gpu_addr >> 40); ring->wptr = 0; WREG32(SDMA0_GFX_RB_WPTR + reg_offset, ring->wptr << 2); ring->rptr = RREG32(SDMA0_GFX_RB_RPTR + reg_offset) >> 2; /* enable DMA RB */ WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl | SDMA_RB_ENABLE); ib_cntl = SDMA_IB_ENABLE; #ifdef __BIG_ENDIAN ib_cntl |= SDMA_IB_SWAP_ENABLE; #endif /* enable DMA IBs */ WREG32(SDMA0_GFX_IB_CNTL + reg_offset, ib_cntl); ring->ready = true; r = radeon_ring_test(rdev, ring->idx, ring); if (r) { ring->ready = false; return r; } } radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size); return 0; } /** * cik_sdma_rlc_resume - setup and start the async dma engines * * @rdev: radeon_device pointer * * Set up the compute DMA queues and enable them (CIK). * Returns 0 for success, error for failure. */ static int cik_sdma_rlc_resume(struct radeon_device *rdev) { /* XXX todo */ return 0; } /** * cik_sdma_load_microcode - load the sDMA ME ucode * * @rdev: radeon_device pointer * * Loads the sDMA0/1 ucode. * Returns 0 for success, -EINVAL if the ucode is not available. */ static int cik_sdma_load_microcode(struct radeon_device *rdev) { const __be32 *fw_data; int i; if (!rdev->sdma_fw) return -EINVAL; /* stop the gfx rings and rlc compute queues */ cik_sdma_gfx_stop(rdev); cik_sdma_rlc_stop(rdev); /* halt the MEs */ cik_sdma_enable(rdev, false); /* sdma0 */ fw_data = (const __be32 *)rdev->sdma_fw->data; WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0); for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++) WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, be32_to_cpup(fw_data++)); WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); /* sdma1 */ fw_data = (const __be32 *)rdev->sdma_fw->data; WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0); for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++) WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, be32_to_cpup(fw_data++)); WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION); WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0); WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0); return 0; } /** * cik_sdma_resume - setup and start the async dma engines * * @rdev: radeon_device pointer * * Set up the DMA engines and enable them (CIK). * Returns 0 for success, error for failure. */ static int cik_sdma_resume(struct radeon_device *rdev) { int r; /* Reset dma */ WREG32(SRBM_SOFT_RESET, SOFT_RESET_SDMA | SOFT_RESET_SDMA1); RREG32(SRBM_SOFT_RESET); udelay(50); WREG32(SRBM_SOFT_RESET, 0); RREG32(SRBM_SOFT_RESET); r = cik_sdma_load_microcode(rdev); if (r) return r; /* unhalt the MEs */ cik_sdma_enable(rdev, true); /* start the gfx rings and rlc compute queues */ r = cik_sdma_gfx_resume(rdev); if (r) return r; r = cik_sdma_rlc_resume(rdev); if (r) return r; return 0; } /** * cik_sdma_fini - tear down the async dma engines * * @rdev: radeon_device pointer * * Stop the async dma engines and free the rings (CIK). */ static void cik_sdma_fini(struct radeon_device *rdev) { /* stop the gfx rings and rlc compute queues */ cik_sdma_gfx_stop(rdev); cik_sdma_rlc_stop(rdev); /* halt the MEs */ cik_sdma_enable(rdev, false); radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]); radeon_ring_fini(rdev, &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]); /* XXX - compute dma queue tear down */ } /** * cik_copy_dma - copy pages using the DMA engine * * @rdev: radeon_device pointer * @src_offset: src GPU address * @dst_offset: dst GPU address * @num_gpu_pages: number of GPU pages to xfer * @fence: radeon fence object * * Copy GPU paging using the DMA engine (CIK). * Used by the radeon ttm implementation to move pages if * registered as the asic copy callback. */ int cik_copy_dma(struct radeon_device *rdev, uint64_t src_offset, uint64_t dst_offset, unsigned num_gpu_pages, struct radeon_fence **fence) { struct radeon_semaphore *sem = NULL; int ring_index = rdev->asic->copy.dma_ring_index; struct radeon_ring *ring = &rdev->ring[ring_index]; u32 size_in_bytes, cur_size_in_bytes; int i, num_loops; int r = 0; r = radeon_semaphore_create(rdev, &sem); if (r) { DRM_ERROR("radeon: moving bo (%d).\n", r); return r; } size_in_bytes = (num_gpu_pages << RADEON_GPU_PAGE_SHIFT); num_loops = DIV_ROUND_UP(size_in_bytes, 0x1fffff); r = radeon_ring_lock(rdev, ring, num_loops * 7 + 14); if (r) { DRM_ERROR("radeon: moving bo (%d).\n", r); radeon_semaphore_free(rdev, &sem, NULL); return r; } if (radeon_fence_need_sync(*fence, ring->idx)) { radeon_semaphore_sync_rings(rdev, sem, (*fence)->ring, ring->idx); radeon_fence_note_sync(*fence, ring->idx); } else { radeon_semaphore_free(rdev, &sem, NULL); } for (i = 0; i < num_loops; i++) { cur_size_in_bytes = size_in_bytes; if (cur_size_in_bytes > 0x1fffff) cur_size_in_bytes = 0x1fffff; size_in_bytes -= cur_size_in_bytes; radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_COPY, SDMA_COPY_SUB_OPCODE_LINEAR, 0)); radeon_ring_write(ring, cur_size_in_bytes); radeon_ring_write(ring, 0); /* src/dst endian swap */ radeon_ring_write(ring, src_offset & 0xffffffff); radeon_ring_write(ring, upper_32_bits(src_offset) & 0xffffffff); radeon_ring_write(ring, dst_offset & 0xfffffffc); radeon_ring_write(ring, upper_32_bits(dst_offset) & 0xffffffff); src_offset += cur_size_in_bytes; dst_offset += cur_size_in_bytes; } r = radeon_fence_emit(rdev, fence, ring->idx); if (r) { radeon_ring_unlock_undo(rdev, ring); return r; } radeon_ring_unlock_commit(rdev, ring); radeon_semaphore_free(rdev, &sem, *fence); return r; } /** * cik_sdma_ring_test - simple async dma engine test * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Test the DMA engine by writing using it to write an * value to memory. (CIK). * Returns 0 for success, error for failure. */ int cik_sdma_ring_test(struct radeon_device *rdev, struct radeon_ring *ring) { unsigned i; int r; void __iomem *ptr = (void *)rdev->vram_scratch.ptr; u32 tmp; if (!ptr) { DRM_ERROR("invalid vram scratch pointer\n"); return -EINVAL; } tmp = 0xCAFEDEAD; writel(tmp, ptr); r = radeon_ring_lock(rdev, ring, 4); if (r) { DRM_ERROR("radeon: dma failed to lock ring %d (%d).\n", ring->idx, r); return r; } radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0)); radeon_ring_write(ring, rdev->vram_scratch.gpu_addr & 0xfffffffc); radeon_ring_write(ring, upper_32_bits(rdev->vram_scratch.gpu_addr) & 0xffffffff); radeon_ring_write(ring, 1); /* number of DWs to follow */ radeon_ring_write(ring, 0xDEADBEEF); radeon_ring_unlock_commit(rdev, ring); for (i = 0; i < rdev->usec_timeout; i++) { tmp = readl(ptr); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < rdev->usec_timeout) { DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); } else { DRM_ERROR("radeon: ring %d test failed (0x%08X)\n", ring->idx, tmp); r = -EINVAL; } return r; } /** * cik_sdma_ib_test - test an IB on the DMA engine * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Test a simple IB in the DMA ring (CIK). * Returns 0 on success, error on failure. */ int cik_sdma_ib_test(struct radeon_device *rdev, struct radeon_ring *ring) { struct radeon_ib ib; unsigned i; int r; void __iomem *ptr = (void *)rdev->vram_scratch.ptr; u32 tmp = 0; if (!ptr) { DRM_ERROR("invalid vram scratch pointer\n"); return -EINVAL; } tmp = 0xCAFEDEAD; writel(tmp, ptr); r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256); if (r) { DRM_ERROR("radeon: failed to get ib (%d).\n", r); return r; } ib.ptr[0] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0); ib.ptr[1] = rdev->vram_scratch.gpu_addr & 0xfffffffc; ib.ptr[2] = upper_32_bits(rdev->vram_scratch.gpu_addr) & 0xffffffff; ib.ptr[3] = 1; ib.ptr[4] = 0xDEADBEEF; ib.length_dw = 5; r = radeon_ib_schedule(rdev, &ib, NULL); if (r) { radeon_ib_free(rdev, &ib); DRM_ERROR("radeon: failed to schedule ib (%d).\n", r); return r; } r = radeon_fence_wait(ib.fence, false); if (r) { DRM_ERROR("radeon: fence wait failed (%d).\n", r); return r; } for (i = 0; i < rdev->usec_timeout; i++) { tmp = readl(ptr); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < rdev->usec_timeout) { DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i); } else { DRM_ERROR("radeon: ib test failed (0x%08X)\n", tmp); r = -EINVAL; } radeon_ib_free(rdev, &ib); return r; } static void cik_print_gpu_status_regs(struct radeon_device *rdev) { dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n", RREG32(GRBM_STATUS)); dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n", RREG32(GRBM_STATUS2)); dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n", RREG32(GRBM_STATUS_SE0)); dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n", RREG32(GRBM_STATUS_SE1)); dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n", RREG32(GRBM_STATUS_SE2)); dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n", RREG32(GRBM_STATUS_SE3)); dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n", RREG32(SRBM_STATUS)); dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n", RREG32(SRBM_STATUS2)); dev_info(rdev->dev, " SDMA0_STATUS_REG = 0x%08X\n", RREG32(SDMA0_STATUS_REG + SDMA0_REGISTER_OFFSET)); dev_info(rdev->dev, " SDMA1_STATUS_REG = 0x%08X\n", RREG32(SDMA0_STATUS_REG + SDMA1_REGISTER_OFFSET)); dev_info(rdev->dev, " CP_STAT = 0x%08x\n", RREG32(CP_STAT)); dev_info(rdev->dev, " CP_STALLED_STAT1 = 0x%08x\n", RREG32(CP_STALLED_STAT1)); dev_info(rdev->dev, " CP_STALLED_STAT2 = 0x%08x\n", RREG32(CP_STALLED_STAT2)); dev_info(rdev->dev, " CP_STALLED_STAT3 = 0x%08x\n", RREG32(CP_STALLED_STAT3)); dev_info(rdev->dev, " CP_CPF_BUSY_STAT = 0x%08x\n", RREG32(CP_CPF_BUSY_STAT)); dev_info(rdev->dev, " CP_CPF_STALLED_STAT1 = 0x%08x\n", RREG32(CP_CPF_STALLED_STAT1)); dev_info(rdev->dev, " CP_CPF_STATUS = 0x%08x\n", RREG32(CP_CPF_STATUS)); dev_info(rdev->dev, " CP_CPC_BUSY_STAT = 0x%08x\n", RREG32(CP_CPC_BUSY_STAT)); dev_info(rdev->dev, " CP_CPC_STALLED_STAT1 = 0x%08x\n", RREG32(CP_CPC_STALLED_STAT1)); dev_info(rdev->dev, " CP_CPC_STATUS = 0x%08x\n", RREG32(CP_CPC_STATUS)); } /** * cik_gpu_check_soft_reset - check which blocks are busy * * @rdev: radeon_device pointer * * Check which blocks are busy and return the relevant reset * mask to be used by cik_gpu_soft_reset(). * Returns a mask of the blocks to be reset. */ static u32 cik_gpu_check_soft_reset(struct radeon_device *rdev) { u32 reset_mask = 0; u32 tmp; /* GRBM_STATUS */ tmp = RREG32(GRBM_STATUS); if (tmp & (PA_BUSY | SC_BUSY | BCI_BUSY | SX_BUSY | TA_BUSY | VGT_BUSY | DB_BUSY | CB_BUSY | GDS_BUSY | SPI_BUSY | IA_BUSY | IA_BUSY_NO_DMA)) reset_mask |= RADEON_RESET_GFX; if (tmp & (CP_BUSY | CP_COHERENCY_BUSY)) reset_mask |= RADEON_RESET_CP; /* GRBM_STATUS2 */ tmp = RREG32(GRBM_STATUS2); if (tmp & RLC_BUSY) reset_mask |= RADEON_RESET_RLC; /* SDMA0_STATUS_REG */ tmp = RREG32(SDMA0_STATUS_REG + SDMA0_REGISTER_OFFSET); if (!(tmp & SDMA_IDLE)) reset_mask |= RADEON_RESET_DMA; /* SDMA1_STATUS_REG */ tmp = RREG32(SDMA0_STATUS_REG + SDMA1_REGISTER_OFFSET); if (!(tmp & SDMA_IDLE)) reset_mask |= RADEON_RESET_DMA1; /* SRBM_STATUS2 */ tmp = RREG32(SRBM_STATUS2); if (tmp & SDMA_BUSY) reset_mask |= RADEON_RESET_DMA; if (tmp & SDMA1_BUSY) reset_mask |= RADEON_RESET_DMA1; /* SRBM_STATUS */ tmp = RREG32(SRBM_STATUS); if (tmp & IH_BUSY) reset_mask |= RADEON_RESET_IH; if (tmp & SEM_BUSY) reset_mask |= RADEON_RESET_SEM; if (tmp & GRBM_RQ_PENDING) reset_mask |= RADEON_RESET_GRBM; if (tmp & VMC_BUSY) reset_mask |= RADEON_RESET_VMC; if (tmp & (MCB_BUSY | MCB_NON_DISPLAY_BUSY | MCC_BUSY | MCD_BUSY)) reset_mask |= RADEON_RESET_MC; if (evergreen_is_display_hung(rdev)) reset_mask |= RADEON_RESET_DISPLAY; /* Skip MC reset as it's mostly likely not hung, just busy */ if (reset_mask & RADEON_RESET_MC) { DRM_DEBUG("MC busy: 0x%08X, clearing.\n", reset_mask); reset_mask &= ~RADEON_RESET_MC; } return reset_mask; } /** * cik_gpu_soft_reset - soft reset GPU * * @rdev: radeon_device pointer * @reset_mask: mask of which blocks to reset * * Soft reset the blocks specified in @reset_mask. */ static void cik_gpu_soft_reset(struct radeon_device *rdev, u32 reset_mask) { struct evergreen_mc_save save; u32 grbm_soft_reset = 0, srbm_soft_reset = 0; u32 tmp; if (reset_mask == 0) return; dev_info(rdev->dev, "GPU softreset: 0x%08X\n", reset_mask); cik_print_gpu_status_regs(rdev); dev_info(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n", RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR)); dev_info(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n", RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS)); /* stop the rlc */ cik_rlc_stop(rdev); /* Disable GFX parsing/prefetching */ WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT); /* Disable MEC parsing/prefetching */ WREG32(CP_MEC_CNTL, MEC_ME1_HALT | MEC_ME2_HALT); if (reset_mask & RADEON_RESET_DMA) { /* sdma0 */ tmp = RREG32(SDMA0_ME_CNTL + SDMA0_REGISTER_OFFSET); tmp |= SDMA_HALT; WREG32(SDMA0_ME_CNTL + SDMA0_REGISTER_OFFSET, tmp); } if (reset_mask & RADEON_RESET_DMA1) { /* sdma1 */ tmp = RREG32(SDMA0_ME_CNTL + SDMA1_REGISTER_OFFSET); tmp |= SDMA_HALT; WREG32(SDMA0_ME_CNTL + SDMA1_REGISTER_OFFSET, tmp); } evergreen_mc_stop(rdev, &save); if (evergreen_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } if (reset_mask & (RADEON_RESET_GFX | RADEON_RESET_COMPUTE | RADEON_RESET_CP)) grbm_soft_reset = SOFT_RESET_CP | SOFT_RESET_GFX; if (reset_mask & RADEON_RESET_CP) { grbm_soft_reset |= SOFT_RESET_CP; srbm_soft_reset |= SOFT_RESET_GRBM; } if (reset_mask & RADEON_RESET_DMA) srbm_soft_reset |= SOFT_RESET_SDMA; if (reset_mask & RADEON_RESET_DMA1) srbm_soft_reset |= SOFT_RESET_SDMA1; if (reset_mask & RADEON_RESET_DISPLAY) srbm_soft_reset |= SOFT_RESET_DC; if (reset_mask & RADEON_RESET_RLC) grbm_soft_reset |= SOFT_RESET_RLC; if (reset_mask & RADEON_RESET_SEM) srbm_soft_reset |= SOFT_RESET_SEM; if (reset_mask & RADEON_RESET_IH) srbm_soft_reset |= SOFT_RESET_IH; if (reset_mask & RADEON_RESET_GRBM) srbm_soft_reset |= SOFT_RESET_GRBM; if (reset_mask & RADEON_RESET_VMC) srbm_soft_reset |= SOFT_RESET_VMC; if (!(rdev->flags & RADEON_IS_IGP)) { if (reset_mask & RADEON_RESET_MC) srbm_soft_reset |= SOFT_RESET_MC; } if (grbm_soft_reset) { tmp = RREG32(GRBM_SOFT_RESET); tmp |= grbm_soft_reset; dev_info(rdev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(GRBM_SOFT_RESET, tmp); tmp = RREG32(GRBM_SOFT_RESET); udelay(50); tmp &= ~grbm_soft_reset; WREG32(GRBM_SOFT_RESET, tmp); tmp = RREG32(GRBM_SOFT_RESET); } if (srbm_soft_reset) { tmp = RREG32(SRBM_SOFT_RESET); tmp |= srbm_soft_reset; dev_info(rdev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(SRBM_SOFT_RESET, tmp); tmp = RREG32(SRBM_SOFT_RESET); udelay(50); tmp &= ~srbm_soft_reset; WREG32(SRBM_SOFT_RESET, tmp); tmp = RREG32(SRBM_SOFT_RESET); } /* Wait a little for things to settle down */ udelay(50); evergreen_mc_resume(rdev, &save); udelay(50); cik_print_gpu_status_regs(rdev); } /** * cik_asic_reset - soft reset GPU * * @rdev: radeon_device pointer * * Look up which blocks are hung and attempt * to reset them. * Returns 0 for success. */ int cik_asic_reset(struct radeon_device *rdev) { u32 reset_mask; reset_mask = cik_gpu_check_soft_reset(rdev); if (reset_mask) r600_set_bios_scratch_engine_hung(rdev, true); cik_gpu_soft_reset(rdev, reset_mask); reset_mask = cik_gpu_check_soft_reset(rdev); if (!reset_mask) r600_set_bios_scratch_engine_hung(rdev, false); return 0; } /** * cik_gfx_is_lockup - check if the 3D engine is locked up * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Check if the 3D engine is locked up (CIK). * Returns true if the engine is locked, false if not. */ bool cik_gfx_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) { u32 reset_mask = cik_gpu_check_soft_reset(rdev); if (!