summaryrefslogtreecommitdiffstats
path: root/fs/afs/fsclient.c
Commit message (Collapse)AuthorAgeFilesLines
* afs: Probe multiple fileservers simultaneouslyDavid Howells2018-10-241-10/+17
| | | | | | | | | | | | | Send probes to all the unprobed fileservers in a fileserver list on all addresses simultaneously in an attempt to find out the fastest route whilst not getting stuck for 20s on any server or address that we don't get a reply from. This alleviates the problem whereby attempting to access a new server can take a long time because the rotation algorithm ends up rotating through all servers and addresses until it finds one that responds. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Fix callback handlingDavid Howells2018-10-241-1/+1
| | | | | | | | | | | | | | In some circumstances, the callback interest pointer is NULL, so in such a case we can't dereference it when checking to see if the callback is broken. This causes an oops in some circumstances. Fix this by replacing the function that worked out the aggregate break counter with one that actually does the comparison, and then make that return true (ie. broken) if there is no callback interest as yet (ie. the pointer is NULL). Fixes: 68251f0a6818 ("afs: Fix whole-volume callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Implement YFS support in the fs clientDavid Howells2018-10-241-18/+86
| | | | | | | | | | Implement support for talking to YFS-variant fileservers in the cache manager and the filesystem client. These implement upgraded services on the same port as their AFS services. YFS fileservers provide expanded capabilities over AFS. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Expand data structure fields to support YFSDavid Howells2018-10-241-4/+5
| | | | | | | Expand fields in various data structures to support the expanded information that YFS is capable of returning. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Calc callback expiry in op reply deliveryDavid Howells2018-10-241-5/+17
| | | | | | | | Calculate the callback expiration time at the point of operation reply delivery, using the reply time queried from AF_RXRPC on that call as a base. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Fix FS.FetchStatus delivery from updating wrong vnodeDavid Howells2018-10-241-11/+5
| | | | | | | | | The FS.FetchStatus reply delivery function was updating inode of the directory in which a lookup had been done with the status of the looked up file. This corrupts some of the directory state. Fixes: 5cf9dd55a0ec ("afs: Prospectively look up extra files when doing a single lookup") Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Increase to 64-bit volume ID and 96-bit vnode ID for YFSDavid Howells2018-10-241-12/+12
| | | | | | | | | | | | | | Increase the sizes of the volume ID to 64 bits and the vnode ID (inode number equivalent) to 96 bits to allow the support of YFS. This requires the iget comparator to check the vnode->fid rather than i_ino and i_generation as i_ino is not sufficiently capacious. It also requires this data to be placed into the vnode cache key for fscache. For the moment, just discard the top 32 bits of the vnode ID when returning it though stat. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Set up the iov_iter before calling afs_extract_data()David Howells2018-10-241-187/+95
| | | | | | | | | | | | | | | | | | | | afs_extract_data sets up a temporary iov_iter and passes it to AF_RXRPC each time it is called to describe the remaining buffer to be filled. Instead: (1) Put an iterator in the afs_call struct. (2) Set the iterator for each marshalling stage to load data into the appropriate places. A number of convenience functions are provided to this end (eg. afs_extract_to_buf()). This iterator is then passed to afs_extract_data(). (3) Use the new ITER_DISCARD iterator to discard any excess data provided by FetchData. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Better tracing of protocol errorsDavid Howells2018-10-241-46/+71
| | | | | | | Include the site of detection of AFS protocol errors in trace lines to better be able to determine what went wrong. Signed-off-by: David Howells <dhowells@redhat.com>
* Merge branch 'afs-proc' of ↵Linus Torvalds2018-06-161-44/+56
