| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
Straight forward extensions for huge pages located in the PUD instead of
PMDs.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add the ability to configure the hugetlb hstate used on a per mount basis.
- Add a new pagesize= option to the hugetlbfs mount that allows setting
the page size
- This option causes the mount code to find the hstate corresponding to the
specified size, and sets up a pointer to the hstate in the mount's
superblock.
- Change the hstate accessors to use this information rather than the
global_hstate they were using (requires a slight change in mm/memory.c
so we don't NULL deref in the error-unmap path -- see comments).
[np: take hstate out of hugetlbfs inode and vma->vm_private_data]
Acked-by: Adam Litke <agl@us.ibm.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The goal of this patchset is to support multiple hugetlb page sizes. This
is achieved by introducing a new struct hstate structure, which
encapsulates the important hugetlb state and constants (eg. huge page
size, number of huge pages currently allocated, etc).
The hstate structure is then passed around the code which requires these
fields, they will do the right thing regardless of the exact hstate they
are operating on.
This patch adds the hstate structure, with a single global instance of it
(default_hstate), and does the basic work of converting hugetlb to use the
hstate.
Future patches will add more hstate structures to allow for different
hugetlbfs mounts to have different page sizes.
[akpm@linux-foundation.org: coding-style fixes]
Acked-by: Adam Litke <agl@us.ibm.com>
Acked-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mmap(MAP_PRIVATE) on hugetlbfs will succeed
After patch 2 in this series, a process that successfully calls mmap() for
a MAP_PRIVATE mapping will be guaranteed to successfully fault until a
process calls fork(). At that point, the next write fault from the parent
could fail due to COW if the child still has a reference.
We only reserve pages for the parent but a copy must be made to avoid
leaking data from the parent to the child after fork(). Reserves could be
taken for both parent and child at fork time to guarantee faults but if
the mapping is large it is highly likely we will not have sufficient pages
for the reservation, and it is common to fork only to exec() immediatly
after. A failure here would be very undesirable.
Note that the current behaviour of mainline with MAP_PRIVATE pages is
pretty bad. The following situation is allowed to occur today.
1. Process calls mmap(MAP_PRIVATE)
2. Process calls mlock() to fault all pages and makes sure it succeeds
3. Process forks()
4. Process writes to MAP_PRIVATE mapping while child still exists
5. If the COW fails at this point, the process gets SIGKILLed even though it
had taken care to ensure the pages existed
This patch improves the situation by guaranteeing the reliability of the
process that successfully calls mmap(). When the parent performs COW, it
will try to satisfy the allocation without using reserves. If that fails
the parent will steal the page leaving any children without a page.
Faults from the child after that point will result in failure. If the
child COW happens first, an attempt will be made to allocate the page
without reserves and the child will get SIGKILLed on failure.
To summarise the new behaviour:
1. If the original mapper performs COW on a private mapping with multiple
references, it will attempt to allocate a hugepage from the pool or
the buddy allocator without using the existing reserves. On fail, VMAs
mapping the same area are traversed and the page being COW'd is unmapped
where found. It will then steal the original page as the last mapper in
the normal way.
2. The VMAs the pages were unmapped from are flagged to note that pages
with data no longer exist. Future no-page faults on those VMAs will
terminate the process as otherwise it would appear that data was corrupted.
A warning is printed to the console that this situation occured.
2. If the child performs COW first, it will attempt to satisfy the COW
from the pool if there are enough pages or via the buddy allocator if
overcommit is allowed and the buddy allocator can satisfy the request. If
it fails, the child will be killed.
If the pool is large enough, existing applications will not notice that
the reserves were a factor. Existing applications depending on the
no-reserves been set are unlikely to exist as for much of the history of
hugetlbfs, pages were prefaulted at mmap(), allocating the pages at that
point or failing the mmap().
[npiggin@suse.de: fix CONFIG_HUGETLB=n build]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The double indirection here is not needed anywhere and hence (at least)
confusing.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Acked-by: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order to be able to debug things like the X server and programs using
the PPC Cell SPUs, the debugger needs to be able to access device memory
through ptrace and /proc/pid/mem.
This patch:
Add the generic_access_phys access function and put the hooks in place
to allow access_process_vm to access device or PPC Cell SPU memory.
[riel@redhat.com: Add documentation for the vm_ops->access function]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Benjamin Herrensmidt <benh@kernel.crashing.org>
Cc: Dave Airlie <airlied@linux.ie>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
| |
There are no users of nopfn in the tree. Remove it.
[hugh@veritas.com: fix build error]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
| |
get_user_pages() must not return the error when i != 0. When pages !=
NULL we have i get_page()'ed pages.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Dirty page accounting accurately measures the amound of dirty pages in
writable shared mappings by mapping the pages RO (as indicated by
vma_wants_writenotify). We then trap on first write and call
set_page_dirty() on the page, after which we map the page RW and
continue execution.
