/* * processor_idle - idle state cpuidle driver. * Adapted from drivers/idle/intel_idle.c and * drivers/acpi/processor_idle.c * */ #include #include #include #include #include #include #include #include #include #include #include #include #include struct cpuidle_driver pseries_idle_driver = { .name = "pseries_idle", .owner = THIS_MODULE, }; #define MAX_IDLE_STATE_COUNT 2 static int max_idle_state = MAX_IDLE_STATE_COUNT - 1; static struct cpuidle_state *cpuidle_state_table; static inline void idle_loop_prolog(unsigned long *in_purr) { *in_purr = mfspr(SPRN_PURR); /* * Indicate to the HV that we are idle. Now would be * a good time to find other work to dispatch. */ get_lppaca()->idle = 1; } static inline void idle_loop_epilog(unsigned long in_purr) { u64 wait_cycles; wait_cycles = be64_to_cpu(get_lppaca()->wait_state_cycles); wait_cycles += mfspr(SPRN_PURR) - in_purr; get_lppaca()->wait_state_cycles = cpu_to_be64(wait_cycles); get_lppaca()->idle = 0; } static int snooze_loop(struct cpuidle_device *dev, struct cpuidle_driver *drv, int index) { unsigned long in_purr; int cpu = dev->cpu; idle_loop_prolog(&in_purr); local_irq_enable(); set_thread_flag(TIF_POLLING_NRFLAG); while ((!need_resched()) && cpu_online(cpu)) { ppc64_runlatch_off(); HMT_low(); HMT_very_low(); } HMT_medium(); clear_thread_flag(TIF_POLLING_NRFLAG); smp_mb(); idle_loop_epilog(in_purr); return index; } static void check_and_cede_processor(void) { /* * Ensure our interrupt state is properly tracked, * also checks if no interrupt has occurred while we * were soft-disabled */ if (prep_irq_for_idle()) { cede_processor(); #ifdef CONFIG_TRACE_IRQFLAGS /* Ensure that H_CEDE returns with IRQs on */ if (WARN_ON(!(mfmsr() & MSR_EE))) __hard_irq_enable(); #endif } } static int dedicated_cede_loop(struct cpuidle_device *dev, struct cpuidle_driver *drv, int index) { unsigned long in_purr; idle_loop_prolog(&in_purr); get_lppaca()->donate_dedicated_cpu = 1; ppc64_runlatch_off(); HMT_medium(); check_and_cede_processor(); get_lppaca()->donate_dedicated_cpu = 0; idle_loop_epilog(in_purr); return index; } static int shared_cede_loop(struct cpuidle_device *dev, struct cpuidle_driver *drv, int index) { unsigned long in_purr; idle_loop_prolog(&in_purr); /* * Yield the processor to the hypervisor. We return if * an external interrupt occurs (which are driven prior * to returning here) or if a prod occurs from another * processor. When returning here, external interrupts * are enabled. */ check_and_cede_processor(); idle_loop_epilog(in_purr); return index; } /* * States for dedicated partition case. */ static struct cpuidle_state dedicated_states[MAX_IDLE_STATE_COUNT] = { { /* Snooze */ .name = "snooze", .desc = "snooze", .flags = CPUIDLE_FLAG_TIME_VALID, .exit_latency = 0, .target_residency = 0, .enter = &snooze_loop }, { /* CEDE */ .name = "CEDE", .desc = "CEDE", .flags = CPUIDLE_FLAG_TIME_VALID, .exit_latency = 10, .target_residency = 100, .enter = &dedicated_cede_loop }, }; /* * States for shared partition case. */ static struct cpuidle_state shared_states[MAX_IDLE_STATE_COUNT] = { { /* Shared Cede */ .name = "Shared Cede", .desc = "Shared Cede", .flags = CPUIDLE_FLAG_TIME_VALID, .exit_latency = 0, .target_residency = 0, .enter = &shared_cede_loop }, }; void update_smt_snooze_delay(int cpu, int residency) { struct cpuidle_driver *drv = cpuidle_get_driver(); struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu); if (cpuidle_state_table != dedicated_states) return; if (residency < 0) { /* Disable the Nap state on that cpu */ if (dev) dev->states_usage[1].disable = 1; } else if (drv) drv->states[1].target_residency = residency; } static int pseries_cpuidle_add_cpu_notifier(struct notifier_block *n, unsigned long action, void *hcpu) { int hotcpu = (unsigned long)hcpu; struct cpuidle_device *dev = per_cpu_ptr(cpuidle_devices, hotcpu); if (dev && cpuidle_get_driver()) { switch (action) { case CPU_ONLINE: case CPU_ONLINE_FROZEN: cpuidle_pause_and_lock(); cpuidle_enable_device(dev); cpuidle_resume_and_unlock(); break; case CPU_DEAD: case CPU_DEAD_FROZEN: cpuidle_pause_and_lock(); cpuidle_disable_device(dev); cpuidle_resume_and_unlock(); break; default: return NOTIFY_DONE; } } return NOTIFY_OK; } static struct notifier_block setup_hotplug_notifier = { .notifier_call = pseries_cpuidle_add_cpu_notifier, }; /* * pseries_cpuidle_driver_init() */ static int pseries_cpuidle_driver_init(void) { int idle_state; struct cpuidle_driver *drv = &pseries_idle_driver; drv->state_count = 0; for (idle_state = 0; idle_state < MAX_IDLE_STATE_COUNT; ++idle_state) { if (idle_state > max_idle_state) break; /* is the state not enabled? */ if (cpuidle_state_table[idle_state].enter == NULL) continue; drv->states[drv->state_count] = /* structure copy */ cpuidle_state_table[idle_state]; drv->state_count += 1; } return 0; } /* * pseries_idle_probe() * Choose state table for shared versus dedicated partition */ static int pseries_idle_probe(void) { if (!firmware_has_feature(FW_FEATURE_SPLPAR)) return -ENODEV; if (cpuidle_disable != IDLE_NO_OVERRIDE) return -ENODEV; if (max_idle_state == 0) { printk(KERN_DEBUG "pseries processor idle disabled.\n"); return -EPERM; } if (lppaca_shared_proc(get_lppaca())) cpuidle_state_table = shared_states; else cpuidle_state_table = dedicated_states; return 0; } static int __init pseries_processor_idle_init(void) { int retval; retval = pseries_idle_probe(); if (retval) return retval; pseries_cpuidle_driver_init(); retval = cpuidle_register(&pseries_idle_driver, NULL); if (retval) { printk(KERN_DEBUG "Registration of pseries driver failed.\n"); return retval; } register_cpu_notifier(&setup_hotplug_notifier); printk(KERN_DEBUG "pseries_idle_driver registered\n"); return 0; } static void __exit pseries_processor_idle_exit(void) { unregister_cpu_notifier(&setup_hotplug_notifier); cpuidle_unregister(&pseries_idle_driver); return; } module_init(pseries_processor_idle_init); module_exit(pseries_processor_idle_exit); MODULE_AUTHOR("Deepthi Dharwar "); MODULE_DESCRIPTION("Cpuidle driver for POWER"); MODULE_LICENSE("GPL");