/* * Intel Multiprocessor Specification 1.1 and 1.4 * compliant MP-table parsing routines. * * (c) 1995 Alan Cox, Building #3 * (c) 1998, 1999, 2000 Ingo Molnar * (c) 2008 Alexey Starikovskiy */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_X86_32 #include #include #endif /* * Checksum an MP configuration block. */ static int __init mpf_checksum(unsigned char *mp, int len) { int sum = 0; while (len--) sum += *mp++; return sum & 0xFF; } #ifdef CONFIG_X86_NUMAQ /* * Have to match translation table entries to main table entries by counter * hence the mpc_record variable .... can't see a less disgusting way of * doing this .... */ static int mpc_record; static struct mpc_config_translation *translation_table[MAX_MPC_ENTRY] __cpuinitdata; #endif static void __cpuinit MP_processor_info(struct mpc_config_processor *m) { int apicid; char *bootup_cpu = ""; if (!(m->mpc_cpuflag & CPU_ENABLED)) { disabled_cpus++; return; } #ifdef CONFIG_X86_NUMAQ if (found_numaq) apicid = mpc_apic_id(m, translation_table[mpc_record]); else apicid = m->mpc_apicid; #else apicid = m->mpc_apicid; #endif if (m->mpc_cpuflag & CPU_BOOTPROCESSOR) { bootup_cpu = " (Bootup-CPU)"; boot_cpu_physical_apicid = m->mpc_apicid; } printk(KERN_INFO "Processor #%d%s\n", m->mpc_apicid, bootup_cpu); generic_processor_info(apicid, m->mpc_apicver); } #ifdef CONFIG_X86_IO_APIC static void __init MP_bus_info(struct mpc_config_bus *m) { char str[7]; memcpy(str, m->mpc_bustype, 6); str[6] = 0; #ifdef CONFIG_X86_NUMAQ if (found_numaq) mpc_oem_bus_info(m, str, translation_table[mpc_record]); #else printk(KERN_INFO "Bus #%d is %s\n", m->mpc_busid, str); #endif #if MAX_MP_BUSSES < 256 if (m->mpc_busid >= MAX_MP_BUSSES) { printk(KERN_WARNING "MP table busid value (%d) for bustype %s " " is too large, max. supported is %d\n", m->mpc_busid, str, MAX_MP_BUSSES - 1); return; } #endif if (strncmp(str, BUSTYPE_ISA, sizeof(BUSTYPE_ISA) - 1) == 0) { set_bit(m->mpc_busid, mp_bus_not_pci); #if defined(CONFIG_EISA) || defined (CONFIG_MCA) mp_bus_id_to_type[m->mpc_busid] = MP_BUS_ISA; #endif } else if (strncmp(str, BUSTYPE_PCI, sizeof(BUSTYPE_PCI) - 1) == 0) { #ifdef CONFIG_X86_NUMAQ if (found_numaq) mpc_oem_pci_bus(m, translation_table[mpc_record]); #endif clear_bit(m->mpc_busid, mp_bus_not_pci); #if defined(CONFIG_EISA) || defined (CONFIG_MCA) mp_bus_id_to_type[m->mpc_busid] = MP_BUS_PCI; } else if (strncmp(str, BUSTYPE_EISA, sizeof(BUSTYPE_EISA) - 1) == 0) { mp_bus_id_to_type[m->mpc_busid] = MP_BUS_EISA; } else if (strncmp(str, BUSTYPE_MCA, sizeof(BUSTYPE_MCA) - 1) == 0) { mp_bus_id_to_type[m->mpc_busid] = MP_BUS_MCA; #endif } else printk(KERN_WARNING "Unknown bustype %s - ignoring\n", str); } #endif #ifdef CONFIG_X86_IO_APIC static int bad_ioapic(unsigned long address) { if (nr_ioapics >= MAX_IO_APICS) { printk(KERN_ERR "ERROR: Max # of I/O APICs (%d) exceeded " "(found %d)\n", MAX_IO_APICS, nr_ioapics); panic("Recompile kernel with bigger MAX_IO_APICS!\n"); } if (!address) { printk(KERN_ERR "WARNING: Bogus (zero) I/O APIC address" " found in table, skipping!\n"); return 1; } return 0; } static void __init MP_ioapic_info(struct mpc_config_ioapic *m) { if (!(m->mpc_flags & MPC_APIC_USABLE)) return; printk(KERN_INFO "I/O APIC #%d Version %d at 0x%X.