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull AFS updates from Al Viro: "Assorted AFS stuff - ended up in vfs.git since most of that consists of David's AFS-related followups to Christoph's procfs series" * 'afs-proc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: afs: Optimise callback breaking by not repeating volume lookup afs: Display manually added cells in dynamic root mount afs: Enable IPv6 DNS lookups afs: Show all of a server's addresses in /proc/fs/afs/servers afs: Handle CONFIG_PROC_FS=n proc: Make inline name size calculation automatic afs: Implement network namespacing afs: Mark afs_net::ws_cell as __rcu and set using rcu functions afs: Fix a Sparse warning in xdr_decode_AFSFetchStatus() proc: Add a way to make network proc files writable afs: Rearrange fs/afs/proc.c to remove remaining predeclarations. afs: Rearrange fs/afs/proc.c to move the show routines up afs: Rearrange fs/afs/proc.c by moving fops and open functions down afs: Move /proc management functions to the end of the file
| * Merge tag 'afs-fixes-20180514' into afs-procAl Viro2018-06-021-8/+20
| |\ | | | | | | | | | | | | | | | | | | backmerge AFS fixes that went into mainline and deal with the conflict in fs/afs/fsclient.c Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
| * | afs: Fix a Sparse warning in xdr_decode_AFSFetchStatus()David Howells2018-05-231-42/+55
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Sparse doesn't appear able to handle the conditionally-taken locks in xdr_decode_AFSFetchStatus(), even though the lock and unlock are both contingent on the same unvarying function argument. Deal with this by interpolating a wrapper function that takes the lock if needed and calls xdr_decode_AFSFetchStatus() on two separate branches, one with the lock held and one without. This allows Sparse to work out the locking. Signed-off-by: David Howells <dhowells@redhat.com>
* | | vfs: change inode times to use struct timespec64Deepa Dinamani2018-06-051-1/+1
| |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | struct timespec is not y2038 safe. Transition vfs to use y2038 safe struct timespec64 instead. The change was made with the help of the following cocinelle script. This catches about 80% of the changes. All the header file and logic changes are included in the first 5 rules. The rest are trivial substitutions. I avoid changing any of the function signatures or any other filesystem specific data structures to keep the patch simple for review. The script can be a little shorter by combining different cases. But, this version was sufficient for my usecase. virtual patch @ depends on patch @ identifier now; @@ - struct timespec + struct timespec64 current_time ( ... ) { - struct timespec now = current_kernel_time(); + struct timespec64 now = current_kernel_time64(); ... - return timespec_trunc( + return timespec64_trunc( ... ); } @ depends on patch @ identifier xtime; @@ struct \( iattr \| inode \| kstat \) { ... - struct timespec xtime; + struct timespec64 xtime; ... } @ depends on patch @ identifier t; @@ struct inode_operations { ... int (*update_time) (..., - struct timespec t, + struct timespec64 t, ...); ... } @ depends on patch @ identifier t; identifier fn_update_time =~ "update_time$"; @@ fn_update_time (..., - struct timespec *t, + struct timespec64 *t, ...) { ... } @ depends on patch @ identifier t; @@ lease_get_mtime( ... , - struct timespec *t + struct timespec64 *t ) { ... } @te depends on patch forall@ identifier ts; local idexpression struct inode *inode_node; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; identifier fn_update_time =~ "update_time$"; identifier fn; expression e, E3; local idexpression struct inode *node1; local idexpression struct inode *node2; local idexpression struct iattr *attr1; local idexpression struct iattr *attr2; local idexpression struct iattr attr; identifier i_xtime1 =~ "^i_[acm]time$"; identifier i_xtime2 =~ "^i_[acm]time$"; identifier ia_xtime1 =~ "^ia_[acm]time$"; identifier ia_xtime2 =~ "^ia_[acm]time$"; @@ ( ( - struct timespec ts; + struct timespec64 ts; | - struct timespec ts = current_time(inode_node); + struct timespec64 ts = current_time(inode_node); ) <+... when != ts ( - timespec_equal(&inode_node->i_xtime, &ts) + timespec64_equal(&inode_node->i_xtime, &ts) | - timespec_equal(&ts, &inode_node->i_xtime) + timespec64_equal(&ts, &inode_node->i_xtime) | - timespec_compare(&inode_node->i_xtime, &ts) + timespec64_compare(&inode_node->i_xtime, &ts) | - timespec_compare(&ts, &inode_node->i_xtime) + timespec64_compare(&ts, &inode_node->i_xtime) | ts = current_time(e) | fn_update_time(..., &ts,...) | inode_node->i_xtime = ts | node1->i_xtime = ts | ts = inode_node->i_xtime | <+... attr1->ia_xtime ...