When we launder dirty pages, we call clear_page_dirty_for_io() which
clears both the dirty flag, and maps the page RO again before we start
writeout so that the story can repeat itself.
vma_wants_writenotify() excludes VM_PFNMAP on the basis that we cannot
do the regular dirty page stuff on raw PFNs and the memory isn't going
anywhere anyway.
The recently introduced VM_MIXEDMAP mixes both !pfn_valid() and
pfn_valid() pages in a single mapping.
We can't do dirty page accounting on !pfn_valid() pages as stated
above, and mapping them RO causes them to be COW'ed on write, which
breaks VM_SHARED semantics.
Excluding VM_MIXEDMAP in vma_wants_writenotify() would mean we don't do
the regular dirty page accounting for the pfn_valid() pages, which
would bring back all the head-aches from inaccurate dirty page
accounting.
So instead, we let the !pfn_valid() pages get mapped RO, but fix them
up unconditionally in the fault path.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Acked-by: Hugh Dickins <hugh@veritas.com>
Cc: "Jared Hulbert" <jaredeh@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is a race in the COW logic. It contains a shortcut to avoid the
COW and reuse the page if we have the sole reference on the page,
however it is possible to have two racing do_wp_page()ers with one
causing the other to mistakenly believe it is safe to take the shortcut
when it is not. This could lead to data corruption.
Process 1 and process2 each have a wp pte of the same anon page (ie.
one forked the other). The page's mapcount is 2. Then they both
attempt to write to it around the same time...
proc1 proc2 thr1 proc2 thr2
CPU0 CPU1 CPU3
do_wp_page() do_wp_page()
trylock_page()
can_share_swap_page()
load page mapcount (==2)
reuse = 0
pte unlock
copy page to new_page
pte lock
page_remove_rmap(page);
trylock_page()
can_share_swap_page()
load page mapcount (==1)
reuse = 1
ptep_set_access_flags (allow W)
write private key into page
read from page
ptep_clear_flush()
set_pte_at(pte of new_page)
Fix this by moving the page_remove_rmap of the old page after the pte
clear and flush. Potentially the entire branch could be moved down
here, but in order to stay consistent, I won't (should probably move all
the *_mm_counter stuff with one patch).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Hugh Dickins <hugh@veritas.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 89f5b7da2a6bad2e84670422ab8192382a5aeb9f ("Reinstate ZERO_PAGE
optimization in 'get_user_pages()' and fix XIP") broke vmware, as
reported by Jeff Chua:
"This broke vmware 6.0.4.
Jun 22 14:53:03.845: vmx| NOT_IMPLEMENTED
/build/mts/release/bora-93057/bora/vmx/main/vmmonPosix.c:774"
and the reason seems to be that there's an old bug in how we handle do
FOLL_ANON on VM_SHARED areas in get_user_pages(), but since it only
triggered if the whole page table was missing, nobody had apparently hit
it before.
The recent changes to 'follow_page()' made the FOLL_ANON logic trigger
not just for whole missing page tables, but for individual pages as
well, and exposed this problem.
This fixes it by making the test for when FOLL_ANON is used more
careful, and also makes the code easier to read and understand by moving
the logic to a separate inline function.
Reported-and-tested-by: Jeff Chua <jeff.chua.linux@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
KAMEZAWA Hiroyuki and Oleg Nesterov point out that since the commit
557ed1fa2620dc119adb86b34c614e152a629a80 ("remove ZERO_PAGE") removed
the ZERO_PAGE from the VM mappings, any users of get_user_pages() will
generally now populate the VM with real empty pages needlessly.
We used to get the ZERO_PAGE when we did the "handle_mm_fault()", but
since fault handling no longer uses ZERO_PAGE for new anonymous pages,
we now need to handle that special case in follow_page() instead.
In particular, the removal of ZERO_PAGE effectively removed the core
file writing optimization where we would skip writing pages that had not
been populated at all, and increased memory pressure a lot by allocating
all those useless newly zeroed pages.
This reinstates the optimization by making the unmapped PTE case the
same as for a non-existent page table, which already did this correctly.
While at it, this also fixes the XIP case for follow_page(), where the
caller could not differentiate between the case of a page that simply
could not be used (because it had no "struct page" associated with it)
and a page that just wasn't mapped.
We do that by simply returning an error pointer for pages that could not
be turned into a "struct page *". The error is arbitrarily picked to be
EFAULT, since that was what get_user_pages() already used for the
equivalent IO-mapped page case.
[ Also removed an impossible test for pte_offset_map_lock() failing:
that's not how that function works ]
Acked-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Take out an assertion to allow ->fault handlers to service PFNMAP regions.
This is required to reimplement .nopfn handlers with .fault handlers and
subsequently remove nopfn.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Jes Sorensen <jes@sgi.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is a possible data race in the page table walking code. After the split
ptlock patches, it actually seems to have been introduced to the core code, but
even before that I think it would have impacted some architectures (powerpc
and sparc64, at least, walk the page tables without taking locks eg. see
find_linux_pte()).