\n", m->mpc_apicid, m->mpc_apicver, m->mpc_apicaddr); if (bad_ioapic(m->mpc_apicaddr)) return; mp_ioapics[nr_ioapics].mp_apicaddr = m->mpc_apicaddr; mp_ioapics[nr_ioapics].mp_apicid = m->mpc_apicid; mp_ioapics[nr_ioapics].mp_type = m->mpc_type; mp_ioapics[nr_ioapics].mp_apicver = m->mpc_apicver; mp_ioapics[nr_ioapics].mp_flags = m->mpc_flags; nr_ioapics++; } static void print_MP_intsrc_info(struct mpc_config_intsrc *m) { printk(KERN_CONT "Int: type %d, pol %d, trig %d, bus %02x," " IRQ %02x, APIC ID %x, APIC INT %02x\n", m->mpc_irqtype, m->mpc_irqflag & 3, (m->mpc_irqflag >> 2) & 3, m->mpc_srcbus, m->mpc_srcbusirq, m->mpc_dstapic, m->mpc_dstirq); } static void __init print_mp_irq_info(struct mp_config_intsrc *mp_irq) { printk(KERN_CONT "Int: type %d, pol %d, trig %d, bus %02x," " IRQ %02x, APIC ID %x, APIC INT %02x\n", mp_irq->mp_irqtype, mp_irq->mp_irqflag & 3, (mp_irq->mp_irqflag >> 2) & 3, mp_irq->mp_srcbus, mp_irq->mp_srcbusirq, mp_irq->mp_dstapic, mp_irq->mp_dstirq); } static void assign_to_mp_irq(struct mpc_config_intsrc *m, struct mp_config_intsrc *mp_irq) { mp_irq->mp_dstapic = m->mpc_dstapic; mp_irq->mp_type = m->mpc_type; mp_irq->mp_irqtype = m->mpc_irqtype; mp_irq->mp_irqflag = m->mpc_irqflag; mp_irq->mp_srcbus = m->mpc_srcbus; mp_irq->mp_srcbusirq = m->mpc_srcbusirq; mp_irq->mp_dstirq = m->mpc_dstirq; } static void __init assign_to_mpc_intsrc(struct mp_config_intsrc *mp_irq, struct mpc_config_intsrc *m) { m->mpc_dstapic = mp_irq->mp_dstapic; m->mpc_type = mp_irq->mp_type; m->mpc_irqtype = mp_irq->mp_irqtype; m->mpc_irqflag = mp_irq->mp_irqflag; m->mpc_srcbus = mp_irq->mp_srcbus; m->mpc_srcbusirq = mp_irq->mp_srcbusirq; m->mpc_dstirq = mp_irq->mp_dstirq; } static int mp_irq_mpc_intsrc_cmp(struct mp_config_intsrc *mp_irq, struct mpc_config_intsrc *m) { if (mp_irq->mp_dstapic != m->mpc_dstapic) return 1; if (mp_irq->mp_type != m->mpc_type) return 2; if (mp_irq->mp_irqtype != m->mpc_irqtype) return 3; if (mp_irq->mp_irqflag != m->mpc_irqflag) return 4; if (mp_irq->mp_srcbus != m->mpc_srcbus) return 5; if (mp_irq->mp_srcbusirq != m->mpc_srcbusirq) return 6; if (mp_irq->mp_dstirq != m->mpc_dstirq) return 7; return 0; } void MP_intsrc_info(struct mpc_config_intsrc *m) { int i; print_MP_intsrc_info(m); for (i = 0; i < mp_irq_entries; i++) { if (!mp_irq_mpc_intsrc_cmp(&mp_irqs[i], m)) return; } assign_to_mp_irq(m, &mp_irqs[mp_irq_entries]); if (++mp_irq_entries == MAX_IRQ_SOURCES) panic("Max # of irq sources exceeded!!\n"); } #endif static void __init MP_lintsrc_info(struct mpc_config_lintsrc *m) { printk(KERN_INFO "Lint: type %d, pol %d, trig %d, bus %02x," " IRQ %02x, APIC ID %x, APIC LINT %02x\n", m->mpc_irqtype, m->mpc_irqflag & 3, (m->mpc_irqflag >> 2) & 3, m->mpc_srcbusid, m->mpc_srcbusirq, m->mpc_destapic, m->mpc_destapiclint); } #ifdef CONFIG_X86_NUMAQ static void __init MP_translation_info(struct mpc_config_translation *m) { printk(KERN_INFO "Translation: record %d, type %d, quad %d, global %d, local %d\n", mpc_record, m->trans_type, m->trans_quad, m->trans_global, m->trans_local); if (mpc_record >= MAX_MPC_ENTRY) printk(KERN_ERR "MAX_MPC_ENTRY exceeded!