+> = ts | ts = attr1->ia_xtime | ts.tv_sec | ts.tv_nsec | btrfs_set_stack_timespec_sec(..., ts.tv_sec) | btrfs_set_stack_timespec_nsec(..., ts.tv_nsec) | - ts = timespec64_to_timespec( + ts = ... -) | - ts = ktime_to_timespec( + ts = ktime_to_timespec64( ...) | - ts = E3 + ts = timespec_to_timespec64(E3) | - ktime_get_real_ts(&ts) + ktime_get_real_ts64(&ts) | fn(..., - ts + timespec64_to_timespec(ts) ,...) ) ...+> ( <... when != ts - return ts; + return timespec64_to_timespec(ts); ...> ) | - timespec_equal(&node1->i_xtime1, &node2->i_xtime2) + timespec64_equal(&node1->i_xtime2, &node2->i_xtime2) | - timespec_equal(&node1->i_xtime1, &attr2->ia_xtime2) + timespec64_equal(&node1->i_xtime2, &attr2->ia_xtime2) | - timespec_compare(&node1->i_xtime1, &node2->i_xtime2) + timespec64_compare(&node1->i_xtime1, &node2->i_xtime2) | node1->i_xtime1 = - timespec_trunc(attr1->ia_xtime1, + timespec64_trunc(attr1->ia_xtime1, ...) | - attr1->ia_xtime1 = timespec_trunc(attr2->ia_xtime2, + attr1->ia_xtime1 = timespec64_trunc(attr2->ia_xtime2, ...) | - ktime_get_real_ts(&attr1->ia_xtime1) + ktime_get_real_ts64(&attr1->ia_xtime1) | - ktime_get_real_ts(&attr.ia_xtime1) + ktime_get_real_ts64(&attr.ia_xtime1) ) @ depends on patch @ struct inode *node; struct iattr *attr; identifier fn; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; expression e; @@ ( - fn(node->i_xtime); + fn(timespec64_to_timespec(node->i_xtime)); | fn(..., - node->i_xtime); + timespec64_to_timespec(node->i_xtime)); | - e = fn(attr->ia_xtime); + e = fn(timespec64_to_timespec(attr->ia_xtime)); ) @ depends on patch forall @ struct inode *node; struct iattr *attr; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; identifier fn; @@ { + struct timespec ts; <+... ( + ts = timespec64_to_timespec(node->i_xtime); fn (..., - &node->i_xtime, + &ts, ...); | + ts = timespec64_to_timespec(attr->ia_xtime); fn (..., - &attr->ia_xtime, + &ts, ...); ) ...+> } @ depends on patch forall @ struct inode *node; struct iattr *attr; struct kstat *stat; identifier ia_xtime =~ "^ia_[acm]time$"; identifier i_xtime =~ "^i_[acm]time$"; identifier xtime =~ "^[acm]time$"; identifier fn, ret; @@ { + struct timespec ts; <+... ( + ts = timespec64_to_timespec(node->i_xtime); ret = fn (..., - &node->i_xtime, + &ts, ...); | + ts = timespec64_to_timespec(node->i_xtime); ret = fn (..., - &node->i_xtime); + &ts); | + ts = timespec64_to_timespec(attr->ia_xtime); ret = fn (..., - &attr->ia_xtime, + &ts, ...); | + ts = timespec64_to_timespec(attr->ia_xtime); ret = fn (..., - &attr->ia_xtime); + &ts); | + ts = timespec64_to_timespec(stat->xtime); ret = fn (..., - &stat->xtime); + &ts); ) ...+> } @ depends on patch @ struct inode *node; struct inode *node2; identifier i_xtime1 =~ "^i_[acm]time$"; identifier i_xtime2 =~ "^i_[acm]time$"; identifier i_xtime3 =~ "^i_[acm]time$"; struct iattr *attrp; struct iattr *attrp2; struct iattr attr ; identifier ia_xtime1 =~ "^ia_[acm]time$"; identifier ia_xtime2 =~ "^ia_[acm]time$"; struct kstat *stat; struct kstat stat1; struct timespec64 ts; identifier xtime =~ "^[acmb]time$"; expression e; @@ ( ( node->i_xtime2 \| attrp->ia_xtime2 \| attr.ia_xtime2 \) = node->i_xtime1 ; | node->i_xtime2 = \( node2->i_xtime1 \| timespec64_trunc(...) \); | node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \); | node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \); | stat->xtime = node2->i_xtime1; | stat1.xtime = node2->i_xtime1; | ( node->i_xtime2 \| attrp->ia_xtime2 \) = attrp->ia_xtime1 ; | ( attrp->ia_xtime1 \| attr.ia_xtime1 \) = attrp2->ia_xtime2; | - e = node->i_xtime1; + e = timespec64_to_timespec( node->i_xtime1 ); | - e = attrp->ia_xtime1; + e = timespec64_to_timespec( attrp->ia_xtime1 ); | node->i_xtime1 = current_time(...); | node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = - e; + timespec_to_timespec64(e); | node->i_xtime1 = node->i_xtime3 = - e; + timespec_to_timespec64(e); | - node->i_xtime1 = e; + node->i_xtime1 = timespec_to_timespec64(e); ) Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com> Cc: <anton@tuxera.com> Cc: <balbi@kernel.org> Cc: <bfields@fieldses.org> Cc: <darrick.wong@oracle.com> Cc: <dhowells@redhat.com> Cc: <dsterba@suse.com> Cc: <dwmw2@infradead.org> Cc: <hch@lst.de> Cc: <hirofumi@mail.parknet.co.jp> Cc: <hubcap@omnibond.com> Cc: <jack@suse.com> Cc: <jaegeuk@kernel.org> Cc: <jaharkes@cs.cmu.edu> Cc: <jslaby@suse.com> Cc: <keescook@chromium.org> Cc: <mark@fasheh.com> Cc: <miklos@szeredi.hu> Cc: <nico@linaro.org> Cc: <reiserfs-devel@vger.kernel.org> Cc: <richard@nod.at> Cc: <sage@redhat.com> Cc: <sfrench@samba.org> Cc: <swhiteho@redhat.com> Cc: <tj@kernel.org> Cc: <trond.myklebust@primarydata.com> Cc: <tytso@mit.edu> Cc: <viro@zeniv.linux.org.uk>
* | afs: Fix whole-volume callback handlingDavid Howells2018-05-141-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | It's possible for an AFS file server to issue a whole-volume notification that callbacks on all the vnodes in the file have been broken. This is done for R/O and backup volumes (which don't have per-file callbacks) and for things like a volume being taken offline. Fix callback handling to detect whole-volume notifications, to track it across operations and to check it during inode validation. Fixes: c435ee34551e ("afs: Overhaul the callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
* | afs: Fix AFSFetchStatus decoder to provide OpenAFS compatibilityDavid Howells2018-05-141-8/+21
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The OpenAFS server's RXAFS_InlineBulkStatus implementation has a bug whereby if an error occurs on one of the vnodes being queried, then the errorCode field is set correctly in the corresponding status, but the interfaceVersion field is left unset. Fix kAFS to deal with this by evaluating the AFSFetchStatus blob against the following cases when called from FS.InlineBulkStatus delivery: (1) If InterfaceVersion == 0 then: (a) If errorCode != 0 then it indicates the abort code for the corresponding vnode. (b) If errorCode == 0 then the status record is invalid. (2) If InterfaceVersion == 1 then: (a) If errorCode != 0 then it indicates the abort code for the corresponding vnode. (b) If errorCode == 0 then the status record is valid and can be parsed. (3) If InterfaceVersion is anything else then the status record is invalid. Fixes: dd9fbcb8e103 ("afs: Rearrange status mapping") Reported-by: Jeffrey Altman <jaltman@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Trace protocol errorsDavid Howells2018-04-091-33/+35
| | | | | | Trace protocol errors detected in afs. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Locally edit directory data for mkdir/create/unlink/...David Howells2018-04-091-13/+22
| | | | | | | | | | | | | | | | | | Locally edit the contents of an AFS directory upon a successful inode operation that modifies that directory (such as mkdir, create and unlink) so that we can avoid the current practice of re-downloading the directory after each change. This is viable provided that the directory version number we get back from the modifying RPC op is exactly incremented by 1 from what we had previously. The data in the directory contents is in a defined format that we have to parse locally to perform lookups and readdir, so modifying isn't a problem. If the edit fails, we just clear the VALID flag on the directory and it will be reloaded next time it is needed. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Fix directory handlingDavid Howells2018-04-091-9/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | AFS directories are structured blobs that are downloaded just like files and then parsed by the lookup and readdir code and, as such, are currently handled in the pagecache like any other file, with the entire directory content being thrown away each time the directory changes. However, since the blob is a known structure and since the data version counter on a directory increases by exactly one for each change committed to that directory, we can actually edit the directory locally rather than fetching it from the server after each locally-induced change. What we can't do, though, is mix data from the server and data from the client since the server is technically at liberty to rearrange or compress a directory if it sees fit, provided it updates the data version number when it does so and breaks the callback (ie. sends a notification). Further, lookup