(reset_mask & (RADEON_RESET_GFX | RADEON_RESET_COMPUTE | RADEON_RESET_CP))) { radeon_ring_lockup_update(ring); return false; } /* force CP activities */ radeon_ring_force_activity(rdev, ring); return radeon_ring_test_lockup(rdev, ring); } /** * cik_sdma_is_lockup - Check if the DMA engine is locked up * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Check if the async DMA engine is locked up (CIK). * Returns true if the engine appears to be locked up, false if not. */ bool cik_sdma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) { u32 reset_mask = cik_gpu_check_soft_reset(rdev); u32 mask; if (ring->idx == R600_RING_TYPE_DMA_INDEX) mask = RADEON_RESET_DMA; else mask = RADEON_RESET_DMA1; if (!(reset_mask & mask)) { radeon_ring_lockup_update(ring); return false; } /* force ring activities */ radeon_ring_force_activity(rdev, ring); return radeon_ring_test_lockup(rdev, ring); } /* MC */ /** * cik_mc_program - program the GPU memory controller * * @rdev: radeon_device pointer * * Set the location of vram, gart, and AGP in the GPU's * physical address space (CIK). */ static void cik_mc_program(struct radeon_device *rdev) { struct evergreen_mc_save save; u32 tmp; int i, j; /* Initialize HDP */ for (i = 0, j = 0; i < 32; i++, j += 0x18) { WREG32((0x2c14 + j), 0x00000000); WREG32((0x2c18 + j), 0x00000000); WREG32((0x2c1c + j), 0x00000000); WREG32((0x2c20 + j), 0x00000000); WREG32((0x2c24 + j), 0x00000000); } WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0); evergreen_mc_stop(rdev, &save); if (radeon_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } /* Lockout access through VGA aperture*/ WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE); /* Update configuration */ WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR, rdev->mc.vram_start >> 12); WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, rdev->mc.vram_end >> 12); WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR, rdev->vram_scratch.gpu_addr >> 12); tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16; tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF); WREG32(MC_VM_FB_LOCATION, tmp); /* XXX double check these! */ WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8)); WREG32(HDP_NONSURFACE_INFO, (2 << 7) | (1 << 30)); WREG32(HDP_NONSURFACE_SIZE, 0x3FFFFFFF); WREG32(MC_VM_AGP_BASE, 0); WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF); WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF); if (radeon_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } evergreen_mc_resume(rdev, &save); /* we need to own VRAM, so turn off the VGA renderer here * to stop it overwriting our objects */ rv515_vga_render_disable(rdev); } /** * cik_mc_init - initialize the memory controller driver params * * @rdev: radeon_device pointer * * Look up the amount of vram, vram width, and decide how to place * vram and gart within the GPU's physical address space (CIK). * Returns 0 for success. */ static int cik_mc_init(struct radeon_device *rdev) { u32 tmp; int chansize, numchan; /* Get VRAM informations */ rdev->mc.vram_is_ddr = true; tmp = RREG32(MC_ARB_RAMCFG); if (tmp & CHANSIZE_MASK) { chansize = 64; } else { chansize = 32; } tmp = RREG32(MC_SHARED_CHMAP); switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) { case 0: default: numchan = 1; break; case 1: numchan = 2; break; case 2: numchan = 4; break; case 3: numchan = 8; break; case 4: numchan = 3; break; case 5: numchan = 6; break; case 6: numchan = 10; break; case 7: numchan = 12; break; case 8: numchan = 16; break; } rdev->mc.vram_width = numchan * chansize; /* Could aper size report 0 ? */ rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0); rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0); /* size in MB on si */ rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024; rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024; rdev->mc.visible_vram_size = rdev->mc.aper_size; si_vram_gtt_location(rdev, &rdev->mc); radeon_update_bandwidth_info(rdev); return 0; } /* * GART * VMID 0 is the physical GPU addresses as used by the kernel. * VMIDs 1-15 are used for userspace clients and are handled * by the radeon vm/hsa code. */ /** * cik_pcie_gart_tlb_flush - gart tlb flush callback * * @rdev: radeon_device pointer * * Flush the TLB for the VMID 0 page table (CIK). */ void cik_pcie_gart_tlb_flush(struct radeon_device *rdev) { /* flush hdp cache */ WREG32(HDP_MEM_COHERENCY_FLUSH_CNTL, 0); /* bits 0-15 are the VM contexts0-15 */ WREG32(VM_INVALIDATE_REQUEST, 0x1); } /** * cik_pcie_gart_enable - gart enable * * @rdev: radeon_device pointer * * This sets up the TLBs, programs the page tables for VMID0, * sets up the hw for VMIDs 1-15 which are allocated on * demand, and sets up the global locations for the LDS, GDS, * and GPUVM for FSA64 clients (CIK). * Returns 0 for success, errors for failure. */ static int cik_pcie_gart_enable(struct radeon_device *rdev) { int r, i; if (rdev->gart.robj == NULL) { dev_err(rdev->dev, "No VRAM object for PCIE GART.\n"); return -EINVAL; } r = radeon_gart_table_vram_pin(rdev); if (r) return r; radeon_gart_restore(rdev); /* Setup TLB control */ WREG32(MC_VM_MX_L1_TLB_CNTL, (0xA << 7) | ENABLE_L1_TLB | SYSTEM_ACCESS_MODE_NOT_IN_SYS | ENABLE_ADVANCED_DRIVER_MODEL | SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU); /* Setup L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_FRAGMENT_PROCESSING | ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE | EFFECTIVE_L2_QUEUE_SIZE(7) | CONTEXT1_IDENTITY_ACCESS_MODE(1)); WREG32(VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS | INVALIDATE_L2_CACHE); WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY | L2_CACHE_BIGK_FRAGMENT_SIZE(6)); /* setup context0 */ WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12); WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12); WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12); WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR, (u32)(rdev->dummy_page.addr >> 12)); WREG32(VM_CONTEXT0_CNTL2, 0); WREG32(VM_CONTEXT0_CNTL, (ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) | RANGE_PROTECTION_FAULT_ENABLE_DEFAULT)); WREG32(0x15D4, 0); WREG32(0x15D8, 0); WREG32(0x15DC, 0); /* empty context1-15 */ /* FIXME start with 4G, once using 2 level pt switch to full * vm size space */ /* set vm size, must be a multiple of 4 */ WREG32(VM_CONTEXT1_PAGE_TABLE_START_ADDR, 0); WREG32(VM_CONTEXT1_PAGE_TABLE_END_ADDR, rdev->vm_manager.max_pfn); for (i = 1; i < 16; i++) { if (i < 8) WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (i << 2), rdev->gart.table_addr >> 12); else WREG32(VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((i - 8) << 2), rdev->gart.table_addr >> 12); } /* enable context1-15 */ WREG32(VM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR, (u32)(rdev->dummy_page.addr >> 12)); WREG32(VM_CONTEXT1_CNTL2, 4); WREG32(VM_CONTEXT1_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(1) | RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT | RANGE_PROTECTION_FAULT_ENABLE_DEFAULT | DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT | DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT | PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT | PDE0_PROTECTION_FAULT_ENABLE_DEFAULT | VALID_PROTECTION_FAULT_ENABLE_INTERRUPT | VALID_PROTECTION_FAULT_ENABLE_DEFAULT | READ_PROTECTION_FAULT_ENABLE_INTERRUPT | READ_PROTECTION_FAULT_ENABLE_DEFAULT | WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT | WRITE_PROTECTION_FAULT_ENABLE_DEFAULT); /* TC cache setup ??? */ WREG32(TC_CFG_L1_LOAD_POLICY0, 0); WREG32(TC_CFG_L1_LOAD_POLICY1, 0); WREG32(TC_CFG_L1_STORE_POLICY, 0); WREG32(TC_CFG_L2_LOAD_POLICY0, 0); WREG32(TC_CFG_L2_LOAD_POLICY1, 0); WREG32(TC_CFG_L2_STORE_POLICY0, 0); WREG32(TC_CFG_L2_STORE_POLICY1, 0); WREG32(TC_CFG_L2_ATOMIC_POLICY, 0); WREG32(TC_CFG_L1_VOLATILE, 0); WREG32(TC_CFG_L2_VOLATILE, 0); if (rdev->family == CHIP_KAVERI) { u32 tmp = RREG32(CHUB_CONTROL); tmp &= ~BYPASS_VM; WREG32(CHUB_CONTROL, tmp); } /* XXX SH_MEM regs */ /* where to put LDS, scratch, GPUVM in FSA64 space */ mutex_lock(&rdev->srbm_mutex); for (i = 0; i < 16; i++) { cik_srbm_select(rdev, 0, 0, 0, i); /* CP and shaders */ WREG32(SH_MEM_CONFIG, 0); WREG32(SH_MEM_APE1_BASE, 1); WREG32(SH_MEM_APE1_LIMIT, 0); WREG32(SH_MEM_BASES, 0); /* SDMA GFX */ WREG32(SDMA0_GFX_VIRTUAL_ADDR + SDMA0_REGISTER_OFFSET, 0); WREG32(SDMA0_GFX_APE1_CNTL + SDMA0_REGISTER_OFFSET, 0); WREG32(SDMA0_GFX_VIRTUAL_ADDR + SDMA1_REGISTER_OFFSET, 0); WREG32(SDMA0_GFX_APE1_CNTL + SDMA1_REGISTER_OFFSET, 0); /* XXX SDMA RLC - todo */ } cik_srbm_select(rdev, 0, 0, 0, 0); mutex_unlock(&rdev->srbm_mutex); cik_pcie_gart_tlb_flush(rdev); DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n", (unsigned)(rdev->mc.gtt_size >> 20), (unsigned long long)rdev->gart.table_addr); rdev->gart.ready = true; return 0; } /** * cik_pcie_gart_disable - gart disable * * @rdev: radeon_device pointer * * This disables all VM page table (CIK). */ static void cik_pcie_gart_disable(struct radeon_device *rdev) { /* Disable all tables */ WREG32(VM_CONTEXT0_CNTL, 0); WREG32(VM_CONTEXT1_CNTL, 0); /* Setup TLB control */ WREG32(MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE_NOT_IN_SYS | SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU); /* Setup L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING | ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE | EFFECTIVE_L2_QUEUE_SIZE(7) | CONTEXT1_IDENTITY_ACCESS_MODE(1)); WREG32(VM_L2_CNTL2, 0); WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY | L2_CACHE_BIGK_FRAGMENT_SIZE(6)); radeon_gart_table_vram_unpin(rdev); } /** * cik_pcie_gart_fini - vm fini callback * * @rdev: radeon_device pointer * * Tears down the driver GART/VM setup (CIK). */ static void cik_pcie_gart_fini(struct radeon_device *rdev) { cik_pcie_gart_disable(rdev); radeon_gart_table_vram_free(rdev); radeon_gart_fini(rdev); } /* vm parser */ /** * cik_ib_parse - vm ib_parse callback * * @rdev: radeon_device pointer * @ib: indirect buffer pointer * * CIK uses hw IB checking so this is a nop (CIK). */ int cik_ib_parse(struct radeon_device *rdev, struct radeon_ib *ib) { return 0; } /* * vm * VMID 0 is the physical GPU addresses as used by the kernel. * VMIDs 1-15 are used for userspace clients and are handled * by the radeon vm/hsa code. */ /** * cik_vm_init - cik vm init callback * * @rdev: radeon_device pointer * * Inits cik specific vm parameters (number of VMs, base of vram for * VMIDs 1-15) (CIK). * Returns 0 for success. */ int cik_vm_init(struct radeon_device *rdev) { /* number of VMs */ rdev->vm_manager.nvm = 16; /* base offset of vram pages */ if (rdev->flags & RADEON_IS_IGP) { u64 tmp = RREG32(MC_VM_FB_OFFSET); tmp <<= 22; rdev->vm_manager.vram_base_offset = tmp; } else rdev->vm_manager.vram_base_offset = 0; return 0; } /** * cik_vm_fini - cik vm fini callback * * @rdev: radeon_device pointer * * Tear down any asic specific VM setup (CIK). */ void cik_vm_fini(struct radeon_device *rdev) { } /** * cik_vm_decode_fault - print human readable fault info * * @rdev: radeon_device pointer * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value * * Print human readable fault information (CIK). */ static void cik_vm_decode_fault(struct radeon_device *rdev, u32 status, u32 addr, u32 mc_client) { u32 mc_id = (status & MEMORY_CLIENT_ID_MASK) >> MEMORY_CLIENT_ID_SHIFT; u32 vmid = (status & FAULT_VMID_MASK) >> FAULT_VMID_SHIFT; u32 protections = (status & PROTECTIONS_MASK) >> PROTECTIONS_SHIFT; char *block = (char *)&mc_client; printk("VM fault (0x%02x, vmid %d) at page %u, %s from %s (%d)\n", protections, vmid, addr, (status & MEMORY_CLIENT_RW_MASK) ? "write" : "read", block, mc_id); } /** * cik_vm_flush - cik vm flush using the CP * * @rdev: radeon_device pointer * * Update the page table base and flush the VM TLB * using the CP (CIK). */ void cik_vm_flush(struct radeon_device *rdev, int ridx, struct radeon_vm *vm) { struct radeon_ring *ring = &rdev->ring[ridx]; if (vm == NULL) return; radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); if (vm->id < 8) { radeon_ring_write(ring, (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm->id << 2)) >> 2); } else { radeon_ring_write(ring, (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm->id - 8) << 2)) >> 2); } radeon_ring_write(ring, 0); radeon_ring_write(ring, vm->pd_gpu_addr >> 12); /* update SH_MEM_* regs */ radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); radeon_ring_write(ring, SRBM_GFX_CNTL >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, VMID(vm->id)); radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 6)); radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); radeon_ring_write(ring, SH_MEM_BASES >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, 0); /* SH_MEM_BASES */ radeon_ring_write(ring, 0); /* SH_MEM_CONFIG */ radeon_ring_write(ring, 1); /* SH_MEM_APE1_BASE */ radeon_ring_write(ring, 0); /* SH_MEM_APE1_LIMIT */ radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); radeon_ring_write(ring, SRBM_GFX_CNTL >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, VMID(0)); /* HDP flush */ /* We should be using the WAIT_REG_MEM packet here like in * cik_fence_ring_emit(), but it causes the CP to hang in this * context... */ radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, 0); /* bits 0-15 are the VM contexts0-15 */ radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, 1 << vm->id); /* compute doesn't have PFP */ if (ridx == RADEON_RING_TYPE_GFX_INDEX) { /* sync PFP to ME, otherwise we might get invalid PFP reads */ radeon_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0)); radeon_ring_write(ring, 0x0); } } /** * cik_vm_set_page - update the page tables using sDMA * * @rdev: radeon_device pointer * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: access flags * * Update the page tables using CP or sDMA (CIK). */ void cik_vm_set_page(struct radeon_device *rdev, struct radeon_ib *ib, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint32_t flags) { uint32_t r600_flags = cayman_vm_page_flags(rdev, flags); uint64_t value; unsigned ndw; if (rdev->asic->vm.pt_ring_index == RADEON_RING_TYPE_GFX_INDEX) { /* CP */ while (count) { ndw = 2 + count * 2; if (ndw > 0x3FFE) ndw = 0x3FFE; ib->ptr[ib->length_dw++] = PACKET3(PACKET3_WRITE_DATA, ndw); ib->ptr[ib->length_dw++] = (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(1)); ib->ptr[ib->length_dw++] = pe; ib->ptr[ib->length_dw++] = upper_32_bits(pe); for (; ndw > 2; ndw -= 2, --count, pe += 8) { if (flags & RADEON_VM_PAGE_SYSTEM) { value = radeon_vm_map_gart(rdev, addr); value &= 0xFFFFFFFFFFFFF000ULL; } else if (flags & RADEON_VM_PAGE_VALID) { value = addr; } else { value = 0; } addr += incr; value |= r600_flags; ib->ptr[ib->length_dw++] = value; ib->ptr[ib->length_dw++] = upper_32_bits(value); } } } else { /* DMA */ if (flags & RADEON_VM_PAGE_SYSTEM) { while (count) { ndw = count * 2; if (ndw > 0xFFFFE) ndw = 0xFFFFE; /* for non-physically contiguous pages (system) */ ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0); ib->ptr[ib->length_dw++] = pe; ib->ptr[ib->length_dw++] = upper_32_bits(pe); ib->ptr[ib->length_dw++] = ndw; for (; ndw > 0; ndw -= 2, --count, pe += 8) { if (flags & RADEON_VM_PAGE_SYSTEM) { value = radeon_vm_map_gart(rdev, addr); value &= 0xFFFFFFFFFFFFF000ULL; } else if (flags & RADEON_VM_PAGE_VALID) { value = addr; } else { value = 0; } addr += incr; value |= r600_flags; ib->ptr[ib->length_dw++] = value; ib->ptr[ib->length_dw++] = upper_32_bits(value); } } } else { while (count) { ndw = count; if (ndw > 0x7FFFF) ndw = 0x7FFFF; if (flags & RADEON_VM_PAGE_VALID) value = addr; else value = 0; /* for physically contiguous pages (vram) */ ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_GENERATE_PTE_PDE, 0, 0); ib->ptr[ib->length_dw++] = pe; /* dst addr */ ib->ptr[ib->length_dw++] = upper_32_bits(pe); ib->ptr[ib->length_dw++] = r600_flags; /* mask */ ib->ptr[ib->length_dw++] = 0; ib->ptr[ib->length_dw++] = value; /* value */ ib->ptr[ib->length_dw++] = upper_32_bits(value); ib->ptr[ib->length_dw++] = incr; /* increment size */ ib->ptr[ib->length_dw++] = 0; ib->ptr[ib->length_dw++] = ndw; /* number of entries */ pe += ndw * 8; addr += ndw * incr; count -= ndw; } } while (ib->length_dw & 0x7) ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0); } } /** * cik_dma_vm_flush - cik vm flush using sDMA * * @rdev: radeon_device pointer * * Update the page table base and flush the VM TLB * using sDMA (CIK). */ void cik_dma_vm_flush(struct radeon_device *rdev, int ridx, struct radeon_vm *vm) { struct radeon_ring *ring = &rdev->ring[ridx]; u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) | SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */ u32 ref_and_mask; if (vm == NULL) return; if (ridx == R600_RING_TYPE_DMA_INDEX) ref_and_mask = SDMA0; else ref_and_mask = SDMA1; radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); if (vm->id < 8) { radeon_ring_write(ring, (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm->id << 2)) >> 2); } else { radeon_ring_write(ring, (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm->id - 8) << 2)) >> 2); } radeon_ring_write(ring, vm->pd_gpu_addr >> 12); /* update SH_MEM_* regs */ radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); radeon_ring_write(ring, SRBM_GFX_CNTL >> 2); radeon_ring_write(ring, VMID(vm->id)); radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); radeon_ring_write(ring, SH_MEM_BASES >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); radeon_ring_write(ring, SH_MEM_CONFIG >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); radeon_ring_write(ring, SH_MEM_APE1_BASE >> 2); radeon_ring_write(ring, 1); radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); radeon_ring_write(ring, SH_MEM_APE1_LIMIT >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); radeon_ring_write(ring, SRBM_GFX_CNTL >> 2); radeon_ring_write(ring, VMID(0)); /* flush HDP */ radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits)); radeon_ring_write(ring, GPU_HDP_FLUSH_DONE); radeon_ring_write(ring, GPU_HDP_FLUSH_REQ); radeon_ring_write(ring, ref_and_mask); /* REFERENCE */ radeon_ring_write(ring, ref_and_mask); /* MASK */ radeon_ring_write(ring, (4 << 16) | 10); /* RETRY_COUNT, POLL_INTERVAL */ /* flush TLB */ radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000)); radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2); radeon_ring_write(ring, 1 << vm->id); } /* * RLC * The RLC is a multi-purpose microengine that handles a * variety of functions, the most important of which is * the interrupt controller. */ static void cik_enable_gui_idle_interrupt(struct radeon_device *rdev, bool enable) { u32 tmp = RREG32(CP_INT_CNTL_RING0); if (enable) tmp |= (CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); else tmp &= ~(CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); WREG32(CP_INT_CNTL_RING0, tmp); } static void cik_enable_lbpw(struct radeon_device *rdev, bool enable) { u32 tmp; tmp = RREG32(RLC_LB_CNTL); if (enable) tmp |= LOAD_BALANCE_ENABLE; else tmp &= ~LOAD_BALANCE_ENABLE; WREG32(RLC_LB_CNTL, tmp); } static void cik_wait_for_rlc_serdes(struct radeon_device *rdev) { u32 i, j, k; u32 mask; for (i = 0; i < rdev->config.cik.max_shader_engines; i++) { for (j = 0; j < rdev->config.cik.max_sh_per_se; j++) { cik_select_se_sh(rdev, i, j); for (k = 0; k < rdev->usec_timeout; k++) { if (RREG32(RLC_SERDES_CU_MASTER_BUSY) == 0) break; udelay(1); } } } cik_select_se_sh(rdev, 0xffffffff, 0xffffffff); mask = SE_MASTER_BUSY_MASK | GC_MASTER_BUSY | TC0_MASTER_BUSY | TC1_MASTER_BUSY; for (k = 0; k < rdev->usec_timeout; k++) { if ((RREG32(RLC_SERDES_NONCU_MASTER_BUSY) & mask) == 0) break; udelay(1); } } static void cik_update_rlc(struct radeon_device *rdev, u32 rlc) { u32 tmp; tmp = RREG32(RLC_CNTL); if (tmp != rlc) WREG32(RLC_CNTL, rlc); } static u32 cik_halt_rlc(struct radeon_device *rdev) { u32 data, orig; orig = data = RREG32(RLC_CNTL); if (data & RLC_ENABLE) { u32 i; data &= ~RLC_ENABLE; WREG32(RLC_CNTL, data); for (i = 0; i < rdev->usec_timeout; i++) { if ((RREG32(RLC_GPM_STAT) & RLC_GPM_BUSY) == 0) break; udelay(1); } cik_wait_for_rlc_serdes(rdev); } return orig; } void cik_enter_rlc_safe_mode(struct radeon_device *rdev) { u32 tmp, i, mask; tmp = REQ | MESSAGE(MSG_ENTER_RLC_SAFE_MODE); WREG32(RLC_GPR_REG2, tmp); mask = GFX_POWER_STATUS | GFX_CLOCK_STATUS; for (i = 0; i < rdev->usec_timeout; i++) { if ((RREG32(RLC_GPM_STAT) & mask) == mask) break; udelay(1); } for (i = 0; i < rdev->usec_timeout; i++) { if ((RREG32(RLC_GPR_REG2) & REQ) == 0) break; udelay(1); } } void cik_exit_rlc_safe_mode(struct radeon_device *rdev) { u32 tmp; tmp = REQ | MESSAGE(MSG_EXIT_RLC_SAFE_MODE); WREG32(RLC_GPR_REG2, tmp); } /** * cik_rlc_stop - stop the RLC ME * * @rdev: radeon_device pointer * * Halt the RLC ME (MicroEngine) (CIK). */ static void cik_rlc_stop(struct radeon_device *rdev) { WREG32(RLC_CNTL, 0); cik_enable_gui_idle_interrupt(rdev, false); cik_wait_for_rlc_serdes(rdev); } /** * cik_rlc_start - start the RLC ME * * @rdev: radeon_device pointer * * Unhalt the RLC ME (MicroEngine) (CIK). */ static void cik_rlc_start(struct radeon_device *rdev) { WREG32(RLC_CNTL, RLC_ENABLE); cik_enable_gui_idle_interrupt(rdev, true); udelay(50); } /** * cik_rlc_resume - setup the RLC hw * * @rdev: radeon_device pointer * * Initialize the RLC registers, load the ucode, * and start the RLC (CIK). * Returns 0 for success, -EINVAL if the ucode is not available. */ static int cik_rlc_resume(struct radeon_device *rdev) { u32 i, size, tmp; const __be32 *fw_data; if (!rdev->rlc_fw) return -EINVAL; switch (rdev->family) { case CHIP_BONAIRE: default: size = BONAIRE_RLC_UCODE_SIZE; break; case CHIP_KAVERI: size = KV_RLC_UCODE_SIZE; break; case CHIP_KABINI: size = KB_RLC_UCODE_SIZE; break; } cik_rlc_stop(rdev); /* disable CG */ tmp = RREG32(RLC_CGCG_CGLS_CTRL) & 0xfffffffc; WREG32(RLC_CGCG_CGLS_CTRL, tmp); si_rlc_reset(rdev); cik_init_pg(rdev); cik_init_cg(rdev); WREG32(RLC_LB_CNTR_INIT, 0); WREG32(RLC_LB_CNTR_MAX, 0x00008000); cik_select_se_sh(rdev, 0xffffffff, 0xffffffff); WREG32(RLC_LB_INIT_CU_MASK, 0xffffffff); WREG32(RLC_LB_PARAMS, 0x00600408); WREG32(RLC_LB_CNTL, 0x80000004); WREG32(RLC_MC_CNTL, 0); WREG32(RLC_UCODE_CNTL, 0); fw_data = (const __be32 *)rdev->rlc_fw->data; WREG32(RLC_GPM_UCODE_ADDR, 0); for (i = 0; i < size; i++) WREG32(RLC_GPM_UCODE_DATA, be32_to_cpup(fw_data++)); WREG32(RLC_GPM_UCODE_ADDR, 0); /* XXX - find out what chips support lbpw */ cik_enable_lbpw(rdev, false); if (rdev->family == CHIP_BONAIRE) WREG32(RLC_DRIVER_DMA_STATUS, 0); cik_rlc_start(rdev); return 0; } static void cik_enable_cgcg(struct radeon_device *rdev, bool enable) { u32 data, orig, tmp, tmp2; orig = data = RREG32(RLC_CGCG_CGLS_CTRL); cik_enable_gui_idle_interrupt(rdev, enable); if (enable) { tmp = cik_halt_rlc(rdev); cik_select_se_sh(rdev, 0xffffffff, 0xffffffff); WREG32(RLC_SERDES_WR_CU_MASTER_MASK, 0xffffffff); WREG32(RLC_SERDES_WR_NONCU_MASTER_MASK, 0xffffffff); tmp2 = BPM_ADDR_MASK | CGCG_OVERRIDE_0 | CGLS_ENABLE; WREG32(RLC_SERDES_WR_CTRL, tmp2); cik_update_rlc(rdev, tmp); data |= CGCG_EN | CGLS_EN; } else { RREG32(CB_CGTT_SCLK_CTRL); RREG32(CB_CGTT_SCLK_CTRL); RREG32(CB_CGTT_SCLK_CTRL); RREG32(CB_CGTT_SCLK_CTRL); data &= ~(CGCG_EN | CGLS_EN); } if (orig != data) WREG32(RLC_CGCG_CGLS_CTRL, data); } static void cik_enable_mgcg(struct radeon_device *rdev, bool enable) { u32 data, orig, tmp = 0; if (enable) { orig = data = RREG32(CP_MEM_SLP_CNTL); data |= CP_MEM_LS_EN; if (orig != data) WREG32(CP_MEM_SLP_CNTL, data); orig = data = RREG32(RLC_CGTT_MGCG_OVERRIDE); data &= 0xfffffffd; if (orig != data) WREG32(RLC_CGTT_MGCG_OVERRIDE, data); tmp = cik_halt_rlc(rdev); cik_select_se_sh(rdev, 0xffffffff, 0xffffffff); WREG32(RLC_SERDES_WR_CU_MASTER_MASK, 0xffffffff); WREG32(RLC_SERDES_WR_NONCU_MASTER_MASK, 0xffffffff); data = BPM_ADDR_MASK | MGCG_OVERRIDE_0; WREG32(RLC_SERDES_WR_CTRL, data); cik_update_rlc(rdev, tmp); orig = data = RREG32(CGTS_SM_CTRL_REG); data &= ~SM_MODE_MASK; data |= SM_MODE(0x2); data |= SM_MODE_ENABLE; data &= ~CGTS_OVERRIDE; data &= ~CGTS_LS_OVERRIDE; data &= ~ON_MONITOR_ADD_MASK; data |= ON_MONITOR_ADD_EN; data |= ON_MONITOR_ADD(0x96); if (orig != data) WREG32(CGTS_SM_CTRL_REG, data); } else { orig = data = RREG32(RLC_CGTT_MGCG_OVERRIDE); data |= 0x00000002; if (orig != data) WREG32(RLC_CGTT_MGCG_OVERRIDE, data); data = RREG32(RLC_MEM_SLP_CNTL); if (data & RLC_MEM_LS_EN) { data &= ~RLC_MEM_LS_EN; WREG32(RLC_MEM_SLP_CNTL, data); } data = RREG32(CP_MEM_SLP_CNTL); if (data & CP_MEM_LS_EN) { data &= ~CP_MEM_LS_EN; WREG32(CP_MEM_SLP_CNTL, data); } orig = data = RREG32(CGTS_SM_CTRL_REG); data |= CGTS_OVERRIDE | CGTS_LS_OVERRIDE; if (orig != data) WREG32(CGTS_SM_CTRL_REG, data); tmp = cik_halt_rlc(rdev); cik_select_se_sh(rdev, 0xffffffff, 0xffffffff); WREG32(RLC_SERDES_WR_CU_MASTER_MASK, 0xffffffff); WREG32(RLC_SERDES_WR_NONCU_MASTER_MASK, 0xffffffff); data = BPM_ADDR_MASK | MGCG_OVERRIDE_1; WREG32(RLC_SERDES_WR_CTRL, data); cik_update_rlc(rdev, tmp); } } static const u32 mc_cg_registers[] = { MC_HUB_MISC_HUB_CG, MC_HUB_MISC_SIP_CG, MC_HUB_MISC_VM_CG, MC_XPB_CLK_GAT, ATC_MISC_CG, MC_CITF_MISC_WR_CG, MC_CITF_MISC_RD_CG, MC_CITF_MISC_VM_CG, VM_L2_CG, }; static void cik_enable_mc_ls(struct radeon_device *rdev, bool enable) { int i; u32 orig, data; for (i = 0; i < ARRAY_SIZE(mc_cg_registers); i++) { orig = data = RREG32(mc_cg_registers[i]); if (enable) data |= MC_LS_ENABLE; else data &= ~MC_LS_ENABLE; if (data != orig) WREG32(mc_cg_registers[i], data); } } static void cik_enable_mc_mgcg(struct radeon_device *rdev, bool enable) { int i; u32 orig, data; for (i = 0; i < ARRAY_SIZE(mc_cg_registers); i++) { orig = data = RREG32(mc_cg_registers[i]); if (enable) data |= MC_CG_ENABLE; else data &= ~MC_CG_ENABLE; if (data != orig) WREG32(mc_cg_registers[i], data); } } static void cik_enable_sdma_mgcg(struct radeon_device *rdev, bool enable) { u32 orig, data; if (enable) { WREG32(SDMA0_CLK_CTRL + SDMA0_REGISTER_OFFSET, 0x00000100); WREG32(SDMA0_CLK_CTRL + SDMA1_REGISTER_OFFSET, 0x00000100); } else { orig = data = RREG32(SDMA0_CLK_CTRL + SDMA0_REGISTER_OFFSET); data |= 0xff000000; if (data != orig) WREG32(SDMA0_CLK_CTRL + SDMA0_REGISTER_OFFSET, data); orig = data = RREG32(SDMA0_CLK_CTRL + SDMA1_REGISTER_OFFSET); data |= 0xff000000; if (data != orig) WREG32(SDMA0_CLK_CTRL + SDMA1_REGISTER_OFFSET, data); } } static void cik_enable_sdma_mgls(struct radeon_device *rdev, bool enable) { u32 orig, data; if (enable) { orig = data = RREG32(SDMA0_POWER_CNTL + SDMA0_REGISTER_OFFSET); data |= 0x100; if (orig != data) WREG32(SDMA0_POWER_CNTL + SDMA0_REGISTER_OFFSET, data); orig = data = RREG32(SDMA0_POWER_CNTL + SDMA1_REGISTER_OFFSET); data |= 0x100; if (orig != data) WREG32(SDMA0_POWER_CNTL + SDMA1_REGISTER_OFFSET, data); } else { orig = data = RREG32(SDMA0_POWER_CNTL + SDMA0_REGISTER_OFFSET); data &= ~0x100; if (orig != data) WREG32(SDMA0_POWER_CNTL + SDMA0_REGISTER_OFFSET, data); orig = data = RREG32(SDMA0_POWER_CNTL + SDMA1_REGISTER_OFFSET); data &= ~0x100; if (orig != data) WREG32(SDMA0_POWER_CNTL + SDMA1_REGISTER_OFFSET, data); } } static void cik_enable_uvd_mgcg(struct radeon_device *rdev, bool enable) { u32 orig, data; if (enable) { data = RREG32_UVD_CTX(UVD_CGC_MEM_CTRL); data = 0xfff; WREG32_UVD_CTX(UVD_CGC_MEM_CTRL, data); orig = data = RREG32(UVD_CGC_CTRL); data |= DCM; if (orig != data) WREG32(UVD_CGC_CTRL, data); } else { data = RREG32_UVD_CTX(UVD_CGC_MEM_CTRL); data &= ~0xfff; WREG32_UVD_CTX(UVD_CGC_MEM_CTRL, data); orig = data = RREG32(UVD_CGC_CTRL); data &= ~DCM; if (orig != data) WREG32(UVD_CGC_CTRL, data); } } static void cik_enable_hdp_mgcg(struct radeon_device *rdev, bool enable) { u32 orig, data; orig = data = RREG32(HDP_HOST_PATH_CNTL); if (enable) data &= ~CLOCK_GATING_DIS; else data |= CLOCK_GATING_DIS; if (orig != data) WREG32(HDP_HOST_PATH_CNTL, data); } static void cik_enable_hdp_ls(struct radeon_device *rdev, bool enable) { u32 orig, data; orig = data = RREG32(HDP_MEM_POWER_LS); if (enable) data |= HDP_LS_ENABLE; else data &= ~HDP_LS_ENABLE; if (orig != data) WREG32(HDP_MEM_POWER_LS, data); } void cik_update_cg(struct radeon_device *rdev, u32 block, bool enable) { if (block & RADEON_CG_BLOCK_GFX) { /* order matters! */ if (enable) { cik_enable_mgcg(rdev, true); cik_enable_cgcg(rdev, true); } else { cik_enable_cgcg(rdev, false); cik_enable_mgcg(rdev, false); } } if (block & RADEON_CG_BLOCK_MC) { if (!