\n"); else translation_table[mpc_record] = m; /* stash this for later */ if (m->trans_quad < MAX_NUMNODES && !node_online(m->trans_quad)) node_set_online(m->trans_quad); } /* * Read/parse the MPC oem tables */ static void __init smp_read_mpc_oem(struct mp_config_oemtable *oemtable, unsigned short oemsize) { int count = sizeof(*oemtable); /* the header size */ unsigned char *oemptr = ((unsigned char *)oemtable) + count; mpc_record = 0; printk(KERN_INFO "Found an OEM MPC table at %8p - parsing it ... \n", oemtable); if (memcmp(oemtable->oem_signature, MPC_OEM_SIGNATURE, 4)) { printk(KERN_WARNING "SMP mpc oemtable: bad signature [%c%c%c%c]!\n", oemtable->oem_signature[0], oemtable->oem_signature[1], oemtable->oem_signature[2], oemtable->oem_signature[3]); return; } if (mpf_checksum((unsigned char *)oemtable, oemtable->oem_length)) { printk(KERN_WARNING "SMP oem mptable: checksum error!\n"); return; } while (count < oemtable->oem_length) { switch (*oemptr) { case MP_TRANSLATION: { struct mpc_config_translation *m = (struct mpc_config_translation *)oemptr; MP_translation_info(m); oemptr += sizeof(*m); count += sizeof(*m); ++mpc_record; break; } default: { printk(KERN_WARNING "Unrecognised OEM table entry type! - %d\n", (int)*oemptr); return; } } } } static inline void mps_oem_check(struct mp_config_table *mpc, char *oem, char *productid) { if (strncmp(oem, "IBM NUMA", 8)) printk("Warning! May not be a NUMA-Q system!\n"); else found_numaq = 1; if (mpc->mpc_oemptr) smp_read_mpc_oem((struct mp_config_oemtable *)mpc->mpc_oemptr, mpc->mpc_oemsize); } #endif /* CONFIG_X86_NUMAQ */ /* * Read/parse the MPC */ static int __init smp_check_mpc(struct mp_config_table *mpc, char *oem, char *str) { if (memcmp(mpc->mpc_signature, MPC_SIGNATURE, 4)) { printk(KERN_ERR "MPTABLE: bad signature [%c%c%c%c]!\n", mpc->mpc_signature[0], mpc->mpc_signature[1], mpc->mpc_signature[2], mpc->mpc_signature[3]); return 0; } if (mpf_checksum((unsigned char *)mpc, mpc->mpc_length)) { printk(KERN_ERR "MPTABLE: checksum error!\n"); return 0; } if (mpc->mpc_spec != 0x01 && mpc->mpc_spec != 0x04) { printk(KERN_ERR "MPTABLE: bad table version (%d)!!\n", mpc->mpc_spec); return 0; } if (!mpc->mpc_lapic) { printk(KERN_ERR "MPTABLE: null local APIC address!\n"); return 0; } memcpy(oem, mpc->mpc_oem, 8); oem[8] = 0; printk(KERN_INFO "MPTABLE: OEM ID: %s\n", oem); memcpy(str, mpc->mpc_productid, 12); str[12] = 0; printk(KERN_INFO "MPTABLE: Product ID: %s\n", str); printk(KERN_INFO "MPTABLE: APIC at: 0x%X\n", mpc->mpc_lapic); return 1; } static int __init smp_read_mpc(struct mp_config_table *mpc, unsigned early) { char str[16]; char oem[10]; int count = sizeof(*mpc); unsigned char *mpt = ((unsigned char *)mpc) + count; if (!smp_check_mpc(mpc, oem, str)) return 0; #ifdef CONFIG_X86_32 mps_oem_check(mpc, oem, str); #endif /* save the local APIC address, it might be non-default */ if (!acpi_lapic) mp_lapic_addr = mpc->mpc_lapic; if (early) return 1; /* * Now process the configuration blocks. */ #ifdef CONFIG_X86_NUMAQ mpc_record = 0; #endif while (count < mpc->mpc_length) { switch (*mpt) { case MP_PROCESSOR: { struct mpc_config_processor *m = (struct mpc_config_processor *)mpt; /* ACPI may have already provided this data */ if (!acpi_lapic) MP_processor_info(m); mpt += sizeof(*m); count += sizeof(*m); break; } case MP_BUS: { struct mpc_config_bus *m = (struct mpc_config_bus *)mpt; #ifdef CONFIG_X86_IO_APIC MP_bus_info(m); #endif mpt += sizeof(*m); count += sizeof(*m); break; } case