The race is as follows:
The pte page is allocated, zeroed, and its struct page gets its spinlock
initialized. The mm-wide ptl is then taken, and then the pte page is inserted
into the pagetables.
At this point, the spinlock is not guaranteed to have ordered the previous
stores to initialize the pte page with the subsequent store to put it in the
page tables. So another Linux page table walker might be walking down (without
any locks, because we have split-leaf-ptls), and find that new pte we've
inserted. It might try to take the spinlock before the store from the other
CPU initializes it. And subsequently it might read a pte_t out before stores
from the other CPU have cleared the memory.
There are also similar races in higher levels of the page tables. They
obviously don't involve the spinlock, but could see uninitialized memory.
Arch code and hardware pagetable walkers that walk the pagetables without
locks could see similar uninitialized memory problems, regardless of whether
split ptes are enabled or not.
I prefer to put the barriers in core code, because that's where the higher
level logic happens, but the page table accessors are per-arch, and open-coding
them everywhere I don't think is an option. I'll put the read-side barriers
in alpha arch code for now (other architectures perform data-dependent loads
in order).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix warning from pmd_bad() at bootup on a HIGHMEM64G HIGHPTE x86_32.
That came from 9fc34113f6880b215cbea4e7017fc818700384c2 x86: debug pmd_bad();
but we understand now that the typecasting was wrong for PAE in the previous
version: pagetable pages above 4GB looked bad and stopped Arjan from booting.
And revert that cded932b75ab0a5f9181ee3da34a0a488d1a14fd x86: fix pmd_bad
and pud_bad to support huge pages. It was the wrong way round: we shouldn't
weaken every pmd_bad and pud_bad check to let huge pages slip through - in
part they check that we _don't_ have a huge page where it's not expected.
Put the x86 pmd_bad() and pud_bad() definitions back to what they have long
been: they can be improved (x86_32 should use PTE_MASK, to stop PAE thinking
junk in the upper word is good; and x86_64 should follow x86_32's stricter
comparison, to stop thinking any subset of required bits is good); but that
should be a later patch.
Fix Hans' good observation that follow_page() will never find pmd_huge()
because that would have already failed the pmd_bad test: test pmd_huge in
between the pmd_none and pmd_bad tests. Tighten x86's pmd_huge() check?
No, once it's a hugepage entry, it can get quite far from a good pmd: for
example, PROT_NONE leaves it with only ACCESSED of the KERN_PGTABLE bits.
However... though follow_page() contains this and another test for huge
pages, so it's nice to keep it working on them, where does it actually get
called on a huge page? get_user_pages() checks is_vm_hugetlb_page(vma) to
to call alternative hugetlb processing, as does unmap_vmas() and others.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Earlier-version-tested-by: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jeff Chua <jeff.chua.linux@gmail.com>
Cc: Hans Rosenfeld <hans.rosenfeld@amd.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
vm_insert_mixed will insert either a raw pfn or a refcounted struct page into
the page tables, depending on whether vm_normal_page() will return the page or
not. With the introduction of the new pte bit, this is now a too tricky for
drivers to be doing themselves.
filemap_xip uses this in a subsequent patch.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Jared Hulbert <jaredeh@gmail.com>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory
model (which is more dynamic than most). Instead, they had proposed to
implement it with an additional path through vm_normal_page(), using a bit in
the pte to determine whether or not the page should be refcounted:
vm_normal_page()
{
...
if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
if (vma->vm_flags & VM_MIXEDMAP) {
#ifdef s390
if (!mixedmap_refcount_pte(pte))
return NULL;
#else
if (!pfn_valid(pfn))
return NULL;
#endif
goto out;
}
...
}
This is fine, however if we are allowed to use a bit in the pte to determine
refcountedness, we can use that to _completely_ replace all the vma based
schemes. So instead of adding more cases to the already complex vma-based
scheme, we can have a clearly seperate and simple pte-based scheme (and get
slightly better code generation in the process):
vm_normal_page()
{
#ifdef s390
if (!mixedmap_refcount_pte(pte))
return NULL;
return pte_page(pte);
#else
...
#endif
}
And finally, we may rather make this concept usable by any architecture rather
than making it s390 only, so implement a new type of pte state for this.
Unfortunately the old vma based code must stay, because some architectures may
not be able to spare pte bits. This makes vm_normal_page a little bit more
ugly than we would like, but the 2 cases are clearly seperate.
So introduce a pte_special pte state, and use it in mm/memory.c. It is
currently a noop for all architectures, so this doesn't actually result in any
compiled code changes to mm/memory.o.
BTW:
I haven't put vm_normal_page() into arch code as-per an earlier suggestion.
