/* * SPDX-License-Identifier: GPL-2.0 * Copyright (c) 2018, The Linux Foundation */ #include #include #include #include "dsi_pll.h" #include "dsi.xml.h" /* * DSI PLL 10nm - clock diagram (eg: DSI0): * * dsi0_pll_out_div_clk dsi0_pll_bit_clk * | | * | | * +---------+ | +----------+ | +----+ * dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |-- dsi0_phy_pll_out_byteclk * +---------+ | +----------+ | +----+ * | | * | | dsi0_pll_by_2_bit_clk * | | | * | | +----+ | |\ dsi0_pclk_mux * | |--| /2 |--o--| \ | * | | +----+ | \ | +---------+ * | --------------| |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk * |------------------------------| / +---------+ * | +-----+ | / * -----------| /4? |--o----------|/ * +-----+ | | * | |dsiclk_sel * | * dsi0_pll_post_out_div_clk */ #define DSI_BYTE_PLL_CLK 0 #define DSI_PIXEL_PLL_CLK 1 #define NUM_PROVIDED_CLKS 2 struct dsi_pll_regs { u32 pll_prop_gain_rate; u32 pll_lockdet_rate; u32 decimal_div_start; u32 frac_div_start_low; u32 frac_div_start_mid; u32 frac_div_start_high; u32 pll_clock_inverters; u32 ssc_stepsize_low; u32 ssc_stepsize_high; u32 ssc_div_per_low; u32 ssc_div_per_high; u32 ssc_adjper_low; u32 ssc_adjper_high; u32 ssc_control; }; struct dsi_pll_config { u32 ref_freq; bool div_override; u32 output_div; bool ignore_frac; bool disable_prescaler; bool enable_ssc; bool ssc_center; u32 dec_bits; u32 frac_bits; u32 lock_timer; u32 ssc_freq; u32 ssc_offset; u32 ssc_adj_per; u32 thresh_cycles; u32 refclk_cycles; }; struct pll_10nm_cached_state { unsigned long vco_rate; u8 bit_clk_div; u8 pix_clk_div; u8 pll_out_div; u8 pll_mux; }; struct dsi_pll_10nm { struct msm_dsi_pll base; int id; struct platform_device *pdev; void __iomem *phy_cmn_mmio; void __iomem *mmio; u64 vco_ref_clk_rate; u64 vco_current_rate; /* protects REG_DSI_10nm_PHY_CMN_CLK_CFG0 register */ spinlock_t postdiv_lock; int vco_delay; struct dsi_pll_config pll_configuration; struct dsi_pll_regs reg_setup; /* private clocks: */ struct clk_hw *hws[NUM_DSI_CLOCKS_MAX]; u32 num_hws; /* clock-provider: */ struct clk_hw_onecell_data *hw_data; struct pll_10nm_cached_state cached_state; enum msm_dsi_phy_usecase uc; struct dsi_pll_10nm *slave; }; #define to_pll_10nm(x) container_of(x, struct dsi_pll_10nm, base) /* * Global list of private DSI PLL struct pointers. We need this for Dual DSI * mode, where the master PLL's clk_ops needs access the slave's private data */ static struct dsi_pll_10nm *pll_10nm_list[DSI_MAX]; static void dsi_pll_setup_config(struct dsi_pll_10nm *pll) { struct dsi_pll_config *config = &pll->pll_configuration; config->ref_freq = pll->vco_ref_clk_rate; config->output_div = 1; config->dec_bits = 8; config->frac_bits = 18; config->lock_timer = 64; config->ssc_freq = 31500; config->ssc_offset = 5000; config->ssc_adj_per = 2; config->thresh_cycles = 32; config->refclk_cycles = 256; config->div_override = false; config->ignore_frac = false; config->disable_prescaler = false; config->enable_ssc = false; config->ssc_center = 0; } static void dsi_pll_calc_dec_frac(struct dsi_pll_10nm *pll) { struct dsi_pll_config *config = &pll->pll_configuration; struct dsi_pll_regs *regs = &pll->reg_setup; u64 fref = pll->vco_ref_clk_rate; u64 pll_freq; u64 divider; u64 dec, dec_multiple; u32 frac; u64 multiplier; pll_freq = pll->vco_current_rate; if (config->disable_prescaler) divider = fref; else divider = fref * 2; multiplier = 1 << config->frac_bits; dec_multiple = div_u64(pll_freq * multiplier, divider); div_u64_rem(dec_multiple, multiplier, &frac); dec = div_u64(dec_multiple, multiplier); if (pll_freq <= 1900000000UL) regs->pll_prop_gain_rate = 8; else if (pll_freq <= 3000000000UL) regs->pll_prop_gain_rate = 10; else regs->pll_prop_gain_rate = 12; if (pll_freq < 1100000000UL) regs->pll_clock_inverters = 8; else regs->pll_clock_inverters = 0; regs->pll_lockdet_rate = config->lock_timer; regs->decimal_div_start = dec; regs->frac_div_start_low = (frac & 0xff); regs->frac_div_start_mid = (frac & 0xff00) >> 8; regs->frac_div_start_high = (frac & 0x30000) >> 16; } #define SSC_CENTER BIT(0) #define SSC_EN BIT(1) static void dsi_pll_calc_ssc(struct dsi_pll_10nm *pll) { struct dsi_pll_config *config = &pll->pll_configuration; struct dsi_pll_regs *regs = &pll->reg_setup; u32 ssc_per; u32 ssc_mod; u64 ssc_step_size; u64 frac; if (!config->enable_ssc) { DBG("SSC not enabled\n"); return; } ssc_per = DIV_ROUND_CLOSEST(config->ref_freq, config->ssc_freq) / 2 - 1; ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1); ssc_per -= ssc_mod; frac = regs->frac_div_start_low | (regs->frac_div_start_mid << 8) | (regs->frac_div_start_high << 16); ssc_step_size = regs->decimal_div_start; ssc_step_size *= (1 << config->frac_bits); ssc_step_size += frac; ssc_step_size *= config->ssc_offset; ssc_step_size *= (config->ssc_adj_per + 1); ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1)); ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000); regs->ssc_div_per_low = ssc_per & 0xFF; regs->ssc_div_per_high = (ssc_per & 0xFF00) >> 8; regs->ssc_stepsize_low = (u32)(ssc_step_size & 0xFF); regs->ssc_stepsize_high = (u32)((ssc_step_size & 0xFF00) >> 8); regs->ssc_adjper_low = config->ssc_adj_per & 0xFF; regs->ssc_adjper_high = (config->ssc_adj_per & 0xFF00) >> 8; regs->ssc_control = config->ssc_center ? SSC_CENTER : 0; pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n", regs->decimal_div_start, frac, config->frac_bits); pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n", ssc_per, (u32)ssc_step_size, config->ssc_adj_per); } static void dsi_pll_ssc_commit(struct dsi_pll_10nm *pll) { void __iomem *base = pll->mmio; struct dsi_pll_regs *regs = &pll->reg_setup; if (pll->pll_configuration.enable_ssc) { pr_debug("SSC is enabled\n"); pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_STEPSIZE_LOW_1, regs->ssc_stepsize_low); pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_STEPSIZE_HIGH_1, regs->ssc_stepsize_high); pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_PER_LOW_1, regs->ssc_div_per_low); pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_PER_HIGH_1, regs->ssc_div_per_high); pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_ADJPER_LOW_1, regs->ssc_adjper_low); pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_ADJPER_HIGH_1, regs->ssc_adjper_high); pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_CONTROL, SSC_EN | regs->ssc_control); } } static void dsi_pll_config_hzindep_reg(struct dsi_pll_10nm *pll) { void __iomem *base = pll->mmio; pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_ONE, 0x80); pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03); pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00); pll_write(base + REG_DSI_10nm_PHY_PLL_DSM_DIVIDER, 0x00); pll_write(base + REG_DSI_10nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e); pll_write(base + REG_DSI_10nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40); pll_write(base + REG_DSI_10nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba); pll_write(base + REG_DSI_10nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c); pll_write(base + REG_DSI_10nm_PHY_PLL_OUTDIV, 0x00); pll_write(base + REG_DSI_10nm_PHY_PLL_CORE_OVERRIDE, 