MP_IOAPIC: { #ifdef CONFIG_X86_IO_APIC struct mpc_config_ioapic *m = (struct mpc_config_ioapic *)mpt; MP_ioapic_info(m); #endif mpt += sizeof(struct mpc_config_ioapic); count += sizeof(struct mpc_config_ioapic); break; } case MP_INTSRC: { #ifdef CONFIG_X86_IO_APIC struct mpc_config_intsrc *m = (struct mpc_config_intsrc *)mpt; MP_intsrc_info(m); #endif mpt += sizeof(struct mpc_config_intsrc); count += sizeof(struct mpc_config_intsrc); break; } case MP_LINTSRC: { struct mpc_config_lintsrc *m = (struct mpc_config_lintsrc *)mpt; MP_lintsrc_info(m); mpt += sizeof(*m); count += sizeof(*m); break; } default: /* wrong mptable */ printk(KERN_ERR "Your mptable is wrong, contact your HW vendor!\n"); printk(KERN_ERR "type %x\n", *mpt); print_hex_dump(KERN_ERR, " ", DUMP_PREFIX_ADDRESS, 16, 1, mpc, mpc->mpc_length, 1); count = mpc->mpc_length; break; } #ifdef CONFIG_X86_NUMAQ ++mpc_record; #endif } setup_apic_routing(); if (!num_processors) printk(KERN_ERR "MPTABLE: no processors registered!\n"); return num_processors; } #ifdef CONFIG_X86_IO_APIC static int __init ELCR_trigger(unsigned int irq) { unsigned int port; port = 0x4d0 + (irq >> 3); return (inb(port) >> (irq & 7)) & 1; } static void __init construct_default_ioirq_mptable(int mpc_default_type) { struct mpc_config_intsrc intsrc; int i; int ELCR_fallback = 0; intsrc.mpc_type = MP_INTSRC; intsrc.mpc_irqflag = 0; /* conforming */ intsrc.mpc_srcbus = 0; intsrc.mpc_dstapic = mp_ioapics[0].mp_apicid; intsrc.mpc_irqtype = mp_INT; /* * If true, we have an ISA/PCI system with no IRQ entries * in the MP table. To prevent the PCI interrupts from being set up * incorrectly, we try to use the ELCR. The sanity check to see if * there is good ELCR data is very simple - IRQ0, 1, 2 and 13 can * never be level sensitive, so we simply see if the ELCR agrees. * If it does, we assume it's valid. */ if (mpc_default_type == 5) { printk(KERN_INFO "ISA/PCI bus type with no IRQ information... " "falling back to ELCR\n"); if (ELCR_trigger(0) || ELCR_trigger(1) || ELCR_trigger(2) || ELCR_trigger(13)) printk(KERN_ERR "ELCR contains invalid data... " "not using ELCR\n"); else { printk(KERN_INFO "Using ELCR to identify PCI interrupts\n"); ELCR_fallback = 1; } } for (i = 0; i < 16; i++) { switch (mpc_default_type) { case 2: if (i == 0 || i == 13) continue; /* IRQ0 & IRQ13 not connected */ /* fall through */ default: if (i == 2) continue; /* IRQ2 is never connected */ } if (ELCR_fallback) { /* * If the ELCR indicates a level-sensitive interrupt, we * copy that information over to the MP table in the * irqflag field (level sensitive, active high polarity). */ if (ELCR_trigger(i)) intsrc.mpc_irqflag = 13; else intsrc.mpc_irqflag = 0; } intsrc.mpc_srcbusirq = i; intsrc.mpc_dstirq = i ? i : 2; /* IRQ0 to INTIN2 */ MP_intsrc_info(&intsrc); } intsrc.mpc_irqtype = mp_ExtINT; intsrc.mpc_srcbusirq = 0; intsrc.mpc_dstirq = 0; /* 8259A to INTIN0 */ MP_intsrc_info(&intsrc); } static void construct_ioapic_table(int mpc_default_type) { struct mpc_config_ioapic ioapic; struct mpc_config_bus bus; bus.mpc_type = MP_BUS; bus.mpc_busid = 0; switch (mpc_default_type) { default: printk(KERN_ERR "???