The reason is that, regardless of where vm_normal_page is actually
implemented, the *abstraction* is still exactly the same. Also, while it
depends on whether the architecture has pte_special or not, that is the
only two possible cases, and it really isn't an arch specific function --
the role of the arch code should be to provide primitive functions and
accessors with which to build the core code; pte_special does that. We do
not want architectures to know or care about vm_normal_page itself, and
we definitely don't want them being able to invent something new there
out of sight of mm/ code. If we made vm_normal_page an arch function, then
we have to make vm_insert_mixed (next patch) an arch function too. So I
don't think moving it to arch code fundamentally improves any abstractions,
while it does practically make the code more difficult to follow, for both
mm and arch developers, and easier to misuse.
[akpm@linux-foundation.org: build fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Carsten Otte <cotte@de.ibm.com>
Cc: Jared Hulbert <jaredeh@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This series introduces some important infrastructure work. The overall result
is that:
1. We now support XIP backed filesystems using memory that have no
struct page allocated to them. And patches 6 and 7 actually implement
this for s390.
This is pretty important in a number of cases. As far as I understand,
in the case of virtualisation (eg. s390), each guest may mount a
readonly copy of the same filesystem (eg. the distro). Currently,
guests need to allocate struct pages for this image. So if you have
100 guests, you already need to allocate more memory for the struct
pages than the size of the image. I think. (Carsten?)
For other (eg. embedded) systems, you may have a very large non-
volatile filesystem. If you have to have struct pages for this, then
your RAM consumption will go up proportionally to fs size. Even
though it is just a small proportion, the RAM can be much more costly
eg in terms of power, so every KB less that Linux uses makes it more
attractive to a lot of these guys.
2. VM_MIXEDMAP allows us to support mappings where you actually do want
to refcount _some_ pages in the mapping, but not others, and support
COW on arbitrary (non-linear) mappings. Jared needs this for his NVRAM
filesystem in progress. Future iterations of this filesystem will
most likely want to migrate pages between pagecache and XIP backing,
which is where the requirement for mixed (some refcounted, some not)
comes from.
3. pte_special also has a peripheral usage that I need for my lockless
get_user_pages patch. That was shown to speed up "oltp" on db2 by
10% on a 2 socket system, which is kind of significant because they
scrounge for months to try to find 0.1% improvement on these
workloads. I'm hoping we might finally be faster than AIX on
pSeries with this :). My reference to lockless get_user_pages is not
meant to justify this patchset (which doesn't include lockless gup),
but just to show that pte_special is not some s390 specific thing that
should be hidden in arch code or xip code: I definitely want to use it
on at least x86 and powerpc as well.
This patch:
Introduce a new type of mapping, VM_MIXEDMAP. This is unlike VM_PFNMAP in
that it can support COW mappings of arbitrary ranges including ranges without
struct page *and* ranges with a struct page that we actually want to refcount
(PFNMAP can only support COW in those cases where the un-COW-ed translations
are mapped linearly in the virtual address, and can only support non
refcounted ranges).
VM_MIXEDMAP achieves this by refcounting all pfn_valid pages, and not
refcounting !pfn_valid pages (which is not an option for VM_PFNMAP, because it
needs to avoid refcounting pfn_valid pages eg. for /dev/mem mappings).
Signed-off-by: Jared Hulbert <jaredeh@gmail.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Carsten Otte <cotte@de.ibm.com>
Cc: Jared Hulbert <jaredeh@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
| |
Nothing in the tree uses nopage any more. Remove support for it in the
core mm code and documentation (and a few stray references to it in
comments).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Don't uncharge when do_swap_page's call to do_wp_page fails: the page which
was charged for is there in the pagetable, and will be correctly uncharged
when that area is unmapped - it was only its COWing which failed.
And while we're here, remove earlier XXX comment: yes, OR in do_wp_page's
return value (maybe VM_FAULT_WRITE) with do_swap_page's there; but if it
fails, mask out success bits, which might confuse some arches e.g. sparc.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hirokazu Takahashi <taka@valinux.co.jp>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There's nothing wrong with mem_cgroup_charge failure in do_wp_page and
do_anonymous page using __free_page, but it does look odd when nearby code
uses page_cache_release: use that instead (while turning a blind eye to
ancient inconsistencies of page_cache_release versus put_page).
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hirokazu Takahashi <taka@valinux.co.jp>
Cc: YAMAMOTO Takashi <yamamoto@valinux.co.jp>
Cc: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
* git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux-2.6-x86:
x86: cpa, fix out of date comment
KVM is not seen under X86 config with latest git (32 bit compile)
x86: cpa: ensure page alignment
x86: include proper prototypes for rodata_test
x86: fix gart_iommu_init()
x86: EFI set_memory_x()/set_memory_uc() fixes
x86: make dump_pagetable() static
x86: fix "BUG: sleeping function called from invalid context" in print_vma_addr()
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
print_vma_addr()
Jiri Kosina reported the following deadlock scenario with
show_unhandled_signals enabled:
[ 68.379022] gnome-settings-[2941] trap int3 ip:3d2c840f34
sp:7fff36f5d100 error:0<3>BUG: sleeping function called from invalid
context at kernel/rwsem.c:21
[ 68.379039] in_atomic():1, irqs_disabled():0
[ 68.379044] no locks held by gnome-settings-/2941.