(rdev->flags & RADEON_IS_IGP)) { cik_enable_mc_mgcg(rdev, enable); cik_enable_mc_ls(rdev, enable); } } if (block & RADEON_CG_BLOCK_SDMA) { cik_enable_sdma_mgcg(rdev, enable); cik_enable_sdma_mgls(rdev, enable); } if (block & RADEON_CG_BLOCK_UVD) { if (rdev->has_uvd) cik_enable_uvd_mgcg(rdev, enable); } if (block & RADEON_CG_BLOCK_HDP) { cik_enable_hdp_mgcg(rdev, enable); cik_enable_hdp_ls(rdev, enable); } } static void cik_init_cg(struct radeon_device *rdev) { cik_update_cg(rdev, RADEON_CG_BLOCK_GFX, false); /* XXX true */ if (rdev->has_uvd) si_init_uvd_internal_cg(rdev); cik_update_cg(rdev, (RADEON_CG_BLOCK_MC | RADEON_CG_BLOCK_SDMA | RADEON_CG_BLOCK_UVD | RADEON_CG_BLOCK_HDP), true); } static void cik_enable_sck_slowdown_on_pu(struct radeon_device *rdev, bool enable) { u32 data, orig; orig = data = RREG32(RLC_PG_CNTL); if (enable) data |= SMU_CLK_SLOWDOWN_ON_PU_ENABLE; else data &= ~SMU_CLK_SLOWDOWN_ON_PU_ENABLE; if (orig != data) WREG32(RLC_PG_CNTL, data); } static void cik_enable_sck_slowdown_on_pd(struct radeon_device *rdev, bool enable) { u32 data, orig; orig = data = RREG32(RLC_PG_CNTL); if (enable) data |= SMU_CLK_SLOWDOWN_ON_PD_ENABLE; else data &= ~SMU_CLK_SLOWDOWN_ON_PD_ENABLE; if (orig != data) WREG32(RLC_PG_CNTL, data); } static void cik_enable_cp_pg(struct radeon_device *rdev, bool enable) { u32 data, orig; orig = data = RREG32(RLC_PG_CNTL); if (enable) data &= ~DISABLE_CP_PG; else data |= DISABLE_CP_PG; if (orig != data) WREG32(RLC_PG_CNTL, data); } static void cik_enable_gds_pg(struct radeon_device *rdev, bool enable) { u32 data, orig; orig = data = RREG32(RLC_PG_CNTL); if (enable) data &= ~DISABLE_GDS_PG; else data |= DISABLE_GDS_PG; if (orig != data) WREG32(RLC_PG_CNTL, data); } #define CP_ME_TABLE_SIZE 96 #define CP_ME_TABLE_OFFSET 2048 #define CP_MEC_TABLE_OFFSET 4096 void cik_init_cp_pg_table(struct radeon_device *rdev) { const __be32 *fw_data; volatile u32 *dst_ptr; int me, i, max_me = 4; u32 bo_offset = 0; u32 table_offset; if (rdev->family == CHIP_KAVERI) max_me = 5; if (rdev->rlc.cp_table_ptr == NULL) return; /* write the cp table buffer */ dst_ptr = rdev->rlc.cp_table_ptr; for (me = 0; me < max_me; me++) { if (me == 0) { fw_data = (const __be32 *)rdev->ce_fw->data; table_offset = CP_ME_TABLE_OFFSET; } else if (me == 1) { fw_data = (const __be32 *)rdev->pfp_fw->data; table_offset = CP_ME_TABLE_OFFSET; } else if (me == 2) { fw_data = (const __be32 *)rdev->me_fw->data; table_offset = CP_ME_TABLE_OFFSET; } else { fw_data = (const __be32 *)rdev->mec_fw->data; table_offset = CP_MEC_TABLE_OFFSET; } for (i = 0; i < CP_ME_TABLE_SIZE; i ++) { dst_ptr[bo_offset + i] = be32_to_cpu(fw_data[table_offset + i]); } bo_offset += CP_ME_TABLE_SIZE; } } static void cik_enable_gfx_cgpg(struct radeon_device *rdev, bool enable) { u32 data, orig; if (enable) { orig = data = RREG32(RLC_PG_CNTL); data |= GFX_PG_ENABLE; if (orig != data) WREG32(RLC_PG_CNTL, data); orig = data = RREG32(RLC_AUTO_PG_CTRL); data |= AUTO_PG_EN; if (orig != data) WREG32(RLC_AUTO_PG_CTRL, data); } else { orig = data = RREG32(RLC_PG_CNTL); data &= ~GFX_PG_ENABLE; if (orig != data) WREG32(RLC_PG_CNTL, data); orig = data = RREG32(RLC_AUTO_PG_CTRL); data &= ~AUTO_PG_EN; if (orig != data) WREG32(RLC_AUTO_PG_CTRL, data); data = RREG32(DB_RENDER_CONTROL); } } static u32 cik_get_cu_active_bitmap(struct radeon_device *rdev, u32 se, u32 sh) { u32 mask = 0, tmp, tmp1; int i; cik_select_se_sh(rdev, se, sh); tmp = RREG32(CC_GC_SHADER_ARRAY_CONFIG); tmp1 = RREG32(GC_USER_SHADER_ARRAY_CONFIG); cik_select_se_sh(rdev, 0xffffffff, 0xffffffff); tmp &= 0xffff0000; tmp |= tmp1; tmp >>= 16; for (i = 0; i < rdev->config.cik.max_cu_per_sh; i ++) { mask <<= 1; mask |= 1; } return (~tmp) & mask; } static void cik_init_ao_cu_mask(struct radeon_device *rdev) { u32 i, j, k, active_cu_number = 0; u32 mask, counter, cu_bitmap; u32 tmp = 0; for (i = 0; i < rdev->config.cik.max_shader_engines; i++) { for (j = 0; j < rdev->config.cik.max_sh_per_se; j++) { mask = 1; cu_bitmap = 0; counter = 0; for (k = 0; k < rdev->config.cik.max_cu_per_sh; k ++) { if (cik_get_cu_active_bitmap(rdev, i, j) & mask) { if (counter < 2) cu_bitmap |= mask; counter ++; } mask <<= 1; } active_cu_number += counter; tmp |= (cu_bitmap << (i * 16 + j * 8)); } } WREG32(RLC_PG_AO_CU_MASK, tmp); tmp = RREG32(RLC_MAX_PG_CU); tmp &= ~MAX_PU_CU_MASK; tmp |= MAX_PU_CU(active_cu_number); WREG32(RLC_MAX_PG_CU, tmp); } static void cik_enable_gfx_static_mgpg(struct radeon_device *rdev, bool enable) { u32 data, orig; orig = data = RREG32(RLC_PG_CNTL); if (enable) data |= STATIC_PER_CU_PG_ENABLE; else data &= ~STATIC_PER_CU_PG_ENABLE; if (orig != data) WREG32(RLC_PG_CNTL, data); } static void cik_enable_gfx_dynamic_mgpg(struct radeon_device *rdev, bool enable) { u32 data, orig; orig = data = RREG32(RLC_PG_CNTL); if (enable) data |= DYN_PER_CU_PG_ENABLE; else data &= ~DYN_PER_CU_PG_ENABLE; if (orig != data) WREG32(RLC_PG_CNTL, data); } #define RLC_SAVE_AND_RESTORE_STARTING_OFFSET 0x90 #define RLC_CLEAR_STATE_DESCRIPTOR_OFFSET 0x3D static void cik_init_gfx_cgpg(struct radeon_device *rdev) { u32 data, orig; u32 i; if (rdev->rlc.cs_data) { WREG32(RLC_GPM_SCRATCH_ADDR, RLC_CLEAR_STATE_DESCRIPTOR_OFFSET); WREG32(RLC_GPM_SCRATCH_DATA, upper_32_bits(rdev->rlc.clear_state_gpu_addr)); WREG32(RLC_GPM_SCRATCH_DATA, rdev->rlc.clear_state_gpu_addr); WREG32(RLC_GPM_SCRATCH_DATA, rdev->rlc.clear_state_size); } else { WREG32(RLC_GPM_SCRATCH_ADDR, RLC_CLEAR_STATE_DESCRIPTOR_OFFSET); for (i = 0; i < 3; i++) WREG32(RLC_GPM_SCRATCH_DATA, 0); } if (rdev->rlc.reg_list) { WREG32(RLC_GPM_SCRATCH_ADDR, RLC_SAVE_AND_RESTORE_STARTING_OFFSET); for (i = 0; i < rdev->rlc.reg_list_size; i++) WREG32(RLC_GPM_SCRATCH_DATA, rdev->rlc.reg_list[i]); } orig = data = RREG32(RLC_PG_CNTL); data |= GFX_PG_SRC; if (orig != data) WREG32(RLC_PG_CNTL, data); WREG32(RLC_SAVE_AND_RESTORE_BASE, rdev->rlc.save_restore_gpu_addr >> 8); WREG32(RLC_CP_TABLE_RESTORE, rdev->rlc.cp_table_gpu_addr >> 8); data = RREG32(CP_RB_WPTR_POLL_CNTL); data &= ~IDLE_POLL_COUNT_MASK; data |= IDLE_POLL_COUNT(0x60); WREG32(CP_RB_WPTR_POLL_CNTL, data); data = 0x10101010; WREG32(RLC_PG_DELAY, data); data = RREG32(RLC_PG_DELAY_2); data &= ~0xff; data |= 0x3; WREG32(RLC_PG_DELAY_2, data); data = RREG32(RLC_AUTO_PG_CTRL); data &= ~GRBM_REG_SGIT_MASK; data |= GRBM_REG_SGIT(0x700); WREG32(RLC_AUTO_PG_CTRL, data); } static void cik_update_gfx_pg(struct radeon_device *rdev, bool enable) { bool has_pg = false; bool has_dyn_mgpg = false; bool has_static_mgpg = false; /* only APUs have PG */ if (rdev->flags & RADEON_IS_IGP) { has_pg = true; has_static_mgpg = true; if (rdev->family == CHIP_KAVERI) has_dyn_mgpg = true; } if (has_pg) { cik_enable_gfx_cgpg(rdev, enable); if (enable) { cik_enable_gfx_static_mgpg(rdev, has_static_mgpg); cik_enable_gfx_dynamic_mgpg(rdev, has_dyn_mgpg); } else { cik_enable_gfx_static_mgpg(rdev, false); cik_enable_gfx_dynamic_mgpg(rdev, false); } } } void cik_init_pg(struct radeon_device *rdev) { bool has_pg = false; /* only APUs have PG */ if (rdev->flags & RADEON_IS_IGP) { /* XXX disable this for now */ /* has_pg = true; */ } if (has_pg) { cik_enable_sck_slowdown_on_pu(rdev, true); cik_enable_sck_slowdown_on_pd(rdev, true); cik_init_gfx_cgpg(rdev); cik_enable_cp_pg(rdev, true); cik_enable_gds_pg(rdev, true); cik_init_ao_cu_mask(rdev); cik_update_gfx_pg(rdev, true); } } /* * Interrupts * Starting with r6xx, interrupts are handled via a ring buffer. * Ring buffers are areas of GPU accessible memory that the GPU * writes interrupt vectors into and the host reads vectors out of. * There is a rptr (read pointer) that determines where the * host is currently reading, and a wptr (write pointer) * which determines where the GPU has written. When the * pointers are equal, the ring is idle. When the GPU * writes vectors to the ring buffer, it increments the * wptr. When there is an interrupt, the host then starts * fetching commands and processing them until the pointers are * equal again at which point it updates the rptr. */ /** * cik_enable_interrupts - Enable the interrupt ring buffer * * @rdev: radeon_device pointer * * Enable the interrupt ring buffer (CIK). */ static void cik_enable_interrupts(struct radeon_device *rdev) { u32 ih_cntl = RREG32(IH_CNTL); u32 ih_rb_cntl = RREG32(IH_RB_CNTL); ih_cntl |= ENABLE_INTR; ih_rb_cntl |= IH_RB_ENABLE; WREG32(IH_CNTL, ih_cntl); WREG32(IH_RB_CNTL, ih_rb_cntl); rdev->ih.enabled = true; } /** * cik_disable_interrupts - Disable the interrupt ring buffer * * @rdev: radeon_device pointer * * Disable the interrupt ring buffer (CIK). */ static void cik_disable_interrupts(struct radeon_device *rdev) { u32 ih_rb_cntl = RREG32(IH_RB_CNTL); u32 ih_cntl = RREG32(IH_CNTL); ih_rb_cntl &= ~IH_RB_ENABLE; ih_cntl &= ~ENABLE_INTR; WREG32(IH_RB_CNTL, ih_rb_cntl); WREG32(IH_CNTL, ih_cntl); /* set rptr, wptr to 0 */ WREG32(IH_RB_RPTR, 0); WREG32(IH_RB_WPTR, 0); rdev->ih.enabled = false; rdev->ih.rptr = 0; } /** * cik_disable_interrupt_state - Disable all interrupt sources * * @rdev: radeon_device pointer * * Clear all interrupt enable bits used by the driver (CIK). */ static void cik_disable_interrupt_state(struct radeon_device *rdev) { u32 tmp; /* gfx ring */ WREG32(CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); /* sdma */ tmp = RREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET) & ~TRAP_ENABLE; WREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET, tmp); tmp = RREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET) & ~TRAP_ENABLE; WREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET, tmp); /* compute queues */ WREG32(CP_ME1_PIPE0_INT_CNTL, 0); WREG32(CP_ME1_PIPE1_INT_CNTL, 0); WREG32(CP_ME1_PIPE2_INT_CNTL, 0); WREG32(CP_ME1_PIPE3_INT_CNTL, 0); WREG32(CP_ME2_PIPE0_INT_CNTL, 0); WREG32(CP_ME2_PIPE1_INT_CNTL, 0); WREG32(CP_ME2_PIPE2_INT_CNTL, 0); WREG32(CP_ME2_PIPE3_INT_CNTL, 0); /* grbm */ WREG32(GRBM_INT_CNTL, 0); /* vline/vblank, etc. */ WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC0_REGISTER_OFFSET, 0); WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC1_REGISTER_OFFSET, 0); if (rdev->num_crtc >= 4) { WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC2_REGISTER_OFFSET, 0); WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC3_REGISTER_OFFSET, 0); } if (rdev->num_crtc >= 6) { WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC4_REGISTER_OFFSET, 0); WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC5_REGISTER_OFFSET, 0); } /* dac hotplug */ WREG32(DAC_AUTODETECT_INT_CONTROL, 0); /* digital hotplug */ tmp = RREG32(DC_HPD1_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD1_INT_CONTROL, tmp); tmp = RREG32(DC_HPD2_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD2_INT_CONTROL, tmp); tmp = RREG32(DC_HPD3_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD3_INT_CONTROL, tmp); tmp = RREG32(DC_HPD4_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD4_INT_CONTROL, tmp); tmp = RREG32(DC_HPD5_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD5_INT_CONTROL, tmp); tmp = RREG32(DC_HPD6_INT_CONTROL) & DC_HPDx_INT_POLARITY; WREG32(DC_HPD6_INT_CONTROL, tmp); } /** * cik_irq_init - init and enable the interrupt ring * * @rdev: radeon_device pointer * * Allocate a ring buffer for the interrupt controller, * enable the RLC, disable interrupts, enable the IH * ring buffer and enable it (CIK). * Called at device load and reume. * Returns 0 for success, errors for failure. */ static int cik_irq_init(struct radeon_device *rdev) { int ret = 0; int rb_bufsz; u32 interrupt_cntl, ih_cntl, ih_rb_cntl; /* allocate ring */ ret = r600_ih_ring_alloc(rdev); if (ret) return ret; /* disable irqs */ cik_disable_interrupts(rdev); /* init rlc */ ret = cik_rlc_resume(rdev); if (ret) { r600_ih_ring_fini(rdev); return ret; } /* setup interrupt control */ /* XXX this should actually be a bus address, not an MC address. same on older asics */ WREG32(INTERRUPT_CNTL2, rdev->ih.gpu_addr >> 8); interrupt_cntl = RREG32(INTERRUPT_CNTL); /* IH_DUMMY_RD_OVERRIDE=0 - dummy read disabled with msi, enabled without msi * IH_DUMMY_RD_OVERRIDE=1 - dummy read controlled by IH_DUMMY_RD_EN */ interrupt_cntl &= ~IH_DUMMY_RD_OVERRIDE; /* IH_REQ_NONSNOOP_EN=1 if ring is in non-cacheable memory, e.g., vram */ interrupt_cntl &= ~IH_REQ_NONSNOOP_EN; WREG32(INTERRUPT_CNTL, interrupt_cntl); WREG32(IH_RB_BASE, rdev->ih.gpu_addr >> 8); rb_bufsz = drm_order(rdev->ih.ring_size / 4); ih_rb_cntl = (IH_WPTR_OVERFLOW_ENABLE | IH_WPTR_OVERFLOW_CLEAR | (rb_bufsz << 1)); if (rdev->wb.enabled) ih_rb_cntl |= IH_WPTR_WRITEBACK_ENABLE; /* set the writeback address whether it's enabled or not */ WREG32(IH_RB_WPTR_ADDR_LO, (rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFFFFFFFC); WREG32(IH_RB_WPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFF); WREG32(IH_RB_CNTL, ih_rb_cntl); /* set rptr, wptr to 0 */ WREG32(IH_RB_RPTR, 0); WREG32(IH_RB_WPTR, 0); /* Default settings for IH_CNTL (disabled at first) */ ih_cntl = MC_WRREQ_CREDIT(0x10) | MC_WR_CLEAN_CNT(0x10) | MC_VMID(0); /* RPTR_REARM only works if msi's are enabled */ if (rdev->msi_enabled) ih_cntl |= RPTR_REARM; WREG32(IH_CNTL, ih_cntl); /* force the active interrupt state to all disabled */ cik_disable_interrupt_state(rdev); pci_set_master(rdev->pdev); /* enable irqs */ cik_enable_interrupts(rdev); return ret; } /** * cik_irq_set - enable/disable interrupt sources * * @rdev: radeon_device pointer * * Enable interrupt sources on the GPU (vblanks, hpd, * etc.) (CIK). * Returns 0 for success, errors for failure. */ int cik_irq_set(struct radeon_device *rdev) { u32 cp_int_cntl = CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE | PRIV_INSTR_INT_ENABLE | PRIV_REG_INT_ENABLE; u32 cp_m1p0, cp_m1p1, cp_m1p2, cp_m1p3; u32 cp_m2p0, cp_m2p1, cp_m2p2, cp_m2p3; u32 crtc1 = 0, crtc2 = 0, crtc3 = 0, crtc4 = 0, crtc5 = 0, crtc6 = 0; u32 hpd1, hpd2, hpd3, hpd4, hpd5, hpd6; u32 grbm_int_cntl = 0; u32 dma_cntl, dma_cntl1; u32 thermal_int; if (!rdev->irq.installed) { WARN(1, "Can't enable IRQ/MSI because no handler is installed\n"); return -EINVAL; } /* don't enable anything if the ih is disabled */ if (!rdev->ih.enabled) { cik_disable_interrupts(rdev); /* force the active interrupt state to all disabled */ cik_disable_interrupt_state(rdev); return 0; } hpd1 = RREG32(DC_HPD1_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd2 = RREG32(DC_HPD2_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd3 = RREG32(DC_HPD3_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd4 = RREG32(DC_HPD4_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd5 = RREG32(DC_HPD5_INT_CONTROL) & ~DC_HPDx_INT_EN; hpd6 = RREG32(DC_HPD6_INT_CONTROL) & ~DC_HPDx_INT_EN; dma_cntl = RREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET) & ~TRAP_ENABLE; dma_cntl1 = RREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET) & ~TRAP_ENABLE; cp_m1p0 = RREG32(CP_ME1_PIPE0_INT_CNTL) & ~TIME_STAMP_INT_ENABLE; cp_m1p1 = RREG32(CP_ME1_PIPE1_INT_CNTL) & ~TIME_STAMP_INT_ENABLE; cp_m1p2 = RREG32(CP_ME1_PIPE2_INT_CNTL) & ~TIME_STAMP_INT_ENABLE; cp_m1p3 = RREG32(CP_ME1_PIPE3_INT_CNTL) & ~TIME_STAMP_INT_ENABLE; cp_m2p0 = RREG32(CP_ME2_PIPE0_INT_CNTL) & ~TIME_STAMP_INT_ENABLE; cp_m2p1 = RREG32(CP_ME2_PIPE1_INT_CNTL) & ~TIME_STAMP_INT_ENABLE; cp_m2p2 = RREG32(CP_ME2_PIPE2_INT_CNTL) & ~TIME_STAMP_INT_ENABLE; cp_m2p3 = RREG32(CP_ME2_PIPE3_INT_CNTL) & ~TIME_STAMP_INT_ENABLE; if (rdev->flags & RADEON_IS_IGP) thermal_int = RREG32_SMC(CG_THERMAL_INT_CTRL) & ~(THERM_INTH_MASK | THERM_INTL_MASK); else