\nUnknown standard configuration %d\n", mpc_default_type); /* fall through */ case 1: case 5: memcpy(bus.mpc_bustype, "ISA ", 6); break; case 2: case 6: case 3: memcpy(bus.mpc_bustype, "EISA ", 6); break; case 4: case 7: memcpy(bus.mpc_bustype, "MCA ", 6); } MP_bus_info(&bus); if (mpc_default_type > 4) { bus.mpc_busid = 1; memcpy(bus.mpc_bustype, "PCI ", 6); MP_bus_info(&bus); } ioapic.mpc_type = MP_IOAPIC; ioapic.mpc_apicid = 2; ioapic.mpc_apicver = mpc_default_type > 4 ? 0x10 : 0x01; ioapic.mpc_flags = MPC_APIC_USABLE; ioapic.mpc_apicaddr = 0xFEC00000; MP_ioapic_info(&ioapic); /* * We set up most of the low 16 IO-APIC pins according to MPS rules. */ construct_default_ioirq_mptable(mpc_default_type); } #else static inline void construct_ioapic_table(int mpc_default_type) { } #endif static inline void __init construct_default_ISA_mptable(int mpc_default_type) { struct mpc_config_processor processor; struct mpc_config_lintsrc lintsrc; int linttypes[2] = { mp_ExtINT, mp_NMI }; int i; /* * local APIC has default address */ mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; /* * 2 CPUs, numbered 0 & 1. */ processor.mpc_type = MP_PROCESSOR; /* Either an integrated APIC or a discrete 82489DX. */ processor.mpc_apicver = mpc_default_type > 4 ? 0x10 : 0x01; processor.mpc_cpuflag = CPU_ENABLED; processor.mpc_cpufeature = (boot_cpu_data.x86 << 8) | (boot_cpu_data.x86_model << 4) | boot_cpu_data.x86_mask; processor.mpc_featureflag = boot_cpu_data.x86_capability[0]; processor.mpc_reserved[0] = 0; processor.mpc_reserved[1] = 0; for (i = 0; i < 2; i++) { processor.mpc_apicid = i; MP_processor_info(&processor); } construct_ioapic_table(mpc_default_type); lintsrc.mpc_type = MP_LINTSRC; lintsrc.mpc_irqflag = 0; /* conforming */ lintsrc.mpc_srcbusid = 0; lintsrc.mpc_srcbusirq = 0; lintsrc.mpc_destapic = MP_APIC_ALL; for (i = 0; i < 2; i++) { lintsrc.mpc_irqtype = linttypes[i]; lintsrc.mpc_destapiclint = i; MP_lintsrc_info(&lintsrc); } } static struct intel_mp_floating *mpf_found; /* * Scan the memory blocks for an SMP configuration block. */ static void __init __get_smp_config(unsigned early) { struct intel_mp_floating *mpf = mpf_found; if (acpi_lapic && early) return; /* * ACPI supports both logical (e.g. Hyper-Threading) and physical * processors, where MPS only supports physical. */ if (acpi_lapic && acpi_ioapic) { printk(KERN_INFO "Using ACPI (MADT) for SMP configuration " "information\n"); return; } else if (acpi_lapic) printk(KERN_INFO "Using ACPI for processor (LAPIC) " "configuration information\n"); printk(KERN_INFO "Intel MultiProcessor Specification v1.%d\n", mpf->mpf_specification); #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_X86_32) if (mpf->mpf_feature2 & (1 << 7)) { printk(KERN_INFO " IMCR and PIC compatibility mode.\n"); pic_mode = 1; } else { printk(KERN_INFO " Virtual Wire compatibility mode.\n"); pic_mode = 0; } #endif /* * Now see if we need to read further. */ if (mpf->mpf_feature1 != 0) { if (early) { /* * local APIC has default address */ mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; return; } printk(KERN_INFO "Default MP configuration #%d\n", mpf->mpf_feature1); construct_default_ISA_mptable(mpf->mpf_feature1); } else if (mpf->mpf_physptr) { /* * Read the physical hardware table. Anything here will * override the defaults. */ if (!smp_read_mpc(phys_to_virt(mpf->mpf_physptr), early)) { #ifdef CONFIG_X86_LOCAL_APIC smp_found_config = 0; #endif printk(KERN_ERR "BIOS bug, MP table errors detected!...