[ 68.379050] Pid: 2941, comm: gnome-settings- Not tainted 2.6.25-rc1 #30
[ 68.379054]
[ 68.379056] Call Trace:
[ 68.379061] <#DB> [<ffffffff81064883>] ? __debug_show_held_locks+0x13/0x30
[ 68.379109] [<ffffffff81036765>] __might_sleep+0xe5/0x110
[ 68.379123] [<ffffffff812f2240>] down_read+0x20/0x70
[ 68.379137] [<ffffffff8109cdca>] print_vma_addr+0x3a/0x110
[ 68.379152] [<ffffffff8100f435>] do_trap+0xf5/0x170
[ 68.379168] [<ffffffff8100f52b>] do_int3+0x7b/0xe0
[ 68.379180] [<ffffffff812f4a6f>] int3+0x9f/0xd0
[ 68.379203] <<EOE>>
[ 68.379229] in libglib-2.0.so.0.1505.0[3d2c800000+dc000]
and tracked it down to:
commit 03252919b79891063cf99145612360efbdf9500b
Author: Andi Kleen <ak@suse.de>
Date: Wed Jan 30 13:33:18 2008 +0100
x86: print which shared library/executable faulted in segfault etc. messages
the problem is that we call down_read() from an atomic context.
Solve this by returning from print_vma_addr() if the preempt count is
elevated. Update preempt_conditional_sti / preempt_conditional_cli to
unconditionally lift the preempt count even on !CONFIG_PREEMPT.
Reported-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
d_path() is used on a <dentry,vfsmount> pair. Lets use a struct path to
reflect this.
[akpm@linux-foundation.org: fix build in mm/memory.c]
Signed-off-by: Jan Blunck <jblunck@suse.de>
Acked-by: Bryan Wu <bryan.wu@analog.com>
Acked-by: Christoph Hellwig <hch@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Neil Brown <neilb@suse.de>
Cc: Michael Halcrow <mhalcrow@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
So I spent a while pounding my head against my monitor trying to figure
out the vmsplice() vulnerability - how could a failure to check for
*read* access turn into a root exploit? It turns out that it's a buffer
overflow problem which is made easy by the way get_user_pages() is
coded.
In particular, "len" is a signed int, and it is only checked at the
*end* of a do {} while() loop. So, if it is passed in as zero, the loop
will execute once and decrement len to -1. At that point, the loop will
proceed until the next invalid address is found; in the process, it will
likely overflow the pages array passed in to get_user_pages().
I think that, if get_user_pages() has been asked to grab zero pages,
that's what it should do. Thus this patch; it is, among other things,
enough to block the (already fixed) root exploit and any others which
might be lurking in similar code. I also think that the number of pages
should be unsigned, but changing the prototype of this function probably
requires some more careful review.
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Background: I've implemented 1K/2K page tables for s390. These sub-page
page tables are required to properly support the s390 virtualization
instruction with KVM. The SIE instruction requires that the page tables
have 256 page table entries (pte) followed by 256 page status table entries
(pgste). The pgstes are only required if the process is using the SIE
instruction. The pgstes are updated by the hardware and by the hypervisor
for a number of reasons, one of them is dirty and reference bit tracking.
To avoid wasting memory the standard pte table allocation should return
1K/2K (31/64 bit) and 2K/4K if the process is using SIE.
Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means
the s390 version for pte_alloc_one cannot return a pointer to a struct
page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one
cannot return a pointer to a pte either, since that would require more than
32 bit for the return value of pte_alloc_one (and the pte * would not be
accessible since its not kmapped).
Solution: The only solution I found to this dilemma is a new typedef: a
pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a
later patch. For everybody else it will be a (struct page *). The
additional problem with the initialization of the ptl lock and the
NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and
a destructor pgtable_page_dtor. The page table allocation and free
functions need to call these two whenever a page table page is allocated or
freed. pmd_populate will get a pgtable_t instead of a struct page pointer.
To get the pgtable_t back from a pmd entry that has been installed with
pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page
call in free_pte_range and apply_to_pte_range.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Nick Piggin pointed out that swap cache and page cache addition routines
could be called from non GFP_KERNEL contexts. This patch makes the
charging routine aware of the gfp context. Charging might fail if the
cgroup is over it's limit, in which case a suitable error is returned.
This patch was tested on a Powerpc box. I am still looking at being able
to test the path, through which allocations happen in non GFP_KERNEL
contexts.
[kamezawa.hiroyu@jp.fujitsu.com: problem with ZONE_MOVABLE]
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add the accounting hooks. The accounting is carried out for RSS and Page
Cache (unmapped) pages. There is now a common limit and accounting for both.