0x00); pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08); pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x08); pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_BAND_SET_RATE_1, 0xc0); pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0xfa); pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c); pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80); pll_write(base + REG_DSI_10nm_PHY_PLL_PFILT, 0x29); pll_write(base + REG_DSI_10nm_PHY_PLL_IFILT, 0x3f); } static void dsi_pll_commit(struct dsi_pll_10nm *pll) { void __iomem *base = pll->mmio; struct dsi_pll_regs *reg = &pll->reg_setup; pll_write(base + REG_DSI_10nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12); pll_write(base + REG_DSI_10nm_PHY_PLL_DECIMAL_DIV_START_1, reg->decimal_div_start); pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_LOW_1, reg->frac_div_start_low); pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_MID_1, reg->frac_div_start_mid); pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_HIGH_1, reg->frac_div_start_high); pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCKDET_RATE_1, 0x40); pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCK_DELAY, 0x06); pll_write(base + REG_DSI_10nm_PHY_PLL_CMODE, 0x10); pll_write(base + REG_DSI_10nm_PHY_PLL_CLOCK_INVERTERS, reg->pll_clock_inverters); } static int dsi_pll_10nm_vco_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct msm_dsi_pll *pll = hw_clk_to_pll(hw); struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll); DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_10nm->id, rate, parent_rate); pll_10nm->vco_current_rate = rate; pll_10nm->vco_ref_clk_rate = parent_rate; dsi_pll_setup_config(pll_10nm); dsi_pll_calc_dec_frac(pll_10nm); dsi_pll_calc_ssc(pll_10nm); dsi_pll_commit(pll_10nm); dsi_pll_config_hzindep_reg(pll_10nm); dsi_pll_ssc_commit(pll_10nm); /* flush, ensure all register writes are done*/ wmb(); return 0; } static int dsi_pll_10nm_lock_status(struct dsi_pll_10nm *pll) { int rc; u32 status = 0; u32 const delay_us = 100; u32 const timeout_us = 5000; rc = readl_poll_timeout_atomic(pll->mmio + REG_DSI_10nm_PHY_PLL_COMMON_STATUS_ONE, status, ((status & BIT(0)) > 0), delay_us, timeout_us); if (rc) pr_err("DSI PLL(%d) lock failed, status=0x%08x\n", pll->id, status); return rc; } static void dsi_pll_disable_pll_bias(struct dsi_pll_10nm *pll) { u32 data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0); pll_write(pll->mmio + REG_DSI_10nm_PHY_PLL_SYSTEM_MUXES, 0); pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0, data & ~BIT(5)); ndelay(250); } static void dsi_pll_enable_pll_bias(struct dsi_pll_10nm *pll) { u32 data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0); pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0, data | BIT(5)); pll_write(pll->mmio + REG_DSI_10nm_PHY_PLL_SYSTEM_MUXES, 0xc0); ndelay(250); } static void dsi_pll_disable_global_clk(struct dsi_pll_10nm *pll) { u32 data; data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1); pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1, data & ~BIT(5)); } static void dsi_pll_enable_global_clk(struct dsi_pll_10nm *pll) { u32 data; data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1); pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1, data | BIT(5)); } static int dsi_pll_10nm_vco_prepare(struct clk_hw *hw) { struct msm_dsi_pll *pll = hw_clk_to_pll(hw); struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll); int rc; dsi_pll_enable_pll_bias(pll_10nm); if (pll_10nm->slave) dsi_pll_enable_pll_bias(pll_10nm->slave); /* Start PLL */ pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_PLL_CNTRL, 0x01); /* * ensure all PLL configurations are written prior to checking * for PLL