\n"); printk(KERN_ERR "... disabling SMP support. " "(tell your hw vendor)\n"); return; } if (early) return; #ifdef CONFIG_X86_IO_APIC /* * If there are no explicit MP IRQ entries, then we are * broken. We set up most of the low 16 IO-APIC pins to * ISA defaults and hope it will work. */ if (!mp_irq_entries) { struct mpc_config_bus bus; printk(KERN_ERR "BIOS bug, no explicit IRQ entries, " "using default mptable. " "(tell your hw vendor)\n"); bus.mpc_type = MP_BUS; bus.mpc_busid = 0; memcpy(bus.mpc_bustype, "ISA ", 6); MP_bus_info(&bus); construct_default_ioirq_mptable(0); } #endif } else BUG(); if (!early) printk(KERN_INFO "Processors: %d\n", num_processors); /* * Only use the first configuration found. */ } void __init early_get_smp_config(void) { __get_smp_config(1); } void __init get_smp_config(void) { __get_smp_config(0); } static int __init smp_scan_config(unsigned long base, unsigned long length, unsigned reserve) { unsigned int *bp = phys_to_virt(base); struct intel_mp_floating *mpf; printk(KERN_DEBUG "Scan SMP from %p for %ld bytes.\n", bp, length); BUILD_BUG_ON(sizeof(*mpf) != 16); while (length > 0) { mpf = (struct intel_mp_floating *)bp; if ((*bp == SMP_MAGIC_IDENT) && (mpf->mpf_length == 1) && !mpf_checksum((unsigned char *)bp, 16) && ((mpf->mpf_specification == 1) || (mpf->mpf_specification == 4))) { #ifdef CONFIG_X86_LOCAL_APIC smp_found_config = 1; #endif mpf_found = mpf; #ifdef CONFIG_X86_32 printk(KERN_INFO "found SMP MP-table at [%p] %08lx\n", mpf, virt_to_phys(mpf)); reserve_bootmem(virt_to_phys(mpf), PAGE_SIZE, BOOTMEM_DEFAULT); if (mpf->mpf_physptr) { /* * We cannot access to MPC table to compute * table size yet, as only few megabytes from * the bottom is mapped now. * PC-9800's MPC table places on the very last * of physical memory; so that simply reserving * PAGE_SIZE from mpg->mpf_physptr yields BUG() * in reserve_bootmem. */ unsigned long size = PAGE_SIZE; unsigned long end = max_low_pfn * PAGE_SIZE; if (mpf->mpf_physptr + size > end) size = end - mpf->mpf_physptr; reserve_bootmem(mpf->mpf_physptr, size, BOOTMEM_DEFAULT); } #else if (!reserve) return 1; reserve_bootmem_generic(virt_to_phys(mpf), PAGE_SIZE); if (mpf->mpf_physptr) reserve_bootmem_generic(mpf->mpf_physptr, PAGE_SIZE); #endif return 1; } bp += 4; length -= 16; } return 0; } static void __init __find_smp_config(unsigned reserve) { unsigned int address; /* * FIXME: Linux assumes you have 640K of base ram.. * this continues the error... * * 1) Scan the bottom 1K for a signature * 2) Scan the top 1K of base RAM * 3) Scan the 64K of bios */ if (smp_scan_config(0x0, 0x400, reserve) || smp_scan_config(639 * 0x400, 0x400, reserve) || smp_scan_config(0xF0000, 0x10000, reserve)) return; /* * If it is an SMP machine we should know now, unless the * configuration is in an EISA/MCA bus machine with an * extended bios data area. * * there is a real-mode segmented pointer pointing to the * 4K EBDA area at 0x40E, calculate and scan it here. * * NOTE! There are Linux loaders that will corrupt the EBDA * area, and as such this kind of SMP config may be less * trustworthy, simply because the SMP table may have been * stomped on during early boot. These loaders are buggy and * should