The RSS accounting is accounted at page_add_*_rmap() and page_remove_rmap()
time. Page cache is accounted at add_to_page_cache(),
__delete_from_page_cache(). Swap cache is also accounted for.
Each page's page_cgroup is protected with the last bit of the
page_cgroup pointer, this makes handling of race conditions involving
simultaneous mappings of a page easier. A reference count is kept in the
page_cgroup to deal with cases where a page might be unmapped from the RSS
of all tasks, but still lives in the page cache.
Credits go to Vaidyanathan Srinivasan for helping with reference counting work
of the page cgroup. Almost all of the page cache accounting code has help
from Vaidyanathan Srinivasan.
[hugh@veritas.com: fix swapoff breakage]
[akpm@linux-foundation.org: fix locking]
Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Pavel Emelianov <xemul@openvz.org>
Cc: Paul Menage <menage@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: David Rientjes <rientjes@google.com>
Cc: <Valdis.Kletnieks@vt.edu>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
based on similar patch from: Pavel Machek <pavel@ucw.cz>
Introduce CONFIG_COMPAT_BRK. If disabled then the kernel is free
(but not obliged to) randomize the brk area.
Heap randomization breaks ancient binaries, so we keep COMPAT_BRK
enabled by default.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
After running SetPageUptodate, preceeding stores to the page contents to
actually bring it uptodate may not be ordered with the store to set the
page uptodate.
Therefore, another CPU which checks PageUptodate is true, then reads the
page contents can get stale data.
Fix this by having an smp_wmb before SetPageUptodate, and smp_rmb after
PageUptodate.
Many places that test PageUptodate, do so with the page locked, and this
would be enough to ensure memory ordering in those places if
SetPageUptodate were only called while the page is locked. Unfortunately
that is not always the case for some filesystems, but it could be an idea
for the future.
Also bring the handling of anonymous page uptodateness in line with that of
file backed page management, by marking anon pages as uptodate when they
_are_ uptodate, rather than when our implementation requires that they be
marked as such. Doing allows us to get rid of the smp_wmb's in the page
copying functions, which were especially added for anonymous pages for an
analogous memory ordering problem. Both file and anonymous pages are
handled with the same barriers.
FAQ:
Q. Why not do this in flush_dcache_page?
A. Firstly, flush_dcache_page handles only one side (the smb side) of the
ordering protocol; we'd still need smp_rmb somewhere. Secondly, hiding away
memory barriers in a completely unrelated function is nasty; at least in the
PageUptodate macros, they are located together with (half) the operations
involved in the ordering. Thirdly, the smp_wmb is only required when first
bringing the page uptodate, wheras flush_dcache_page should be called each time
it is written to through the kernel mapping. It is logically the wrong place to
put it.
Q. Why does this increase my text size / reduce my performance / etc.
A. Because it is adding the necessary instructions to eliminate the data-race.
Q. Can it be improved?
A. Yes, eg. if you were to create a rule that all SetPageUptodate operations
run under the page lock, we could avoid the smp_rmb places where PageUptodate
is queried under the page lock. Requires audit of all filesystems and at least
some would need reworking. That's great you're interested, I'm eagerly awaiting
your patches.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
| |
fastcall is always defined to be empty, remove it
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(with Martin Schwidefsky <schwidefsky@de.ibm.com>)
The pgd/pud/pmd/pte page table allocation functions get a mm_struct pointer as
first argument. The free functions do not get the mm_struct argument. This
is 1) asymmetrical and 2) to do mm related page table allocations the mm
argument is needed on the free function as well.
[kamalesh@linux.vnet.ibm.com: i386 fix]
[akpm@linux-foundation.org: coding-syle fixes]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
| |
vmtruncate is a twisted maze of gotos, this patch cleans it up to have a
proper if else for the two major cases of extending and truncating truncate
and thus makes it a lot more readable while keeping exactly the same
functinality.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Building in a filesystem on a loop device on a tmpfs file can hang when
swapping, the loop thread caught in that infamous throttle_vm_writeout.
In theory this is a long standing problem, which I've either never seen in
practice, or long ago suppressed the recollection, after discounting my load
and my tmpfs size as unrealistically high. But now, with the new aops, it has
become easy to hang on one machine.
Loop used to grab_cache_page before the old prepare_write to tmpfs, which
seems to have been enough to free up some memory for any swapin needed; but
the new write_begin lets tmpfs find or allocate the page (much nicer, since
grab_cache_page missed tmpfs pages in swapcache).
When allocating a fresh page, tmpfs respects loop's mapping_gfp_mask, which
has __GFP_IO|__GFP_FS stripped off, and throttle_vm_writeout is designed to
break out when __GFP_IO or GFP_FS is unset; but when tmfps swaps in,
read_swap_cache_async allocates with GFP_HIGHUSER_MOVABLE regardless of the
mapping_gfp_mask - hence the hang.