thermal_int = RREG32_SMC(CG_THERMAL_INT) & ~(THERM_INT_MASK_HIGH | THERM_INT_MASK_LOW); /* enable CP interrupts on all rings */ if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) { DRM_DEBUG("cik_irq_set: sw int gfx\n"); cp_int_cntl |= TIME_STAMP_INT_ENABLE; } if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_CP1_INDEX])) { struct radeon_ring *ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]; DRM_DEBUG("si_irq_set: sw int cp1\n"); if (ring->me == 1) { switch (ring->pipe) { case 0: cp_m1p0 |= TIME_STAMP_INT_ENABLE; break; case 1: cp_m1p1 |= TIME_STAMP_INT_ENABLE; break; case 2: cp_m1p2 |= TIME_STAMP_INT_ENABLE; break; case 3: cp_m1p2 |= TIME_STAMP_INT_ENABLE; break; default: DRM_DEBUG("si_irq_set: sw int cp1 invalid pipe %d\n", ring->pipe); break; } } else if (ring->me == 2) { switch (ring->pipe) { case 0: cp_m2p0 |= TIME_STAMP_INT_ENABLE; break; case 1: cp_m2p1 |= TIME_STAMP_INT_ENABLE; break; case 2: cp_m2p2 |= TIME_STAMP_INT_ENABLE; break; case 3: cp_m2p2 |= TIME_STAMP_INT_ENABLE; break; default: DRM_DEBUG("si_irq_set: sw int cp1 invalid pipe %d\n", ring->pipe); break; } } else { DRM_DEBUG("si_irq_set: sw int cp1 invalid me %d\n", ring->me); } } if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_CP2_INDEX])) { struct radeon_ring *ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]; DRM_DEBUG("si_irq_set: sw int cp2\n"); if (ring->me == 1) { switch (ring->pipe) { case 0: cp_m1p0 |= TIME_STAMP_INT_ENABLE; break; case 1: cp_m1p1 |= TIME_STAMP_INT_ENABLE; break; case 2: cp_m1p2 |= TIME_STAMP_INT_ENABLE; break; case 3: cp_m1p2 |= TIME_STAMP_INT_ENABLE; break; default: DRM_DEBUG("si_irq_set: sw int cp2 invalid pipe %d\n", ring->pipe); break; } } else if (ring->me == 2) { switch (ring->pipe) { case 0: cp_m2p0 |= TIME_STAMP_INT_ENABLE; break; case 1: cp_m2p1 |= TIME_STAMP_INT_ENABLE; break; case 2: cp_m2p2 |= TIME_STAMP_INT_ENABLE; break; case 3: cp_m2p2 |= TIME_STAMP_INT_ENABLE; break; default: DRM_DEBUG("si_irq_set: sw int cp2 invalid pipe %d\n", ring->pipe); break; } } else { DRM_DEBUG("si_irq_set: sw int cp2 invalid me %d\n", ring->me); } } if (atomic_read(&rdev->irq.ring_int[R600_RING_TYPE_DMA_INDEX])) { DRM_DEBUG("cik_irq_set: sw int dma\n"); dma_cntl |= TRAP_ENABLE; } if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_DMA1_INDEX])) { DRM_DEBUG("cik_irq_set: sw int dma1\n"); dma_cntl1 |= TRAP_ENABLE; } if (rdev->irq.crtc_vblank_int[0] || atomic_read(&rdev->irq.pflip[0])) { DRM_DEBUG("cik_irq_set: vblank 0\n"); crtc1 |= VBLANK_INTERRUPT_MASK; } if (rdev->irq.crtc_vblank_int[1] || atomic_read(&rdev->irq.pflip[1])) { DRM_DEBUG("cik_irq_set: vblank 1\n"); crtc2 |= VBLANK_INTERRUPT_MASK; } if (rdev->irq.crtc_vblank_int[2] || atomic_read(&rdev->irq.pflip[2])) { DRM_DEBUG("cik_irq_set: vblank 2\n"); crtc3 |= VBLANK_INTERRUPT_MASK; } if (rdev->irq.crtc_vblank_int[3] || atomic_read(&rdev->irq.pflip[3])) { DRM_DEBUG("cik_irq_set: vblank 3\n"); crtc4 |= VBLANK_INTERRUPT_MASK; } if (rdev->irq.crtc_vblank_int[4] || atomic_read(&rdev->irq.pflip[4])) { DRM_DEBUG("cik_irq_set: vblank 4\n"); crtc5 |= VBLANK_INTERRUPT_MASK; } if (rdev->irq.crtc_vblank_int[5] || atomic_read(&rdev->irq.pflip[5])) { DRM_DEBUG("cik_irq_set: vblank 5\n"); crtc6 |= VBLANK_INTERRUPT_MASK; } if (rdev->irq.hpd[0]) { DRM_DEBUG("cik_irq_set: hpd 1\n"); hpd1 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[1]) { DRM_DEBUG("cik_irq_set: hpd 2\n"); hpd2 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[2]) { DRM_DEBUG("cik_irq_set: hpd 3\n"); hpd3 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[3]) { DRM_DEBUG("cik_irq_set: hpd 4\n"); hpd4 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[4]) { DRM_DEBUG("cik_irq_set: hpd 5\n"); hpd5 |= DC_HPDx_INT_EN; } if (rdev->irq.hpd[5]) { DRM_DEBUG("cik_irq_set: hpd 6\n"); hpd6 |= DC_HPDx_INT_EN; } if (rdev->irq.dpm_thermal) { DRM_DEBUG("dpm thermal\n"); if (rdev->flags & RADEON_IS_IGP) thermal_int |= THERM_INTH_MASK | THERM_INTL_MASK; else thermal_int |= THERM_INT_MASK_HIGH | THERM_INT_MASK_LOW; } WREG32(CP_INT_CNTL_RING0, cp_int_cntl); WREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET, dma_cntl); WREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET, dma_cntl1); WREG32(CP_ME1_PIPE0_INT_CNTL, cp_m1p0); WREG32(CP_ME1_PIPE1_INT_CNTL, cp_m1p1); WREG32(CP_ME1_PIPE2_INT_CNTL, cp_m1p2); WREG32(CP_ME1_PIPE3_INT_CNTL, cp_m1p3); WREG32(CP_ME2_PIPE0_INT_CNTL, cp_m2p0); WREG32(CP_ME2_PIPE1_INT_CNTL, cp_m2p1); WREG32(CP_ME2_PIPE2_INT_CNTL, cp_m2p2); WREG32(CP_ME2_PIPE3_INT_CNTL, cp_m2p3); WREG32(GRBM_INT_CNTL, grbm_int_cntl); WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC0_REGISTER_OFFSET, crtc1); WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC1_REGISTER_OFFSET, crtc2); if (rdev->num_crtc >= 4) { WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC2_REGISTER_OFFSET, crtc3); WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC3_REGISTER_OFFSET, crtc4); } if (rdev->num_crtc >= 6) { WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC4_REGISTER_OFFSET, crtc5); WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC5_REGISTER_OFFSET, crtc6); } WREG32(DC_HPD1_INT_CONTROL, hpd1); WREG32(DC_HPD2_INT_CONTROL, hpd2); WREG32(DC_HPD3_INT_CONTROL, hpd3); WREG32(DC_HPD4_INT_CONTROL, hpd4); WREG32(DC_HPD5_INT_CONTROL, hpd5); WREG32(DC_HPD6_INT_CONTROL, hpd6); if (rdev->flags & RADEON_IS_IGP) WREG32_SMC(CG_THERMAL_INT_CTRL, thermal_int); else WREG32_SMC(CG_THERMAL_INT, thermal_int); return 0; } /** * cik_irq_ack - ack interrupt sources * * @rdev: radeon_device pointer * * Ack interrupt sources on the GPU (vblanks, hpd, * etc.) (CIK). Certain interrupts sources are sw * generated and do not require an explicit ack. */ static inline void cik_irq_ack(struct radeon_device *rdev) { u32 tmp; rdev->irq.stat_regs.cik.disp_int = RREG32(DISP_INTERRUPT_STATUS); rdev->irq.stat_regs.cik.disp_int_cont = RREG32(DISP_INTERRUPT_STATUS_CONTINUE); rdev->irq.stat_regs.cik.disp_int_cont2 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE2); rdev->irq.stat_regs.cik.disp_int_cont3 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE3); rdev->irq.stat_regs.cik.disp_int_cont4 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE4); rdev->irq.stat_regs.cik.disp_int_cont5 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE5); rdev->irq.stat_regs.cik.disp_int_cont6 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE6); if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VBLANK_INTERRUPT) WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, VBLANK_ACK); if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VLINE_INTERRUPT) WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, VLINE_ACK); if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VBLANK_INTERRUPT) WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, VBLANK_ACK); if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VLINE_INTERRUPT) WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, VLINE_ACK); if (rdev->num_crtc >= 4) { if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VBLANK_INTERRUPT) WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, VBLANK_ACK); if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VLINE_INTERRUPT) WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, VLINE_ACK); if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VBLANK_INTERRUPT) WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, VBLANK_ACK); if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VLINE_INTERRUPT) WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, VLINE_ACK); } if (rdev->num_crtc >= 6) { if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VBLANK_INTERRUPT) WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, VBLANK_ACK); if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VLINE_INTERRUPT) WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, VLINE_ACK); if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VBLANK_INTERRUPT) WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, VBLANK_ACK); if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VLINE_INTERRUPT) WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, VLINE_ACK); } if (rdev->irq.stat_regs.cik.disp_int & DC_HPD1_INTERRUPT) { tmp = RREG32(DC_HPD1_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD1_INT_CONTROL, tmp); } if (rdev->irq.stat_regs.cik.disp_int_cont & DC_HPD2_INTERRUPT) { tmp = RREG32(DC_HPD2_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD2_INT_CONTROL, tmp); } if (rdev->irq.stat_regs.cik.disp_int_cont2 & DC_HPD3_INTERRUPT) { tmp = RREG32(DC_HPD3_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD3_INT_CONTROL, tmp); } if (rdev->irq.stat_regs.cik.disp_int_cont3 & DC_HPD4_INTERRUPT) { tmp = RREG32(DC_HPD4_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD4_INT_CONTROL, tmp); } if (rdev->irq.stat_regs.cik.disp_int_cont4 & DC_HPD5_INTERRUPT) { tmp = RREG32(DC_HPD5_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD5_INT_CONTROL, tmp); } if (rdev->irq.stat_regs.cik.disp_int_cont5 & DC_HPD6_INTERRUPT) { tmp = RREG32(DC_HPD5_INT_CONTROL); tmp |= DC_HPDx_INT_ACK; WREG32(DC_HPD6_INT_CONTROL, tmp); } } /** * cik_irq_disable - disable interrupts * * @rdev: radeon_device pointer * * Disable interrupts on the hw (CIK). */ static void cik_irq_disable(struct radeon_device *rdev) { cik_disable_interrupts(rdev); /* Wait and acknowledge irq */ mdelay(1); cik_irq_ack(rdev); cik_disable_interrupt_state(rdev); } /** * cik_irq_disable - disable interrupts for suspend * * @rdev: radeon_device pointer * * Disable interrupts and stop the RLC (CIK). * Used for suspend. */ static void cik_irq_suspend(struct radeon_device *rdev) { cik_irq_disable(rdev); cik_rlc_stop(rdev); } /** * cik_irq_fini - tear down interrupt support * * @rdev: radeon_device pointer * * Disable interrupts on the hw and free the IH ring * buffer (CIK). * Used for driver unload. */ static void cik_irq_fini(struct radeon_device *rdev) { cik_irq_suspend(rdev); r600_ih_ring_fini(rdev); } /** * cik_get_ih_wptr - get the IH ring buffer wptr * * @rdev: radeon_device pointer * * Get the IH ring buffer wptr from either the register * or the writeback memory buffer (CIK). Also check for * ring buffer overflow and deal with it. * Used by cik_irq_process(). * Returns the value of the wptr. */ static inline u32 cik_get_ih_wptr(struct radeon_device *rdev) { u32 wptr, tmp; if (rdev->wb.enabled) wptr = le32_to_cpu(rdev->wb.wb[R600_WB_IH_WPTR_OFFSET/4]); else wptr = RREG32(IH_RB_WPTR); if (wptr & RB_OVERFLOW) { /* When a ring buffer overflow happen start parsing interrupt * from the last not overwritten vector (wptr + 16). Hopefully * this should allow us to catchup. */ dev_warn(rdev->dev, "IH ring buffer overflow (0x%08X, %d, %d)\n", wptr, rdev->ih.rptr, (wptr + 16) + rdev->ih.ptr_mask); rdev->ih.rptr = (wptr + 16) & rdev->ih.ptr_mask; tmp = RREG32(IH_RB_CNTL); tmp |= IH_WPTR_OVERFLOW_CLEAR; WREG32(IH_RB_CNTL, tmp); } return (wptr & rdev->ih.ptr_mask); } /* CIK IV Ring * Each IV ring entry is 128 bits: * [7:0] - interrupt source id * [31:8] - reserved * [59:32] - interrupt source data * [63:60] - reserved * [71:64] - RINGID * CP: * ME_ID [1:0], PIPE_ID[1:0], QUEUE_ID[2:0] * QUEUE_ID - for compute, which of the 8 queues owned by the dispatcher * - for gfx, hw shader state (0=PS...5=LS, 6=CS) * ME_ID - 0 = gfx, 1 = first 4 CS pipes, 2 = second 4 CS pipes * PIPE_ID - ME0 0=3D * - ME1&2 compute dispatcher (4 pipes each) * SDMA: * INSTANCE_ID [1:0], QUEUE_ID[1:0] * INSTANCE_ID - 0 = sdma0, 1 = sdma1 * QUEUE_ID - 0 = gfx, 1 = rlc0, 2 = rlc1 * [79:72] - VMID * [95:80] - PASID * [127:96] - reserved */ /** * cik_irq_process - interrupt handler * * @rdev: radeon_device pointer * * Interrupt hander (CIK). Walk the IH ring, * ack interrupts and schedule work to handle * interrupt events. * Returns irq process return code. */ int cik_irq_process(struct radeon_device *rdev) { struct radeon_ring *cp1_ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]; struct radeon_ring *cp2_ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]; u32 wptr; u32 rptr; u32 src_id, src_data, ring_id; u8 me_id, pipe_id, queue_id; u32 ring_index; bool queue_hotplug = false; bool queue_reset = false; u32 addr, status, mc_client; bool queue_thermal = false; if (!rdev->ih.enabled || rdev->shutdown) return IRQ_NONE; wptr = cik_get_ih_wptr(rdev); restart_ih: /* is somebody else already processing irqs? */ if (atomic_xchg(&rdev->ih.lock, 1)) return IRQ_NONE; rptr = rdev->ih.rptr; DRM_DEBUG("cik_irq_process start: rptr %d, wptr %d\n", rptr, wptr); /* Order reading of wptr vs. reading of IH ring data */ rmb(); /* display interrupts */ cik_irq_ack(rdev); while (rptr != wptr) { /* wptr/rptr are in bytes! */ ring_index = rptr / 4; src_id = le32_to_cpu(rdev->ih.ring[ring_index]) & 0xff; src_data = le32_to_cpu(rdev->ih.ring[ring_index + 1]) & 0xfffffff; ring_id = le32_to_cpu(rdev->ih.ring[ring_index + 2]) & 0xff; switch (src_id) { case 1: /* D1 vblank/vline */ switch (src_data) { case 0: /* D1 vblank */ if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VBLANK_INTERRUPT) { if (rdev->irq.crtc_vblank_int[0]) { drm_handle_vblank(rdev->ddev, 0); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[0])) radeon_crtc_handle_flip(rdev, 0); rdev->irq.stat_regs.cik.disp_int &= ~LB_D1_VBLANK_INTERRUPT; DRM_DEBUG("IH: D1 vblank\n"); } break; case 1: /* D1 vline */ if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VLINE_INTERRUPT) { rdev->irq.stat_regs.cik.disp_int &= ~LB_D1_VLINE_INTERRUPT; DRM_DEBUG("IH: D1 vline\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 2: /* D2 vblank/vline */ switch (src_data) { case 0: /* D2 vblank */ if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VBLANK_INTERRUPT) { if (rdev->irq.crtc_vblank_int[1]) { drm_handle_vblank(rdev->ddev, 1); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[1])) radeon_crtc_handle_flip(rdev, 1); rdev->irq.stat_regs.cik.disp_int_cont &= ~LB_D2_VBLANK_INTERRUPT; DRM_DEBUG("IH: D2 vblank\n"); } break; case 1: /* D2 vline */ if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VLINE_INTERRUPT) { rdev->irq.stat_regs.cik.disp_int_cont &= ~LB_D2_VLINE_INTERRUPT; DRM_DEBUG("IH: D2 vline\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 3: /* D3 vblank/vline */ switch (src_data) { case 0: /* D3 vblank */ if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VBLANK_INTERRUPT) { if (rdev->irq.crtc_vblank_int[2]) { drm_handle_vblank(rdev->ddev, 2); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[2])) radeon_crtc_handle_flip(rdev, 2); rdev->irq.stat_regs.cik.disp_int_cont2 &= ~LB_D3_VBLANK_INTERRUPT; DRM_DEBUG("IH: D3 vblank\n"); } break; case 1: /* D3 vline */ if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VLINE_INTERRUPT) { rdev->irq.stat_regs.cik.disp_int_cont2 &= ~LB_D3_VLINE_INTERRUPT; DRM_DEBUG("IH: D3 vline\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 4: /* D4 vblank/vline */ switch (src_data) { case 0: /* D4 vblank */ if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VBLANK_INTERRUPT) { if (rdev->irq.crtc_vblank_int[3]) { drm_handle_vblank(rdev->ddev, 3); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[3])) radeon_crtc_handle_flip(rdev, 3); rdev->irq.stat_regs.cik.disp_int_cont3 &= ~LB_D4_VBLANK_INTERRUPT; DRM_DEBUG("IH: D4 vblank\n"); } break; case 1: /* D4 vline */ if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VLINE_INTERRUPT) { rdev->irq.stat_regs.cik.disp_int_cont3 &= ~LB_D4_VLINE_INTERRUPT; DRM_DEBUG("IH: D4 vline\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 5: /* D5 vblank/vline */ switch (src_data) { case 0: /* D5 vblank */ if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VBLANK_INTERRUPT) { if (rdev->irq.crtc_vblank_int[4]) { drm_handle_vblank(rdev->ddev, 4); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[4])) radeon_crtc_handle_flip(rdev, 4); rdev->irq.stat_regs.cik.disp_int_cont4 &= ~LB_D5_VBLANK_INTERRUPT; DRM_DEBUG("IH: D5 vblank\n"); } break; case 1: /* D5 vline */ if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VLINE_INTERRUPT) { rdev->irq.stat_regs.cik.disp_int_cont4 &= ~LB_D5_VLINE_INTERRUPT; DRM_DEBUG("IH: D5 vline\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 6: /* D6 vblank/vline */ switch (src_data) { case 0: /* D6 vblank */ if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VBLANK_INTERRUPT) { if (rdev->irq.crtc_vblank_int[5]) { drm_handle_vblank(rdev->ddev, 5); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[5])) radeon_crtc_handle_flip(rdev, 5); rdev->irq.stat_regs.cik.disp_int_cont5 &= ~LB_D6_VBLANK_INTERRUPT; DRM_DEBUG("IH: D6 vblank\n"); } break; case 1: /* D6 vline */ if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VLINE_INTERRUPT) { rdev->irq.stat_regs.cik.disp_int_cont5 &= ~LB_D6_VLINE_INTERRUPT; DRM_DEBUG("IH: D6 vline\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 42: /* HPD hotplug */ switch (src_data) { case 0: if (rdev->irq.stat_regs.cik.disp_int & DC_HPD1_INTERRUPT) { rdev->irq.stat_regs.cik.disp_int &= ~DC_HPD1_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD1\n"); } break; case 1: if (rdev->irq.stat_regs.cik.disp_int_cont & DC_HPD2_INTERRUPT) { rdev->irq.stat_regs.cik.disp_int_cont &= ~DC_HPD2_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD2\n"); } break; case 2: if (rdev->irq.stat_regs.cik.disp_int_cont2 & DC_HPD3_INTERRUPT) { rdev->irq.stat_regs.cik.disp_int_cont2 &= ~DC_HPD3_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD3\n"); } break; case 3: if (rdev->irq.stat_regs.cik.disp_int_cont3 & DC_HPD4_INTERRUPT) { rdev->irq.stat_regs.cik.disp_int_cont3 &= ~DC_HPD4_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD4\n"); } break; case 4: if (rdev->irq.stat_regs.cik.disp_int_cont4 & DC_HPD5_INTERRUPT) { rdev->irq.stat_regs.cik.disp_int_cont4 &= ~DC_HPD5_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD5\n"); } break; case 5: if (rdev->irq.stat_regs.cik.disp_int_cont5 & DC_HPD6_INTERRUPT) { rdev->irq.stat_regs.cik.disp_int_cont5 &= ~DC_HPD6_INTERRUPT; queue_hotplug = true; DRM_DEBUG("IH: HPD6\n"); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } break; case 146: case 147: addr = RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR); status = RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS); mc_client = RREG32(VM_CONTEXT1_PROTECTION_FAULT_MCCLIENT); dev_err(rdev->dev, "GPU fault detected: %d 0x%08x\n", src_id, src_data); dev_err(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n", addr); dev_err(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n", status); cik_vm_decode_fault(rdev, status, addr, mc_client); /* reset addr and status */ WREG32_P(VM_CONTEXT1_CNTL2, 1, ~1); break; case 176: /* GFX RB CP_INT */ case 177: /* GFX IB CP_INT */ radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX); break; case 181: /* CP EOP event */ DRM_DEBUG("IH: CP EOP\n"); /* XXX check the bitfield order! */ me_id = (ring_id & 0x60) >> 5; pipe_id = (ring_id & 0x18) >> 3; queue_id = (ring_id & 0x7) >> 0; switch (me_id) { case 0: radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX); break; case 1: case 2: if ((cp1_ring->me == me_id) & (cp1_ring->pipe == pipe_id)) radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP1_INDEX); if ((cp2_ring->me == me_id) & (cp2_ring->pipe == pipe_id)) radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP2_INDEX); break; } break; case 184: /* CP Privileged reg access */ DRM_ERROR("Illegal register access in command stream\n"); /* XXX check the bitfield order! */ me_id = (ring_id & 0x60) >> 5; pipe_id = (ring_id & 0x18) >> 3; queue_id = (ring_id & 0x7) >> 0; switch (me_id) { case 0: /* This results in a full GPU reset, but all we need to do is soft * reset the CP for gfx */ queue_reset = true; break; case 1: /* XXX compute */ queue_reset = true; break; case 2: /* XXX compute */ queue_reset = true; break; } break; case 185: /* CP Privileged inst */ DRM_ERROR("Illegal instruction in command stream\n"); /* XXX check the bitfield order! */ me_id = (ring_id & 0x60) >> 5; pipe_id = (ring_id & 0x18) >> 3; queue_id = (ring_id & 0x7) >> 0; switch (me_id) { case 0: /* This results in a full GPU reset, but all we need to do is soft * reset the CP for gfx */ queue_reset = true; break; case 1: /* XXX compute */ queue_reset = true; break; case 2: /* XXX compute */ queue_reset = true; break; } break; case 224: /* SDMA trap event */ /* XXX check the bitfield order! */ me_id = (ring_id & 0x3) >> 0; queue_id = (ring_id & 0xc) >> 2; DRM_DEBUG("IH: SDMA trap\n"); switch (me_id) { case 0: switch (queue_id) { case 0: radeon_fence_process(rdev, R600_RING_TYPE_DMA_INDEX); break; case 1: /* XXX compute */ break; case 2: /* XXX compute */ break; } break; case 1: switch (queue_id) { case 0: radeon_fence_process(rdev, CAYMAN_RING_TYPE_DMA1_INDEX); break; case 1: /* XXX compute */ break; case 2: /* XXX compute */ break; } break; } break; case 230: /* thermal low to high */ DRM_DEBUG("IH: thermal low to high\n"); rdev->pm.dpm.thermal.high_to_low = false; queue_thermal = true; break; case 231: /* thermal high to low */ DRM_DEBUG("IH: thermal high to low\n"); rdev->pm.dpm.thermal.high_to_low = true; queue_thermal = true; break; case 233: /* GUI IDLE */ DRM_DEBUG("IH: GUI idle\n"); break; case 241: /* SDMA Privileged inst */ case 247: /* SDMA Privileged inst */ DRM_ERROR("Illegal instruction in SDMA command stream\n"); /* XXX check the bitfield order! */ me_id = (ring_id & 0x3) >> 0; queue_id = (ring_id & 0xc) >> 2; switch (me_id) { case 0: switch (queue_id) { case 0: queue_reset = true; break; case 1: /* XXX compute */ queue_reset = true; break; case 2: /* XXX compute */ queue_reset = true; break; } break; case 1: switch (queue_id) { case 0: queue_reset = true; break; case 1: /* XXX compute */ queue_reset = true; break; case 2: /* XXX compute */ queue_reset = true; break; } break; } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } /* wptr/rptr are in bytes! */ rptr += 16; rptr &= rdev->ih.ptr_mask; } if (queue_hotplug) schedule_work(&rdev->hotplug_work); if (queue_reset) schedule_work(&rdev->reset_work); if (queue_thermal) schedule_work(&rdev->pm.dpm.thermal.work); rdev->ih.rptr = rptr; WREG32(IH_RB_RPTR, rdev->ih.rptr); atomic_set(&rdev->ih.lock, 0); /* make sure wptr hasn't changed while processing */ wptr = cik_get_ih_wptr(rdev); if (wptr != rptr) goto restart_ih; return IRQ_HANDLED; } /* * startup/shutdown callbacks */ /** * cik_startup - program the asic to a functional state * * @rdev: radeon_device pointer * * Programs the asic to a functional state (CIK). * Called by cik_init() and cik_resume(). * Returns 0 for success, error for failure. */ static int cik_startup(struct radeon_device *rdev) { struct radeon_ring *ring; int r; /* enable pcie gen2/3 link */ cik_pcie_gen3_enable(rdev); /* enable aspm */ cik_program_aspm(rdev); cik_mc_program(rdev); if (rdev->flags & RADEON_IS_IGP) { if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw || !rdev->mec_fw || !rdev->sdma_fw || !rdev->rlc_fw) { r = cik_init_microcode(rdev); if (r) { DRM_ERROR("Failed to load firmware!\n"); return r; } } } else { if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw || !rdev->mec_fw || !rdev->sdma_fw || !rdev->rlc_fw || !rdev->mc_fw) { r = cik_init_microcode(rdev); if (r) { DRM_ERROR("Failed to load firmware!\n"); return r; } } r = ci_mc_load_microcode(rdev); if (r) { DRM_ERROR("Failed to load MC firmware!\n"); return r; } } r = r600_vram_scratch_init(rdev); if (r) return r; r = cik_pcie_gart_enable(rdev); if (r) return r; cik_gpu_init(rdev); /* allocate rlc buffers */ if (rdev->flags & RADEON_IS_IGP) { if (rdev->family == CHIP_KAVERI) { rdev->rlc.reg_list = spectre_rlc_save_restore_register_list; rdev->rlc.reg_list_size = (u32)ARRAY_SIZE(spectre_rlc_save_restore_register_list); } else { rdev->rlc.reg_list = kalindi_rlc_save_restore_register_list; rdev->rlc.reg_list_size = (u32)ARRAY_SIZE(kalindi_rlc_save_restore_register_list); } } rdev->rlc.cs_data = ci_cs_data; rdev->rlc.cp_table_size = CP_ME_TABLE_SIZE * 5 * 4; r = sumo_rlc_init(rdev); if (r) { DRM_ERROR("Failed to init rlc BOs!\n"); return r; } /* allocate wb buffer */ r = radeon_wb_init(rdev); if (r) return r; /* allocate mec buffers */ r = cik_mec_init(rdev); if (r) { DRM_ERROR("Failed to init MEC BOs!\n"); return r; } r = radeon_fence_driver_start_ring(rdev, RADEON_RING_TYPE_GFX_INDEX); if (r) { dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r); return r; } r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_CP1_INDEX); if (r) { dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r); return r; } r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_CP2_INDEX); if (r) { dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r); return r; } r = radeon_fence_driver_start_ring(rdev, R600_RING_TYPE_DMA_INDEX); if (r) { dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r); return r; } r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_DMA1_INDEX); if (r) { dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r); return r; } r = uvd_v4_2_resume(rdev); if (!r) { r = radeon_fence_driver_start_ring(rdev, R600_RING_TYPE_UVD_INDEX); if (r) dev_err(rdev->dev, "UVD fences init error (%d).\n", r); } if (r) rdev->ring[R600_RING_TYPE_UVD_INDEX].ring_size = 0; /* Enable IRQ */ if (!rdev->irq.installed) { r = radeon_irq_kms_init(rdev); if (r) return r; } r = cik_irq_init(rdev); if (r) { DRM_ERROR("radeon: IH init failed (%d).\n", r); radeon_irq_kms_fini(rdev); return r; } cik_irq_set(rdev); ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP_RPTR_OFFSET, CP_RB0_RPTR, CP_RB0_WPTR, RADEON_CP_PACKET2); if (r) return r; /* set up the compute queues */ /* type-2 packets are deprecated on MEC, use type-3 instead */ ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP1_RPTR_OFFSET, CP_HQD_PQ_RPTR, CP_HQD_PQ_WPTR, PACKET3(PACKET3_NOP, 0x3FFF)); if (r) return r; ring->me = 1; /* first MEC */ ring->pipe = 0; /* first pipe */ ring->queue = 0; /* first queue */ ring->wptr_offs = CIK_WB_CP1_WPTR_OFFSET; /* type-2 packets are deprecated on MEC, use type-3 instead */ ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP2_RPTR_OFFSET, CP_HQD_PQ_RPTR, CP_HQD_PQ_WPTR, PACKET3(PACKET3_NOP, 0x3FFF)); if (r) return r; /* dGPU only have 1 MEC */ ring->me = 1; /* first MEC */ ring->pipe = 0; /* first pipe */ ring->queue = 1; /* second queue */ ring->wptr_offs = CIK_WB_CP2_WPTR_OFFSET; ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, R600_WB_DMA_RPTR_OFFSET, SDMA0_GFX_RB_RPTR + SDMA0_REGISTER_OFFSET, SDMA0_GFX_RB_WPTR + SDMA0_REGISTER_OFFSET, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0)); if (r) return r; ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, CAYMAN_WB_DMA1_RPTR_OFFSET, SDMA0_GFX_RB_RPTR + SDMA1_REGISTER_OFFSET, SDMA0_GFX_RB_WPTR + SDMA1_REGISTER_OFFSET, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0)); if (r) return r; r = cik_cp_resume(rdev); if (r) return r; r = cik_sdma_resume(rdev); if (r) return r; ring = &rdev->ring[R600_RING_TYPE_UVD_INDEX]; if (ring->ring_size) { r = radeon_ring_init(rdev, ring, ring->ring_size, 0, UVD_RBC_RB_RPTR, UVD_RBC_RB_WPTR, RADEON_CP_PACKET2); if (!r) r = uvd_v1_0_init(rdev); if (r) DRM_ERROR("radeon: failed initializing UVD (%d).\n", r); } r = radeon_ib_pool_init(rdev); if (r) { dev_err(rdev->dev, "IB initialization failed (%d).\n", r); return r; } r = radeon_vm_manager_init(rdev); if (r) { dev_err(rdev->dev, "vm manager initialization failed (%d).\n", r); return r; } return 0; } /** * cik_resume - resume the asic to a functional state * * @rdev: radeon_device pointer * * Programs the asic to a functional state (CIK). * Called at resume. * Returns 0 for success, error for failure. */ int cik_resume(struct radeon_device *rdev) { int r; /* post card */ atom_asic_init(rdev->mode_info.atom_context); /* init golden registers */ cik_init_golden_registers(rdev); rdev->accel_working = true; r = cik_startup(rdev); if (r) { DRM_ERROR("cik startup failed on resume\n"); rdev->accel_working = false; return r; } return r; } /** * cik_suspend - suspend the asic * * @rdev: radeon_device pointer * * Bring the chip into a state suitable for suspend (CIK). * Called at suspend. * Returns 0 for success. */ int cik_suspend(struct radeon_device *rdev) { radeon_vm_manager_fini(rdev); cik_cp_enable(rdev, false); cik_sdma_enable(rdev, false); uvd_v1_0_fini(rdev); radeon_uvd_suspend(rdev); cik_irq_suspend(rdev); radeon_wb_disable(rdev); cik_pcie_gart_disable(rdev); return 0; } /* Plan is to move initialization in that function and use * helper function so that radeon_device_init pretty much * do nothing more than calling asic specific function. This * should also allow to remove a bunch of callback function * like vram_info. */ /** * cik_init - asic specific driver and hw init * * @rdev: radeon_device pointer * * Setup asic specific driver variables and program the hw * to a functional state (CIK). * Called at driver startup. * Returns 0 for success, errors for failure. */ int cik_init(struct radeon_device *rdev) { struct radeon_ring *ring; int r; /* Read BIOS */ if (!radeon_get_bios(rdev)) { if (ASIC_IS_AVIVO(rdev)) return -EINVAL; } /* Must be an ATOMBIOS */ if (!rdev->is_atom_bios) { dev_err(rdev->dev, "Expecting atombios for cayman GPU\n"); return -EINVAL; } r = radeon_atombios_init(rdev); if (r) return r; /* Post card if necessary */ if (!radeon_card_posted(rdev)) { if (!rdev->bios) { dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n"); return -EINVAL; } DRM_INFO("GPU not posted. posting now...