be fixed. * * MP1.4 SPEC states to only scan first 1K of 4K EBDA. */ address = get_bios_ebda(); if (address) smp_scan_config(address, 0x400, reserve); } void __init early_find_smp_config(void) { __find_smp_config(0); } void __init find_smp_config(void) { __find_smp_config(1); } #ifdef CONFIG_X86_IO_APIC static u8 __initdata irq_used[MAX_IRQ_SOURCES]; static int __init get_MP_intsrc_index(struct mpc_config_intsrc *m) { int i; if (m->mpc_irqtype != mp_INT) return 0; if (m->mpc_irqflag != 0x0f) return 0; /* not legacy */ for (i = 0; i < mp_irq_entries; i++) { if (mp_irqs[i].mp_irqtype != mp_INT) continue; if (mp_irqs[i].mp_irqflag != 0x0f) continue; if (mp_irqs[i].mp_srcbus != m->mpc_srcbus) continue; if (mp_irqs[i].mp_srcbusirq != m->mpc_srcbusirq) continue; if (irq_used[i]) { /* already claimed */ return -2; } irq_used[i] = 1; return i; } /* not found */ return -1; } #define SPARE_SLOT_NUM 20 static struct mpc_config_intsrc __initdata *m_spare[SPARE_SLOT_NUM]; #endif static int __init replace_intsrc_all(struct mp_config_table *mpc, unsigned long mpc_new_phys, unsigned long mpc_new_length) { #ifdef CONFIG_X86_IO_APIC int i; int nr_m_spare = 0; #endif int count = sizeof(*mpc); unsigned char *mpt = ((unsigned char *)mpc) + count; printk(KERN_INFO "mpc_length %x\n", mpc->mpc_length); while (count < mpc->mpc_length) { switch (*mpt) { case MP_PROCESSOR: { struct mpc_config_processor *m = (struct mpc_config_processor *)mpt; mpt += sizeof(*m); count += sizeof(*m); break; } case MP_BUS: { struct mpc_config_bus *m = (struct mpc_config_bus *)mpt; mpt += sizeof(*m); count += sizeof(*m); break; } case MP_IOAPIC: { mpt += sizeof(struct mpc_config_ioapic); count += sizeof(struct mpc_config_ioapic); break; } case MP_INTSRC: { #ifdef CONFIG_X86_IO_APIC struct mpc_config_intsrc *m = (struct mpc_config_intsrc *)mpt; printk(KERN_INFO "OLD "); print_MP_intsrc_info(m); i = get_MP_intsrc_index(m); if (i > 0) { assign_to_mpc_intsrc(&mp_irqs[i], m); printk(KERN_INFO "NEW "); print_mp_irq_info(&mp_irqs[i]); } else if (!i) { /* legacy, do nothing */ } else if (nr_m_spare < SPARE_SLOT_NUM) { /* * not found (-1), or duplicated (-2) * are invalid entries, * we need to use the slot later */ m_spare[nr_m_spare] = m; nr_m_spare++; } #endif mpt += sizeof(struct mpc_config_intsrc); count += sizeof(struct mpc_config_intsrc); break; } case MP_LINTSRC: { struct mpc_config_lintsrc *m = (struct mpc_config_lintsrc *)mpt; mpt += sizeof(*m); count += sizeof(*m); break; } default: /* wrong mptable */ printk(KERN_ERR "Your mptable is wrong, contact your HW vendor!\n"); printk(KERN_ERR "type %x\n", *mpt); print_hex_dump(KERN_ERR, " ", DUMP_PREFIX_ADDRESS, 16, 1, mpc, mpc->mpc_length, 1); goto out; } } #ifdef CONFIG_X86_IO_APIC for (i = 0; i < mp_irq_entries; i++) { if (irq_used[i]) continue; if (mp_irqs[i].mp_irqtype != mp_INT) continue; if (mp_irqs[i].mp_irqflag != 0x0f) continue; if (nr_m_spare > 0) { printk(KERN_INFO "*NEW* found "); nr_m_spare--; assign_to_mpc_intsrc(&mp_irqs[i], m_spare[nr_m_spare]); m_spare[nr_m_spare] = NULL; } else { struct mpc_config_intsrc *m = (struct mpc_config_intsrc *)mpt; count += sizeof(struct mpc_config_intsrc); if (!mpc_new_phys) { printk(KERN_INFO "No spare slots, try to append...take your risk, new mpc_length %x\n", count); } else { if (count <= mpc_new_length) printk(KERN_INFO "No spare slots, try to append..., new mpc_length %x\n", count); else { printk(KERN_ERR "mpc_new_length %lx is too small\n", mpc_new_length); goto out; } } assign_to_mpc_intsrc(&mp_irqs[i], m); mpc->mpc_length = count; mpt += sizeof(struct mpc_config_intsrc); } print_mp_irq_info(&mp_irqs[i]); } #endif out: /* update checksum */ mpc->mpc_checksum = 0; mpc->mpc_checksum -= mpf_checksum((unsigned char *)mpc, mpc->mpc_length); return 0; } int __initdata enable_update_mptable; static int __init update_mptable_setup(char *str) { enable_update_mptable = 1; return 0; } early_param("update_mptable", update_mptable_setup); static unsigned long __initdata mpc_new_phys; static unsigned long mpc_new_length __initdata = 4096; /* alloc_mptable or alloc_mptable=4k */ static int __initdata alloc_mptable; static int __init parse_alloc_mptable_opt(char *p) { enable_update_mptable = 1; alloc_mptable = 1; if (!p) return 0; mpc_new_length = memparse(p, &p); return 0; } early_param("alloc_mptable", parse_alloc_mptable_opt); void __init early_reserve_e820_mpc_new(void) { if (enable_update_mptable && alloc_mptable) { u64 startt = 0; #ifdef CONFIG_X86_TRAMPOLINE startt = TRAMPOLINE_BASE; #endif mpc_new_phys = early_reserve_e820(startt, mpc_new_length, 4); } } static int __init update_mp_table(void) { char str[16]; char oem[10]; struct intel_mp_floating *mpf; struct mp_config_table *mpc; struct mp_config_table *mpc_new; if (!enable_update_mptable) return 0; mpf = mpf_found; if (!mpf) return 0; /* * Now see if we need to go further. */ if (mpf->mpf_feature1 != 0) return 0; if (!mpf->mpf_physptr) return 0; mpc = phys_to_virt(mpf->mpf_physptr); if (!smp_check_mpc(mpc, oem, str)) return 0; printk(KERN_INFO "mpf: %lx\n", virt_to_phys(mpf)); printk(KERN_INFO "mpf_physptr: %x\n", mpf->mpf_physptr); if (mpc_new_phys && mpc->mpc_length > mpc_new_length) { mpc_new_phys = 0; printk(KERN_INFO "mpc_new_length is %ld, please use alloc_mptable=8k\n", mpc_new_length); } if (!mpc_new_phys) { unsigned char old, new; /* check if we can change the postion */ mpc->mpc_checksum = 0; old = mpf_checksum((unsigned char *)mpc, mpc->mpc_length); mpc->mpc_checksum = 0xff; new = mpf_checksum((unsigned char *)mpc, mpc->mpc_length); if (old == new) { printk(KERN_INFO "mpc is readonly, please try alloc_mptable instead\n"); return 0; } printk(KERN_INFO "use in-positon replacing\n"); } else { mpf->mpf_physptr = mpc_new_phys; mpc_new = phys_to_virt(mpc_new_phys); memcpy(mpc_new, mpc, mpc->mpc_length); mpc = mpc_new; /* check if we can modify that */ if (mpc_new_phys - mpf->mpf_physptr) { struct intel_mp_floating *mpf_new; /* steal 16 bytes from [0, 1k) */ printk(KERN_INFO "mpf new: %x\n", 0x400 - 16); mpf_new = phys_to_virt(0x400 - 16); memcpy(mpf_new, mpf, 16); mpf = mpf_new; mpf->mpf_physptr = mpc_new_phys; } mpf->mpf_checksum = 0; mpf->mpf_checksum -= mpf_checksum((unsigned char *)mpf, 16); printk(KERN_INFO "mpf_physptr new: %x\n", mpf->mpf_physptr); } /* * only replace the one with mp_INT and * MP_IRQ_TRIGGER_LEVEL|MP_IRQ_POLARITY_LOW, * already in mp_irqs , stored by ... and mp_config_acpi_gsi, * may need pci=routeirq for all coverage */ replace_intsrc_all(mpc, mpc_new_phys, mpc_new_length); return 0; } late_initcall(update_mp_table);