So, pass gfp_mask down the line from shmem_getpage to shmem_swapin to
swapin_readahead to read_swap_cache_async to add_to_swap_cache.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
swapin_readahead has never sat well in mm/memory.c: move it to mm/swap_state.c
beside its kindred read_swap_cache_async. Why were its args in a different
order? rearrange them. And since it was always followed by a
read_swap_cache_async of the target page, fold that in and return struct
page*. Then CONFIG_SWAP=n no longer needs valid_swaphandles and
read_swap_cache_async stubs.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For three years swapin_readahead has been cluttered with fanciful CONFIG_NUMA
code, advancing addr, and stepping on to the next vma at the boundary, to line
up the mempolicy for each page allocation.
It _might_ be a good idea to allocate swap more according to vma layout; but
the fact is, that's not how we do it at all, 2.6 even less than 2.4: swap is
allocated as needed for pages as they sink to the bottom of the inactive LRUs.
Sometimes that may match vma layout, but not so often that it's worth going
to these misleading vma->vm_next lengths: rip all that out.
Originally I intended to retain the incrementation of addr, but correct its
initial value: valid_swaphandles generally supplies an offset below the target
addr (this is readaround rather than readahead), but addr has not been
adjusted accordingly, so in the interleave case it has usually been allocating
the target page from the "wrong" node (though that may not matter very much).
But look at the equivalent shmem_swapin code: either by oversight or by
design, though it has all the apparatus for choosing a new mempolicy per page,
it uses the same idx throughout, choosing the same mempolicy and interleave
node for each page of the cluster.
Which is actually a much better strategy: each node has its own LRUs and its
own kswapd, so if you're betting on any particular relationship between swap
and node, the best bet is that nearby swap entries belong to pages from the
same node - even when the mempolicy of the target page is to interleave. And
examining a map of nodes corresponding to swap entries on a numa=fake system
bears this out. (We could later tweak swap allocation to make it even more
likely, but this patch is merely about removing cruft.)
So, neither adjust nor increment addr in swapin_readahead, and then
shmem_swapin can use it too; the pseudo-vma to pass policy need only be set up
once per cluster, and so few fields of pvma are used, let's skip the memset -
from shmem_alloc_page also.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We already have page table manipulation for vmalloc in vmalloc.c. Move the
vmalloc_to_page() function there as well.
Move the definitions for vmalloc related functions in mm.h to a newly created
section. A better place would be vmalloc.h but mm.h is basic and may depend
on these functions. An alternative would be to include vmalloc.h in mm.h
(like done for vmstat.h).
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
They now look like:
hal-resmgr[13791]: segfault at 3c rip 2b9c8caec182 rsp 7fff1e825d30 error 4 in libacl.so.1.1.0[2b9c8caea000+6000]
This makes it easier to pinpoint bugs to specific libraries.
And printing the offset into a mapping also always allows to find the
correct fault point in a library even with randomized mappings. Previously
there was no way to actually find the correct code address inside
the randomized mapping.
Relies on earlier patch to shorten the printk formats.
They are often now longer than 80 characters, but I think that's worth it.
[includes fix from Eric Dumazet to check d_path error value]
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The break_lock data structure and code for spinlocks is quite nasty.
Not only does it double the size of a spinlock but it changes locking to
a potentially less optimal trylock.
Put all of that under CONFIG_GENERIC_LOCKBREAK, and introduce a
__raw_spin_is_contended that uses the lock data itself to determine whether
there are waiters on the lock, to be used if CONFIG_GENERIC_LOCKBREAK is
not set.
Rename need_lockbreak to spin_needbreak, make it use spin_is_contended to
decouple it from the spinlock implementation, and make it typesafe (rwlocks
do not have any need_lockbreak sites -- why do they even get bloated up
with that break_lock then?).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
|
|
|
|
|
|
| |
Update ctime and mtime for memory-mapped files at a write access on
a present, read-only PTE, as well as at a write on a non-present PTE.
Signed-off-by: Anton Salikhmetov <salikhmetov@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch puts #ifdef CONFIG_DEBUG_VM around a check in vm_normal_page
that verifies that a pfn is valid. This patch increases performance of the
page fault microbenchmark in lmbench by 13% and overall dbench performance
by 7% on s390x. pfn_valid() is an expensive operation on s390 that needs a
high double digit amount of CPU cycles. Nick Piggin suggested that
pfn_valid() involves an array lookup on systems with sparsemem, and
therefore is an expensive operation there too.
The check looks like a clear debug thing to me, it should never trigger on
regular kernels. And if a pte is created for an invalid pfn, we'll find
out once the memory gets accessed later on anyway. Please consider
inclusion of this patch into mm.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
| |
The delay incurred in lock_page() should also be accounted in swap delay
accounting
Reported-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When calling get_user_pages(), a write flag is passed in by the caller to
indicate if write access is required on the faulted-in pages. Currently,
follow_hugetlb_page() ignores this flag and always faults pages for
read-only access. This can cause data corruption because a device driver
that calls get_user_pages() with write set will not expect COW faults to
occur on the returned pages.
This patch passes the write flag down to follow_hugetlb_page() and makes
sure hugetlb_fault() is called with the right write_access parameter.