\n"); atom_asic_init(rdev->mode_info.atom_context); } /* init golden registers */ cik_init_golden_registers(rdev); /* Initialize scratch registers */ cik_scratch_init(rdev); /* Initialize surface registers */ radeon_surface_init(rdev); /* Initialize clocks */ radeon_get_clock_info(rdev->ddev); /* Fence driver */ r = radeon_fence_driver_init(rdev); if (r) return r; /* initialize memory controller */ r = cik_mc_init(rdev); if (r) return r; /* Memory manager */ r = radeon_bo_init(rdev); if (r) return r; ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; ring->ring_obj = NULL; r600_ring_init(rdev, ring, 1024 * 1024); ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]; ring->ring_obj = NULL; r600_ring_init(rdev, ring, 1024 * 1024); r = radeon_doorbell_get(rdev, &ring->doorbell_page_num); if (r) return r; ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]; ring->ring_obj = NULL; r600_ring_init(rdev, ring, 1024 * 1024); r = radeon_doorbell_get(rdev, &ring->doorbell_page_num); if (r) return r; ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; ring->ring_obj = NULL; r600_ring_init(rdev, ring, 256 * 1024); ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]; ring->ring_obj = NULL; r600_ring_init(rdev, ring, 256 * 1024); r = radeon_uvd_init(rdev); if (!r) { ring = &rdev->ring[R600_RING_TYPE_UVD_INDEX]; ring->ring_obj = NULL; r600_ring_init(rdev, ring, 4096); } rdev->ih.ring_obj = NULL; r600_ih_ring_init(rdev, 64 * 1024); r = r600_pcie_gart_init(rdev); if (r) return r; rdev->accel_working = true; r = cik_startup(rdev); if (r) { dev_err(rdev->dev, "disabling GPU acceleration\n"); cik_cp_fini(rdev); cik_sdma_fini(rdev); cik_irq_fini(rdev); sumo_rlc_fini(rdev); cik_mec_fini(rdev); radeon_wb_fini(rdev); radeon_ib_pool_fini(rdev); radeon_vm_manager_fini(rdev); radeon_irq_kms_fini(rdev); cik_pcie_gart_fini(rdev); rdev->accel_working = false; } /* Don't start up if the MC ucode is missing. * The default clocks and voltages before the MC ucode * is loaded are not suffient for advanced operations. */ if (!rdev->mc_fw && !(rdev->flags & RADEON_IS_IGP)) { DRM_ERROR("radeon: MC ucode required for NI+.\n"); return -EINVAL; } return 0; } /** * cik_fini - asic specific driver and hw fini * * @rdev: radeon_device pointer * * Tear down the asic specific driver variables and program the hw * to an idle state (CIK). * Called at driver unload. */ void cik_fini(struct radeon_device *rdev) { cik_cp_fini(rdev); cik_sdma_fini(rdev); cik_irq_fini(rdev); sumo_rlc_fini(rdev); cik_mec_fini(rdev); radeon_wb_fini(rdev); radeon_vm_manager_fini(rdev); radeon_ib_pool_fini(rdev); radeon_irq_kms_fini(rdev); uvd_v1_0_fini(rdev); radeon_uvd_fini(rdev); cik_pcie_gart_fini(rdev); r600_vram_scratch_fini(rdev); radeon_gem_fini(rdev); radeon_fence_driver_fini(rdev); radeon_bo_fini(rdev); radeon_atombios_fini(rdev); kfree(rdev->bios); rdev->bios = NULL; } /* display watermark setup */ /** * dce8_line_buffer_adjust - Set up the line buffer * * @rdev: radeon_device pointer * @radeon_crtc: the selected display controller * @mode: the current display mode on the selected display * controller * * Setup up the line buffer allocation for * the selected display controller (CIK). * Returns the line buffer size in pixels. */ static u32 dce8_line_buffer_adjust(struct radeon_device *rdev, struct radeon_crtc *radeon_crtc, struct drm_display_mode *mode) { u32 tmp; /* * Line Buffer Setup * There are 6 line buffers, one for each display controllers. * There are 3 partitions per LB. Select the number of partitions * to enable based on the display width. For display widths larger * than 4096, you need use to use 2 display controllers and combine * them using the stereo blender. */ if (radeon_crtc->base.enabled && mode) { if (mode->crtc_hdisplay < 1920) tmp = 1; else if (mode->crtc_hdisplay < 2560) tmp = 2; else if (mode->crtc_hdisplay < 4096) tmp = 0; else { DRM_DEBUG_KMS("Mode too big for LB!\n"); tmp = 0; } } else tmp = 1; WREG32(LB_MEMORY_CTRL + radeon_crtc->crtc_offset, LB_MEMORY_CONFIG(tmp) | LB_MEMORY_SIZE(0x6B0)); if (radeon_crtc->base.enabled && mode) { switch (tmp) { case 0: default: return 4096 * 2; case 1: return 1920 * 2; case 2: return 2560 * 2; } } /* controller not enabled, so no lb used */ return 0; } /** * cik_get_number_of_dram_channels - get the number of dram channels * * @rdev: radeon_device pointer * * Look up the number of video ram channels (CIK). * Used for display watermark bandwidth calculations * Returns the number of dram channels */ static u32 cik_get_number_of_dram_channels(struct radeon_device *rdev) { u32 tmp = RREG32(MC_SHARED_CHMAP); switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) { case 0: default: return 1; case 1: return 2; case 2: return 4; case 3: return 8; case 4: return 3; case 5: return 6; case 6: return 10; case 7: return 12; case 8: return 16; } } struct dce8_wm_params { u32 dram_channels; /* number of dram channels */ u32 yclk; /* bandwidth per dram data pin in kHz */ u32 sclk; /* engine clock in kHz */ u32 disp_clk; /* display clock in kHz */ u32 src_width; /* viewport width */ u32 active_time; /* active display time in ns */ u32 blank_time; /* blank time in ns */ bool interlaced; /* mode is interlaced */ fixed20_12 vsc; /* vertical scale ratio */ u32 num_heads; /* number of active crtcs */ u32 bytes_per_pixel; /* bytes per pixel display + overlay */ u32 lb_size; /* line buffer allocated to pipe */ u32 vtaps; /* vertical scaler taps */ }; /** * dce8_dram_bandwidth - get the dram bandwidth * * @wm: watermark calculation data * * Calculate the raw dram bandwidth (CIK). * Used for display watermark bandwidth calculations * Returns the dram bandwidth in MBytes/s */ static u32 dce8_dram_bandwidth(struct dce8_wm_params *wm) { /* Calculate raw DRAM Bandwidth */ fixed20_12 dram_efficiency; /* 0.7 */ fixed20_12 yclk, dram_channels, bandwidth; fixed20_12 a; a.full = dfixed_const(1000); yclk.full = dfixed_const(wm->yclk); yclk.full = dfixed_div(yclk, a); dram_channels.full = dfixed_const(wm->dram_channels * 4); a.full = dfixed_const(10); dram_efficiency.full = dfixed_const(7); dram_efficiency.full = dfixed_div(dram_efficiency, a); bandwidth.full = dfixed_mul(dram_channels, yclk); bandwidth.full = dfixed_mul(bandwidth, dram_efficiency); return dfixed_trunc(bandwidth); } /** * dce8_dram_bandwidth_for_display - get the dram bandwidth for display * * @wm: watermark calculation data * * Calculate the dram bandwidth used for display (CIK). * Used for display watermark bandwidth calculations * Returns the dram bandwidth for display in MBytes/s */ static u32 dce8_dram_bandwidth_for_display(struct dce8_wm_params *wm) { /* Calculate DRAM Bandwidth and the part allocated to display. */ fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */ fixed20_12 yclk, dram_channels, bandwidth; fixed20_12 a; a.full = dfixed_const(1000); yclk.full = dfixed_const(wm->yclk); yclk.full = dfixed_div(yclk, a); dram_channels.full = dfixed_const(wm->dram_channels * 4); a.full = dfixed_const(10); disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */ disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a); bandwidth.full = dfixed_mul(dram_channels, yclk); bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation); return dfixed_trunc(bandwidth); } /** * dce8_data_return_bandwidth - get the data return bandwidth * * @wm: watermark calculation data * * Calculate the data return bandwidth used for display (CIK). * Used for display watermark bandwidth calculations * Returns the data return bandwidth in MBytes/s */ static u32 dce8_data_return_bandwidth(struct dce8_wm_params *wm) { /* Calculate the display Data return Bandwidth */ fixed20_12 return_efficiency; /* 0.8 */ fixed20_12 sclk, bandwidth; fixed20_12 a; a.full = dfixed_const(1000); sclk.full = dfixed_const(wm->sclk); sclk.full = dfixed_div(sclk, a); a.full = dfixed_const(10); return_efficiency.full = dfixed_const(8); return_efficiency.full = dfixed_div(return_efficiency, a); a.full = dfixed_const(32); bandwidth.full = dfixed_mul(a, sclk); bandwidth.full = dfixed_mul(bandwidth, return_efficiency); return dfixed_trunc(bandwidth); } /** * dce8_dmif_request_bandwidth - get the dmif bandwidth * * @wm: watermark calculation data * * Calculate the dmif bandwidth used for display (CIK). * Used for display watermark bandwidth calculations * Returns the dmif bandwidth in MBytes/s */ static u32 dce8_dmif_request_bandwidth(struct dce8_wm_params *wm) { /* Calculate the DMIF Request Bandwidth */ fixed20_12 disp_clk_request_efficiency; /* 0.8 */ fixed20_12 disp_clk, bandwidth; fixed20_12 a, b; a.full = dfixed_const(1000); disp_clk.full = dfixed_const(wm->disp_clk); disp_clk.full = dfixed_div(disp_clk, a); a.full = dfixed_const(32); b.full = dfixed_mul(a, disp_clk); a.full = dfixed_const(10); disp_clk_request_efficiency.full = dfixed_const(8); disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a); bandwidth.full = dfixed_mul(b, disp_clk_request_efficiency); return dfixed_trunc(bandwidth); } /** * dce8_available_bandwidth - get the min available bandwidth * * @wm: watermark calculation data * * Calculate the min available bandwidth used for display (CIK). * Used for display watermark bandwidth calculations * Returns the min available bandwidth in MBytes/s */ static u32 dce8_available_bandwidth(struct dce8_wm_params *wm) { /* Calculate the Available bandwidth. Display can use this temporarily but not in average. */ u32 dram_bandwidth = dce8_dram_bandwidth(wm); u32 data_return_bandwidth = dce8_data_return_bandwidth(wm); u32 dmif_req_bandwidth = dce8_dmif_request_bandwidth(wm); return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth)); } /** * dce8_average_bandwidth - get the average available bandwidth * * @wm: watermark calculation data * * Calculate the average available bandwidth used for display (CIK). * Used for display watermark bandwidth calculations * Returns the average available bandwidth in MBytes/s */ static u32 dce8_average_bandwidth(struct dce8_wm_params *wm) { /* Calculate the display mode Average Bandwidth * DisplayMode should contain the source and destination dimensions, * timing, etc. */ fixed20_12 bpp; fixed20_12 line_time; fixed20_12 src_width; fixed20_12 bandwidth; fixed20_12 a; a.full = dfixed_const(1000); line_time.full = dfixed_const(wm->active_time + wm->blank_time); line_time.full = dfixed_div(line_time, a); bpp.full = dfixed_const(wm->bytes_per_pixel); src_width.full = dfixed_const(wm->src_width); bandwidth.full = dfixed_mul(src_width, bpp); bandwidth.full = dfixed_mul(bandwidth, wm->vsc); bandwidth.full = dfixed_div(bandwidth, line_time); return dfixed_trunc(bandwidth); } /** * dce8_latency_watermark - get the latency watermark * * @wm: watermark calculation data * * Calculate the latency watermark (CIK). * Used for display watermark bandwidth calculations * Returns the latency watermark in ns */ static u32 dce8_latency_watermark(struct dce8_wm_params *wm) { /* First calculate the latency in ns */ u32 mc_latency = 2000; /* 2000 ns. */ u32 available_bandwidth = dce8_available_bandwidth(wm); u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth; u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth; u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */ u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) + (wm->num_heads * cursor_line_pair_return_time); u32 latency = mc_latency + other_heads_data_return_time + dc_latency; u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time; u32 tmp, dmif_size = 12288; fixed20_12 a, b, c; if (wm->num_heads == 0) return 0; a.full = dfixed_const(2); b.full = dfixed_const(1); if ((wm->vsc.full > a.full) || ((wm->vsc.full > b.full) && (wm->vtaps >= 3)) || (wm->vtaps >= 5) || ((wm->vsc.full >= a.full) && wm->interlaced)) max_src_lines_per_dst_line = 4; else max_src_lines_per_dst_line = 2; a.full = dfixed_const(available_bandwidth); b.full = dfixed_const(wm->num_heads); a.full = dfixed_div(a, b); b.full = dfixed_const(mc_latency + 512); c.full = dfixed_const(wm->disp_clk); b.full = dfixed_div(b, c); c.full = dfixed_const(dmif_size); b.full = dfixed_div(c, b); tmp = min(dfixed_trunc(a), dfixed_trunc(b)); b.full = dfixed_const(1000); c.full = dfixed_const(wm->disp_clk); b.full = dfixed_div(c, b); c.full = dfixed_const(wm->bytes_per_pixel); b.full = dfixed_mul(b, c); lb_fill_bw = min(tmp, dfixed_trunc(b)); a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel); b.full = dfixed_const(1000); c.full = dfixed_const(lb_fill_bw); b.full = dfixed_div(c, b); a.full = dfixed_div(a, b); line_fill_time = dfixed_trunc(a); if (line_fill_time < wm->active_time) return latency; else return latency + (line_fill_time - wm->active_time); } /** * dce8_average_bandwidth_vs_dram_bandwidth_for_display - check * average and available dram bandwidth * * @wm: watermark calculation data * * Check if the display average bandwidth fits in the display * dram bandwidth (CIK). * Used for display watermark bandwidth calculations * Returns true if the display fits, false if not. */ static bool dce8_average_bandwidth_vs_dram_bandwidth_for_display(struct dce8_wm_params *wm) { if (dce8_average_bandwidth(wm) <= (dce8_dram_bandwidth_for_display(wm) / wm->num_heads)) return true; else return false; } /** * dce8_average_bandwidth_vs_available_bandwidth - check * average and available bandwidth * * @wm: watermark calculation data * * Check if the display average bandwidth fits in the display * available bandwidth (CIK). * Used for display watermark bandwidth calculations * Returns true if the display fits, false if not. */ static bool dce8_average_bandwidth_vs_available_bandwidth(struct dce8_wm_params *wm) { if (dce8_average_bandwidth(wm) <= (dce8_available_bandwidth(wm) / wm->num_heads)) return true; else return false; } /** * dce8_check_latency_hiding - check latency hiding * * @wm: watermark calculation data * * Check latency hiding (CIK). * Used for display watermark bandwidth calculations * Returns true if the display fits, false if not. */ static bool dce8_check_latency_hiding(struct dce8_wm_params *wm) { u32 lb_partitions = wm->lb_size / wm->src_width; u32 line_time = wm->active_time + wm->blank_time; u32 latency_tolerant_lines; u32 latency_hiding; fixed20_12 a; a.full = dfixed_const(1); if (wm->vsc.full > a.full) latency_tolerant_lines = 1; else { if (lb_partitions <= (wm->vtaps + 1)) latency_tolerant_lines = 1; else latency_tolerant_lines = 2; } latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time); if (dce8_latency_watermark(wm) <= latency_hiding) return true; else return false; } /** * dce8_program_watermarks - program display watermarks * * @rdev: radeon_device pointer * @radeon_crtc: the selected display controller * @lb_size: line buffer size * @num_heads: number of display controllers in use * * Calculate and program the display watermarks for the * selected display controller (CIK). */ static void dce8_program_watermarks(struct radeon_device *rdev, struct radeon_crtc *radeon_crtc, u32 lb_size, u32 num_heads) { struct drm_display_mode *mode = &radeon_crtc->base.mode; struct dce8_wm_params wm_low, wm_high; u32 pixel_period; u32 line_time = 0; u32 latency_watermark_a = 0, latency_watermark_b = 0; u32 tmp, wm_mask; if (radeon_crtc->base.enabled && num_heads && mode) { pixel_period = 1000000 / (u32)mode->clock; line_time = min((u32)mode->crtc_htotal * pixel_period, (u32)65535); /* watermark for high clocks */ if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) { wm_high.yclk = radeon_dpm_get_mclk(rdev, false) * 10; wm_high.sclk = radeon_dpm_get_sclk(rdev, false) * 10; } else { wm_high.yclk = rdev->pm.current_mclk * 10; wm_high.sclk = rdev->pm.current_sclk * 10; } wm_high.disp_clk = mode->clock; wm_high.src_width = mode->crtc_hdisplay; wm_high.active_time = mode->crtc_hdisplay * pixel_period; wm_high.blank_time = line_time - wm_high.active_time; wm_high.interlaced = false; if (mode->flags & DRM_MODE_FLAG_INTERLACE) wm_high.interlaced = true; wm_high.vsc = radeon_crtc->vsc; wm_high.vtaps = 1; if (radeon_crtc->rmx_type != RMX_OFF) wm_high.vtaps = 2; wm_high.bytes_per_pixel = 4; /* XXX: get this from fb config */ wm_high.lb_size = lb_size; wm_high.dram_channels = cik_get_number_of_dram_channels(rdev); wm_high.num_heads = num_heads; /* set for high clocks */ latency_watermark_a = min(dce8_latency_watermark(&wm_high), (u32)65535); /* possibly force display priority to high */ /* should really do this at mode validation time... */ if (!dce8_average_bandwidth_vs_dram_bandwidth_for_display(&wm_high) || !dce8_average_bandwidth_vs_available_bandwidth(&wm_high) || !dce8_check_latency_hiding(&wm_high) || (rdev->disp_priority == 2)) { DRM_DEBUG_KMS("force priority to high\n"); } /* watermark for low clocks */ if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) { wm_low.yclk = radeon_dpm_get_mclk(rdev, true) * 10; wm_low.sclk = radeon_dpm_get_sclk(rdev, true) * 10; } else { wm_low.yclk = rdev->pm.current_mclk * 10; wm_low.sclk = rdev->pm.current_sclk * 10; } wm_low.disp_clk = mode->clock; wm_low.src_width = mode->crtc_hdisplay; wm_low.active_time = mode->crtc_hdisplay * pixel_period; wm_low.blank_time = line_time - wm_low.active_time; wm_low.interlaced = false; if (mode->flags & DRM_MODE_FLAG_INTERLACE) wm_low.interlaced = true; wm_low.vsc = radeon_crtc->vsc; wm_low.vtaps = 1; if (radeon_crtc->rmx_type != RMX_OFF) wm_low.vtaps = 2; wm_low.bytes_per_pixel = 4; /* XXX: get this from fb config */ wm_low.lb_size = lb_size; wm_low.dram_channels = cik_get_number_of_dram_channels(rdev); wm_low.num_heads = num_heads; /* set for low clocks */ latency_watermark_b = min(dce8_latency_watermark(&wm_low), (u32)65535); /* possibly force display priority to high */ /* should really do this at mode validation time... */ if (!dce8_average_bandwidth_vs_dram_bandwidth_for_display(&wm_low) || !dce8_average_bandwidth_vs_available_bandwidth(&wm_low) || !dce8_check_latency_hiding(&wm_low) || (rdev->disp_priority == 2)) { DRM_DEBUG_KMS("force priority to high\n"); } } /* select wm A */ wm_mask = RREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset); tmp = wm_mask; tmp &= ~LATENCY_WATERMARK_MASK(3); tmp |= LATENCY_WATERMARK_MASK(1); WREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset, tmp); WREG32(DPG_PIPE_LATENCY_CONTROL + radeon_crtc->crtc_offset, (LATENCY_LOW_WATERMARK(latency_watermark_a) | LATENCY_HIGH_WATERMARK(line_time))); /* select wm B */ tmp = RREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset); tmp &= ~LATENCY_WATERMARK_MASK(3); tmp |= LATENCY_WATERMARK_MASK(2); WREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset, tmp); WREG32(DPG_PIPE_LATENCY_CONTROL + radeon_crtc->crtc_offset, (LATENCY_LOW_WATERMARK(latency_watermark_b) | LATENCY_HIGH_WATERMARK(line_time))); /* restore original selection */ WREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset, wm_mask); /* save values for DPM */ radeon_crtc->line_time = line_time; radeon_crtc->wm_high = latency_watermark_a; radeon_crtc->wm_low = latency_watermark_b; } /** * dce8_bandwidth_update - program display watermarks * * @rdev: radeon_device pointer * * Calculate and program the display watermarks and line * buffer allocation (CIK). */ void dce8_bandwidth_update(struct radeon_device *rdev) { struct drm_display_mode *mode = NULL; u32 num_heads = 0, lb_size; int i; radeon_update_display_priority(rdev); for (i = 0; i < rdev->num_crtc; i++) { if (rdev->mode_info.crtcs[i]->base.enabled) num_heads++; } for (i = 0; i < rdev->num_crtc; i++) { mode = &rdev->mode_info.crtcs[i]->base.mode; lb_size = dce8_line_buffer_adjust(rdev, rdev->mode_info.crtcs[i], mode); dce8_program_watermarks(rdev, rdev->mode_info.crtcs[i], lb_size, num_heads); } } /** * cik_get_gpu_clock_counter - return GPU clock counter snapshot * * @rdev: radeon_device pointer * * Fetches a GPU clock counter snapshot (SI). * Returns the 64 bit clock counter snapshot. */ uint64_t cik_get_gpu_clock_counter(struct radeon_device *rdev) { uint64_t clock; mutex_lock(&rdev->gpu_clock_mutex); WREG32(RLC_CAPTURE_GPU_CLOCK_COUNT, 1); clock = (uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_LSB) | ((uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_MSB) << 32ULL); mutex_unlock(&rdev->gpu_clock_mutex); return clock; } static int cik_set_uvd_clock(struct radeon_device *rdev, u32 clock, u32 cntl_reg, u32 status_reg) { int r, i; struct atom_clock_dividers dividers; uint32_t tmp; r = radeon_atom_get_clock_dividers(rdev, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, clock, false, ÷rs); if (r) return r; tmp = RREG32_SMC(cntl_reg); tmp &= ~(DCLK_DIR_CNTL_EN|DCLK_DIVIDER_MASK); tmp |= dividers.post_divider; WREG32_SMC(cntl_reg, tmp); for (i = 0; i < 100; i++) { if (RREG32_SMC(status_reg) & DCLK_STATUS) break; mdelay(10); } if (i == 100) return -ETIMEDOUT; return 0; } int cik_set_uvd_clocks(struct radeon_device *rdev, u32 vclk, u32 dclk) { int r = 0; r = cik_set_uvd_clock(rdev, vclk, CG_VCLK_CNTL, CG_VCLK_STATUS); if (r) return r; r = cik_set_uvd_clock(rdev, dclk, CG_DCLK_CNTL, CG_DCLK_STATUS); return r; } static void cik_pcie_gen3_enable(struct radeon_device *rdev) { struct pci_dev *root = rdev->pdev->bus->self; int bridge_pos, gpu_pos; u32 speed_cntl, mask, current_data_rate; int ret, i; u16 tmp16; if (radeon_pcie_gen2 == 0) return; if (rdev->flags & RADEON_IS_IGP) return; if (!(rdev->flags & RADEON_IS_PCIE)) return; ret = drm_pcie_get_speed_cap_mask(rdev->ddev, &mask); if (ret != 0) return; if (!(mask & (DRM_PCIE_SPEED_50 | DRM_PCIE_SPEED_80))) return; speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); current_data_rate = (speed_cntl & LC_CURRENT_DATA_RATE_MASK) >> LC_CURRENT_DATA_RATE_SHIFT; if (mask & DRM_PCIE_SPEED_80) { if (current_data_rate == 2) { DRM_INFO("PCIE gen 3 link speeds already enabled\n"); return; } DRM_INFO("enabling PCIE gen 3 link speeds, disable with radeon.pcie_gen2=0\n"); } else if (mask & DRM_PCIE_SPEED_50) { if (current_data_rate == 1) { DRM_INFO("PCIE gen 2 link speeds already enabled\n"); return; } DRM_INFO("enabling PCIE gen 2 link speeds, disable with radeon.pcie_gen2=0\n"); } bridge_pos = pci_pcie_cap(root); if (!bridge_pos) return; gpu_pos = pci_pcie_cap(rdev->pdev); if (!gpu_pos) return; if (mask & DRM_PCIE_SPEED_80) { /* re-try equalization if gen3 is not already enabled */ if (current_data_rate != 2) { u16 bridge_cfg, gpu_cfg; u16 bridge_cfg2, gpu_cfg2; u32 max_lw, current_lw, tmp; pci_read_config_word(root, bridge_pos + PCI_EXP_LNKCTL, &bridge_cfg); pci_read_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL, &gpu_cfg); tmp16 = bridge_cfg | PCI_EXP_LNKCTL_HAWD; pci_write_config_word(root, bridge_pos + PCI_EXP_LNKCTL, tmp16); tmp16 = gpu_cfg | PCI_EXP_LNKCTL_HAWD; pci_write_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL, tmp16); tmp = RREG32_PCIE_PORT(PCIE_LC_STATUS1); max_lw = (tmp & LC_DETECTED_LINK_WIDTH_MASK) >> LC_DETECTED_LINK_WIDTH_SHIFT; current_lw = (tmp & LC_OPERATING_LINK_WIDTH_MASK) >> LC_OPERATING_LINK_WIDTH_SHIFT; if (current_lw < max_lw) { tmp = RREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL); if (tmp & LC_RENEGOTIATION_SUPPORT) { tmp &= ~(LC_LINK_WIDTH_MASK | LC_UPCONFIGURE_DIS); tmp |= (max_lw << LC_LINK_WIDTH_SHIFT); tmp |= LC_UPCONFIGURE_SUPPORT | LC_RENEGOTIATE_EN | LC_RECONFIG_NOW; WREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL, tmp); } } for (i = 0; i < 10; i++) { /* check status */ pci_read_config_word(rdev->pdev, gpu_pos + PCI_EXP_DEVSTA, &tmp16); if (tmp16 & PCI_EXP_DEVSTA_TRPND) break; pci_read_config_word(root, bridge_pos + PCI_EXP_LNKCTL, &bridge_cfg); pci_read_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL, &gpu_cfg); pci_read_config_word(root, bridge_pos + PCI_EXP_LNKCTL2, &bridge_cfg2); pci_read_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL2, &gpu_cfg2); tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL4); tmp |= LC_SET_QUIESCE; WREG32_PCIE_PORT(PCIE_LC_CNTL4, tmp); tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL4); tmp |= LC_REDO_EQ; WREG32_PCIE_PORT(PCIE_LC_CNTL4, tmp); mdelay(100); /* linkctl */ pci_read_config_word(root, bridge_pos + PCI_EXP_LNKCTL, &tmp16); tmp16 &= ~PCI_EXP_LNKCTL_HAWD; tmp16 |= (bridge_cfg & PCI_EXP_LNKCTL_HAWD); pci_write_config_word(root, bridge_pos + PCI_EXP_LNKCTL, tmp16); pci_read_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL, &tmp16); tmp16 &= ~PCI_EXP_LNKCTL_HAWD; tmp16 |= (gpu_cfg & PCI_EXP_LNKCTL_HAWD); pci_write_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL, tmp16); /* linkctl2 */ pci_read_config_word(root, bridge_pos + PCI_EXP_LNKCTL2, &tmp16); tmp16 &= ~((1 << 4) | (7 << 9)); tmp16 |= (bridge_cfg2 & ((1 << 4) | (7 << 9))); pci_write_config_word(root, bridge_pos + PCI_EXP_LNKCTL2, tmp16); pci_read_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL2, &tmp16); tmp16 &= ~((1 << 4) | (7 << 9)); tmp16 |= (gpu_cfg2 & ((1 << 4) | (7 << 9))); pci_write_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL2, tmp16); tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL4); tmp &= ~LC_SET_QUIESCE; WREG32_PCIE_PORT(PCIE_LC_CNTL4, tmp); } } } /* set the link speed */ speed_cntl |= LC_FORCE_EN_SW_SPEED_CHANGE | LC_FORCE_DIS_HW_SPEED_CHANGE; speed_cntl &= ~LC_FORCE_DIS_SW_SPEED_CHANGE; WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, speed_cntl); pci_read_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL2, &tmp16); tmp16 &= ~0xf; if (mask & DRM_PCIE_SPEED_80) tmp16 |= 3; /* gen3 */ else if (mask & DRM_PCIE_SPEED_50) tmp16 |= 2; /* gen2 */ else tmp16 |= 1; /* gen1 */ pci_write_config_word(rdev->pdev, gpu_pos + PCI_EXP_LNKCTL2, tmp16); speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); speed_cntl |= LC_INITIATE_LINK_SPEED_CHANGE; WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, speed_cntl); for (i = 0; i < rdev->usec_timeout; i++) { speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); if ((speed_cntl & LC_INITIATE_LINK_SPEED_CHANGE) == 0) break; udelay(1); } } static void cik_program_aspm(struct radeon_device *rdev) { u32 data, orig; bool disable_l0s = false, disable_l1 = false, disable_plloff_in_l1 = false; bool disable_clkreq = false; if (radeon_aspm == 0) return; /* XXX double check IGPs */ if (rdev->flags & RADEON_IS_IGP) return; if (!(rdev->flags & RADEON_IS_PCIE)) return; orig = data = RREG32_PCIE_PORT(PCIE_LC_N_FTS_CNTL); data &= ~LC_XMIT_N_FTS_MASK; data |= LC_XMIT_N_FTS(0x24) | LC_XMIT_N_FTS_OVERRIDE_EN; if (orig != data) WREG32_PCIE_PORT(PCIE_LC_N_FTS_CNTL, data); orig = data = RREG32_PCIE_PORT(PCIE_LC_CNTL3); data |= LC_GO_TO_RECOVERY; if (orig != data) WREG32_PCIE_PORT(PCIE_LC_CNTL3, data); orig = data = RREG32_PCIE_PORT(PCIE_P_CNTL); data |= P_IGNORE_EDB_ERR; if (orig != data) WREG32_PCIE_PORT(PCIE_P_CNTL, data); orig = data = RREG32_PCIE_PORT(PCIE_LC_CNTL); data &= ~(LC_L0S_INACTIVITY_MASK | LC_L1_INACTIVITY_MASK); data |= LC_PMI_TO_L1_DIS; if (!disable_l0s) data |= LC_L0S_INACTIVITY(7); if (!disable_l1) { data |= LC_L1_INACTIVITY(7); data &= ~LC_PMI_TO_L1_DIS; if (orig != data) WREG32_PCIE_PORT(PCIE_LC_CNTL, data); if (!disable_plloff_in_l1) { bool clk_req_support; orig = data = RREG32_PCIE_PORT(PB0_PIF_PWRDOWN_0); data &= ~(PLL_POWER_STATE_IN_OFF_0_MASK | PLL_POWER_STATE_IN_TXS2_0_MASK); data |= PLL_POWER_STATE_IN_OFF_0(7) | PLL_POWER_STATE_IN_TXS2_0(7); if (orig != data) WREG32_PCIE_PORT(PB0_PIF_PWRDOWN_0, data); orig = data = RREG32_PCIE_PORT(PB0_PIF_PWRDOWN_1); data &= ~(PLL_POWER_STATE_IN_OFF_1_MASK | PLL_POWER_STATE_IN_TXS2_1_MASK); data |= PLL_POWER_STATE_IN_OFF_1(7) | PLL_POWER_STATE_IN_TXS2_1(7); if (orig != data) WREG32_PCIE_PORT(PB0_PIF_PWRDOWN_1, data); orig = data = RREG32_PCIE_PORT(PB1_PIF_PWRDOWN_0); data &= ~(PLL_POWER_STATE_IN_OFF_0_MASK | PLL_POWER_STATE_IN_TXS2_0_MASK); data |= PLL_POWER_STATE_IN_OFF_0(7) | PLL_POWER_STATE_IN_TXS2_0(7); if (orig != data) WREG32_PCIE_PORT(PB1_PIF_PWRDOWN_0, data); orig = data = RREG32_PCIE_PORT(PB1_PIF_PWRDOWN_1); data &= ~(PLL_POWER_STATE_IN_OFF_1_MASK | PLL_POWER_STATE_IN_TXS2_1_MASK); data |= PLL_POWER_STATE_IN_OFF_1(7) | PLL_POWER_STATE_IN_TXS2_1(7); if (orig != data) WREG32_PCIE_PORT(PB1_PIF_PWRDOWN_1, data); orig = data = RREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL); data &= ~LC_DYN_LANES_PWR_STATE_MASK; data |= LC_DYN_LANES_PWR_STATE(3); if (orig != data) WREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL, data); if (!disable_clkreq) { struct pci_dev *root = rdev->pdev->bus->self; u32 lnkcap; clk_req_support = false; pcie_capability_read_dword(root, PCI_EXP_LNKCAP, &lnkcap); if (lnkcap & PCI_EXP_LNKCAP_CLKPM) clk_req_support = true; } else { clk_req_support = false; } if (clk_req_support) { orig = data = RREG32_PCIE_PORT(PCIE_LC_CNTL2); data |= LC_ALLOW_PDWN_IN_L1 | LC_ALLOW_PDWN_IN_L23; if (orig != data) WREG32_PCIE_PORT(PCIE_LC_CNTL2, data); orig = data = RREG32_SMC(THM_CLK_CNTL); data &= ~(CMON_CLK_SEL_MASK | TMON_CLK_SEL_MASK); data |= CMON_CLK_SEL(1) | TMON_CLK_SEL(1); if (orig != data) WREG32_SMC(THM_CLK_CNTL, data); orig = data = RREG32_SMC(MISC_CLK_CTRL); data &= ~(DEEP_SLEEP_CLK_SEL_MASK | ZCLK_SEL_MASK); data |= DEEP_SLEEP_CLK_SEL(1) | ZCLK_SEL(1); if (orig != data) WREG32_SMC(MISC_CLK_CTRL, data); orig = data = RREG32_SMC(CG_CLKPIN_CNTL); data &= ~BCLK_AS_XCLK; if (orig != data) WREG32_SMC(CG_CLKPIN_CNTL, data); orig = data = RREG32_SMC(CG_CLKPIN_CNTL_2); data &= ~FORCE_BIF_REFCLK_EN; if (orig != data) WREG32_SMC(CG_CLKPIN_CNTL_2, data); orig = data = RREG32_SMC(MPLL_BYPASSCLK_SEL); data &= ~MPLL_CLKOUT_SEL_MASK; data |= MPLL_CLKOUT_SEL(4); if (orig != data) WREG32_SMC(MPLL_BYPASSCLK_SEL, data); } } } else { if (orig != data) WREG32_PCIE_PORT(PCIE_LC_CNTL, data); } orig = data = RREG32_PCIE_PORT(PCIE_CNTL2); data |= SLV_MEM_LS_EN | MST_MEM_LS_EN | REPLAY_MEM_LS_EN; if (orig != data) WREG32_PCIE_PORT(PCIE_CNTL2, data); if (!disable_l0s) { data = RREG32_PCIE_PORT(PCIE_LC_N_FTS_CNTL); if((data & LC_N_FTS_MASK) == LC_N_FTS_MASK) { data = RREG32_PCIE_PORT(PCIE_LC_STATUS1); if ((data & LC_REVERSE_XMIT) && (data & LC_REVERSE_RCVR)) { orig = data = RREG32_PCIE_PORT(PCIE_LC_CNTL); data &= ~LC_L0S_INACTIVITY_MASK; if (orig != data) WREG32_PCIE_PORT(PCIE_LC_CNTL, data); } } } }