lock. */ wmb(); /* Check for PLL lock */ rc = dsi_pll_10nm_lock_status(pll_10nm); if (rc) { pr_err("PLL(%d) lock failed\n", pll_10nm->id); goto error; } pll->pll_on = true; dsi_pll_enable_global_clk(pll_10nm); if (pll_10nm->slave) dsi_pll_enable_global_clk(pll_10nm->slave); pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_RBUF_CTRL, 0x01); if (pll_10nm->slave) pll_write(pll_10nm->slave->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_RBUF_CTRL, 0x01); error: return rc; } static void dsi_pll_disable_sub(struct dsi_pll_10nm *pll) { pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_RBUF_CTRL, 0); dsi_pll_disable_pll_bias(pll); } static void dsi_pll_10nm_vco_unprepare(struct clk_hw *hw) { struct msm_dsi_pll *pll = hw_clk_to_pll(hw); struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll); /* * To avoid any stray glitches while abruptly powering down the PLL * make sure to gate the clock using the clock enable bit before * powering down the PLL */ dsi_pll_disable_global_clk(pll_10nm); pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_PLL_CNTRL, 0); dsi_pll_disable_sub(pll_10nm); if (pll_10nm->slave) { dsi_pll_disable_global_clk(pll_10nm->slave); dsi_pll_disable_sub(pll_10nm->slave); } /* flush, ensure all register writes are done */ wmb(); pll->pll_on = false; } static unsigned long dsi_pll_10nm_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct msm_dsi_pll *pll = hw_clk_to_pll(hw); struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll); void __iomem *base = pll_10nm->mmio; u64 ref_clk = pll_10nm->vco_ref_clk_rate; u64 vco_rate = 0x0; u64 multiplier; u32 frac; u32 dec; u64 pll_freq, tmp64; dec = pll_read(base + REG_DSI_10nm_PHY_PLL_DECIMAL_DIV_START_1); dec &= 0xff; frac = pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_LOW_1); frac |= ((pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_MID_1) & 0xff) << 8); frac |= ((pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_HIGH_1) & 0x3) << 16); /* * TODO: * 1. Assumes prescaler is disabled * 2. Multiplier is 2^18. it should be 2^(num_of_frac_bits) */ multiplier = 1 << 18; pll_freq = dec * (ref_clk * 2); tmp64 = (ref_clk * 2 * frac); pll_freq += div_u64(tmp64, multiplier); vco_rate = pll_freq; DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x", pll_10nm->id, (unsigned long)vco_rate, dec, frac); return (unsigned long)vco_rate; } static const struct clk_ops clk_ops_dsi_pll_10nm_vco = { .round_rate = msm_dsi_pll_helper_clk_round_rate, .set_rate = dsi_pll_10nm_vco_set_rate, .recalc_rate = dsi_pll_10nm_vco_recalc_rate, .prepare = dsi_pll_10nm_vco_prepare, .unprepare = dsi_pll_10nm_vco_unprepare, }; /* * PLL Callbacks */ static void dsi_pll_10nm_save_state(struct msm_dsi_pll *pll) { struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll); struct pll_10nm_cached_state *cached = &pll_10nm->cached_state; void __iomem *phy_base = pll_10nm->phy_cmn_mmio; u32 cmn_clk_cfg0, cmn_clk_cfg1; cached->pll_out_div = pll_read(pll_10nm->mmio + REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE); cached->pll_out_div &= 0x3; cmn_clk_cfg0 = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG0); cached->bit_clk_div = cmn_clk_cfg0 & 0xf; cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4; cmn_clk_cfg1 = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1); cached->pll_mux = cmn_clk_cfg1 & 0x3; DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x", pll_10nm->id, cached->pll_out_div, cached->bit_clk_div, cached->pix_clk_div, cached->pll_mux); } static int dsi_pll_10nm_restore_state(struct msm_dsi_pll *pll) { struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll); struct