[ezk@cs.sunysb.edu: build fix]
Signed-off-by: Adam Litke <agl@us.ibm.com>
Reviewed-by: Ken Chen <kenchen@google.com>
Cc: David Gibson <hermes@gibson.dropbear.id.au>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Erez Zadok <ezk@cs.sunysb.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
| |
This patch removes the no longer used EXPORT_SYMBOL_GPL(access_process_vm).
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
|
|
|
|
|
| |
Spelling fixes in mm/.
Signed-off-by: Simon Arlott <simon@fire.lp0.eu>
Signed-off-by: Adrian Bunk <bunk@kernel.org>
|
|
|
|
|
|
|
|
|
|
| |
Nobody uses flush_tlb_pgtables anymore, this patch removes all remaining
traces of it from all archs.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Current ia64 kernel flushes icache by lazy_mmu_prot_update() *after*
set_pte(). This is too late. This patch removes lazy_mmu_prot_update and
add modfied set_pte() for flushing if necessary.
This patch flush icache of a page when
new pte has exec bit.
&& new pte has present bit
&& new pte is user's page.
&& (old *ptep is not present
|| new pte's pfn is not same to old *ptep's ptn)
&& new pte's page has no Pg_arch_1 bit.
Pg_arch_1 is set when a page is cache consistent.
I think this condition checks are much easier to understand than considering
"Where sync_icache_dcache() should be inserted ?".
pte_user() for ia64 was removed by http://lkml.org/lkml/2007/6/12/67 as
clean-up. So, I added it again.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The calculation of pgoff in do_linear_fault() should use PAGE_SHIFT and not
PAGE_CACHE_SHIFT since vma->vm_pgoff is in units of PAGE_SIZE and not
PAGE_CACHE_SIZE. At the moment linux/pagemap.h has PAGE_CACHE_SHIFT
defined as PAGE_SHIFT, but should that ever change this calculation would
break.
Signed-off-by: Dean Nelson <dcn@sgi.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The commit b5810039a54e5babf428e9a1e89fc1940fabff11 contains the note
A last caveat: the ZERO_PAGE is now refcounted and managed with rmap
(and thus mapcounted and count towards shared rss). These writes to
the struct page could cause excessive cacheline bouncing on big
systems. There are a number of ways this could be addressed if it is
an issue.
And indeed this cacheline bouncing has shown up on large SGI systems.
There was a situation where an Altix system was essentially livelocked
tearing down ZERO_PAGE pagetables when an HPC app aborted during startup.
This situation can be avoided in userspace, but it does highlight the
potential scalability problem with refcounting ZERO_PAGE, and corner
cases where it can really hurt (we don't want the system to livelock!).
There are several broad ways to fix this problem:
1. add back some special casing to avoid refcounting ZERO_PAGE
2. per-node or per-cpu ZERO_PAGES
3. remove the ZERO_PAGE completely
I will argue for 3. The others should also fix the problem, but they
result in more complex code than does 3, with little or no real benefit
that I can see.
Why? Inserting a ZERO_PAGE for anonymous read faults appears to be a
false optimisation: if an application is performance critical, it would
not be doing many read faults of new memory, or at least it could be
expected to write to that memory soon afterwards. If cache or memory use
is critical, it should not be working with a significant number of
ZERO_PAGEs anyway (a more compact representation of zeroes should be
used).
As a sanity check -- mesuring on my desktop system, there are never many
mappings to the ZERO_PAGE (eg. 2 or 3), thus memory usage here should not
increase much without it.
When running a make -j4 kernel compile on my dual core system, there are
about 1,000 mappings to the ZERO_PAGE created per second, but about 1,000
ZERO_PAGE COW faults per second (less than 1 ZERO_PAGE mapping per second
is torn down without being COWed). So removing ZERO_PAGE will save 1,000
page faults per second when running kbuild, while keeping it only saves
less than 1 page clearing operation per second. 1 page clear is cheaper
than a thousand faults, presumably, so there isn't an obvious loss.
Neither the logical argument nor these basic tests give a guarantee of no
regressions. However, this is a reasonable opportunity to try to remove
the ZERO_PAGE from the pagefault path. If it is found to cause regressions,
we can reintroduce it and just avoid refcounting it.
The /dev/zero ZERO_PAGE usage and TLB tricks also get nuked. I don't see
much use to them except on benchmarks. All other users of ZERO_PAGE are
converted just to use ZERO_PAGE(0) for simplicity. We can look at
replacing them all and maybe ripping out ZERO_PAGE completely when we are
more satisfied with this solution.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus "snif" Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
All the current page_mkwrite() implementations also set the page dirty. Which
results in the set_page_dirty_balance() call to _not_ call balance, because the
page is already found dirty.
This allows us to dirty a _lot_ of pages without ever hitting
balance_dirty_pages(). Not good (tm).
Force a balance call if ->page_mkwrite() was successful.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|