pll_10nm_cached_state *cached = &pll_10nm->cached_state; void __iomem *phy_base = pll_10nm->phy_cmn_mmio; u32 val; val = pll_read(pll_10nm->mmio + REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE); val &= ~0x3; val |= cached->pll_out_div; pll_write(pll_10nm->mmio + REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE, val); pll_write(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG0, cached->bit_clk_div | (cached->pix_clk_div << 4)); val = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1); val &= ~0x3; val |= cached->pll_mux; pll_write(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1, val); DBG("DSI PLL%d", pll_10nm->id); return 0; } static int dsi_pll_10nm_set_usecase(struct msm_dsi_pll *pll, enum msm_dsi_phy_usecase uc) { struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll); void __iomem *base = pll_10nm->phy_cmn_mmio; u32 data = 0x0; /* internal PLL */ DBG("DSI PLL%d", pll_10nm->id); switch (uc) { case MSM_DSI_PHY_STANDALONE: break; case MSM_DSI_PHY_MASTER: pll_10nm->slave = pll_10nm_list[(pll_10nm->id + 1) % DSI_MAX]; break; case MSM_DSI_PHY_SLAVE: data = 0x1; /* external PLL */ break; default: return -EINVAL; } /* set PLL src */ pll_write(base + REG_DSI_10nm_PHY_CMN_CLK_CFG1, (data << 2)); pll_10nm->uc = uc; return 0; } static int dsi_pll_10nm_get_provider(struct msm_dsi_pll *pll, struct clk **byte_clk_provider, struct clk **pixel_clk_provider) { struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll); struct clk_hw_onecell_data *hw_data = pll_10nm->hw_data; DBG("DSI PLL%d", pll_10nm->id); if (byte_clk_provider) *byte_clk_provider = hw_data->hws[DSI_BYTE_PLL_CLK]->clk; if (pixel_clk_provider) *pixel_clk_provider = hw_data->hws[DSI_PIXEL_PLL_CLK]->clk; return 0; } static void dsi_pll_10nm_destroy(struct msm_dsi_pll *pll) { struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll); DBG("DSI PLL%d", pll_10nm->id); } /* * The post dividers and mux clocks are created using the standard divider and * mux API. Unlike the 14nm PHY, the slave PLL doesn't need its dividers/mux * state to follow the master PLL's divider/mux state. Therefore, we don't * require special clock ops that also configure the slave PLL registers */ static int pll_10nm_register(struct dsi_pll_10nm *pll_10nm) { char clk_name[32], parent[32], vco_name[32]; char parent2[32], parent3[32], parent4[32]; struct clk_init_data vco_init = { .parent_names = (const char *[]){ "xo" }, .num_parents = 1, .name = vco_name, .flags = CLK_IGNORE_UNUSED, .ops = &clk_ops_dsi_pll_10nm_vco, }; struct device *dev = &pll_10nm->pdev->dev; struct clk_hw **hws = pll_10nm->hws; struct clk_hw_onecell_data *hw_data; struct clk_hw *hw; int num = 0; int ret; DBG("DSI%d", pll_10nm->id); hw_data = devm_kzalloc(dev, sizeof(*hw_data) + NUM_PROVIDED_CLKS * sizeof(struct clk_hw *), GFP_KERNEL); if (!hw_data) return -ENOMEM; snprintf(vco_name, 32, "dsi%dvco_clk", pll_10nm->id); pll_10nm->base.clk_hw.init = &vco_init; ret = clk_hw_register(dev, &pll_10nm->base.clk_hw); if (ret) return ret; hws[num++] = &pll_10nm->base.clk_hw; snprintf(clk_name, 32, "dsi%d_pll_out_div_clk", pll_10nm->id); snprintf(parent, 32, "dsi%dvco_clk", pll_10nm->id); hw = clk_hw_register_divider(dev, clk_name, parent, CLK_SET_RATE_PARENT, pll_10nm->mmio + REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE, 0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL); if (IS_ERR(hw)) return PTR_ERR(hw); hws[num++] = hw; snprintf(clk_name, 32, "dsi%d_pll_bit_clk", pll_10nm->id); snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_10nm->id); /* BIT CLK: DIV_CTRL_3_0 */ hw = clk_hw_register_divider(dev, clk_name, parent, CLK_SET_RATE_PARENT, pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG0, 0, 4, CLK_DIVIDER_ONE_BASED, &pll_10nm->postdiv_lock); if (IS_ERR(hw)) return PTR_ERR(hw); hws[num++] = hw; snprintf(clk_name, 32, "dsi%d_phy_pll_out_byteclk", pll_10nm->id); snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id); /* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */ hw = clk_hw_register_fixed_factor(dev, clk_name, parent, CLK_SET_RATE_PARENT, 1, 8); if (IS_ERR(hw)) return PTR_ERR(hw); hws[num++] = hw; hw_data->hws[DSI_BYTE_PLL_CLK] = hw; snprintf(clk_name, 32, "dsi%d_pll_by_2_bit_clk", pll_10nm->id); snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id); hw = clk_hw_register_fixed_factor(dev, clk_name, parent, 0, 1, 2); if (IS_ERR(hw)) return PTR_ERR(hw); hws[num++] = hw; snprintf(clk_name, 32, "dsi%d_pll_post_out_div_clk", pll_10nm->id); snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_10nm->id); hw = clk_hw_register_fixed_factor(dev, clk_name, parent, 0, 1, 4); if (IS_ERR(hw)) return PTR_ERR(hw); hws[num++] = hw; snprintf(clk_name, 32, "dsi%d_pclk_mux", pll_10nm->id); snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id); snprintf(parent2, 32, "dsi%d_pll_by_2_bit_clk", pll_10nm->id); snprintf(parent3, 32, "dsi%d_pll_out_div_clk", pll_10nm->id); snprintf(parent4, 32, "dsi%d_pll_post_out_div_clk", pll_10nm->id); hw = clk_hw_register_mux(dev, clk_name, (const char *[]){ parent, parent2, parent3, parent4 }, 4, 0, pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1, 0, 2, 0, NULL); if (IS_ERR(hw)) return PTR_ERR(hw); hws[num++] = hw; snprintf(clk_name, 32, "dsi%d_phy_pll_out_dsiclk", pll_10nm->id); snprintf(parent, 32, "dsi%d_pclk_mux", pll_10nm->id); /* PIX CLK DIV : DIV_CTRL_7_4*/ hw = clk_hw_register_divider(dev, clk_name, parent, 0, pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG0, 4, 4, CLK_DIVIDER_ONE_BASED, &pll_10nm->postdiv_lock); if (IS_ERR(hw)) return PTR_ERR(hw); hws[num++] = hw; hw_data->hws[DSI_PIXEL_PLL_CLK] = hw; pll_10nm->num_hws = num; hw_data->num = NUM_PROVIDED_CLKS; pll_10nm->hw_data = hw_data; ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get, pll_10nm->hw_data); if (ret) { DRM_DEV_ERROR(dev, "failed to register clk provider: %d\n", ret); return ret; } return 0; } struct msm_dsi_pll *msm_dsi_pll_10nm_init(struct platform_device *pdev, int id) { struct dsi_pll_10nm *pll_10nm; struct msm_dsi_pll *pll; int ret; if (!pdev) return ERR_PTR(-ENODEV); pll_10nm = devm_kzalloc(&pdev->dev, sizeof(*pll_10nm), GFP_KERNEL); if (!pll_10nm) return ERR_PTR(-ENOMEM); DBG("DSI PLL%d", id); pll_10nm->pdev = pdev; pll_10nm->id = id; pll_10nm_list[id] = pll_10nm; pll_10nm->phy_cmn_mmio = msm_ioremap(pdev, "dsi_phy", "DSI_PHY"); if (IS_ERR_OR_NULL(pll_10nm->phy_cmn_mmio)) { DRM_DEV_ERROR(&pdev->dev, "failed to map CMN PHY base\n"); return ERR_PTR(-ENOMEM); } pll_10nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL"); if (IS_ERR_OR_NULL(pll_10nm->mmio)) { DRM_DEV_ERROR(&pdev->dev, "failed to map PLL base\n"); return ERR_PTR(-ENOMEM); } spin_lock_init(&pll_10nm->postdiv_lock); pll = &pll_10nm->base; pll->min_rate = 1000000000UL; pll->max_rate = 3500000000UL; pll->get_provider = dsi_pll_10nm_get_provider; pll->destroy = dsi_pll_10nm_destroy; pll->save_state = dsi_pll_10nm_save_state; pll->restore_state = dsi_pll_10nm_restore_state; pll->set_usecase = dsi_pll_10nm_set_usecase; pll_10nm->vco_delay = 1; ret = pll_10nm_register(pll_10nm); if (ret) { DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret); return ERR_PTR(ret); } /* TODO: Remove this when we have proper display handover support */ msm_dsi_pll_save_state(pll); return pll; }