with lookup-ahead, readdir and, when it arrives, local editing are likely want to scan the whole of a directory. So directory handling needs to be improved to maintain the coherency of the directory blob prior to permitting local directory editing. To this end: (1) If any directory page gets discarded, invalidate and reread the entire directory. (2) If readpage notes that if when it fetches a single page that the version number has changed, the entire directory is flagged for invalidation. (3) Read as much of the directory in one go as we can. Note that this removes local caching of directories in fscache for the moment as we can't pass the pages to fscache_read_or_alloc_pages() since page->lru is in use by the LRU. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Keep track of invalid-before version for dentry coherencyDavid Howells2018-04-091-0/+1
| | | | | | | | | | | | | | | | | | | Each afs dentry is tagged with the version that the parent directory was at last time it was validated and, currently, if this differs, the directory is scanned and the dentry is refreshed. However, this leads to an excessive amount of revalidation on directories that get modified on the client without conflict with another client. We know there's no conflict because the parent directory's data version number got incremented by exactly 1 on any create, mkdir, unlink, etc., therefore we can trust the current state of the unaffected dentries when we perform a local directory modification. Optimise by keeping track of the last version of the parent directory that was changed outside of the client in the parent directory's vnode and using that to validate the dentries rather than the current version. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Rearrange status mappingDavid Howells2018-04-091-109/+161
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Rearrange the AFSFetchStatus to inode attribute mapping code in a number of ways: (1) Use an XDR structure rather than a series of incremented pointer accesses when decoding an AFSFetchStatus object. This allows out-of-order decode. (2) Don't store the if_version value but rather just check it and abort if it's not something we can handle. (3) Store the owner and group in the status record as raw values rather than converting them to kuid/kgid. Do that when they're mapped into i_uid/i_gid. (4) Validate the type and abort code up front and abort if they're wrong. (5) Split the inode attribute setting out into its own function from the XDR decode of an AFSFetchStatus object. This allows it to be called from elsewhere too. (6) Differentiate changes to data from changes to metadata. (7) Use the split-out attribute mapping function from afs_iget(). Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Make it possible to get the data version in readpageDavid Howells2018-04-091-35/+48
| | | | | | | Store the data version number indicated by an FS.FetchData op into the read request structure so that it's accessible by the page reader. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Dump bad status recordDavid Howells2018-04-091-0/+35
| | | | | | Dump an AFS FileStatus record that is detected as invalid. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Prospectively look up extra files when doing a single lookupDavid Howells2018-04-091-6/+266
| | | | | | | | | | | When afs_lookup() is called, prospectively look up the next 50 uncached fids also from that same directory and cache the results, rather than just looking up the one file requested. This allows us to use the FS.InlineBulkStatus RPC op to increase efficiency by fetching up to 50 file statuses at a time. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: convert to new i_version APIJeff Layton2018-01-291-1/+2
| | | | | | | | | | | | | | | For AFS, it's generally treated as an opaque value, so we use the *_raw variants of the API here. Note that AFS has quite a different definition for this counter. AFS only increments it on changes to the data to the data in regular files and contents of the directories. Inode metadata changes do not result in a version increment. We'll need to reconcile that somehow if we ever want to present this to userspace via statx. Signed-off-by: Jeff Layton <jlayton@redhat.com>
* afs: Get rid of the afs_writeback recordDavid Howells2017-11-131-13/+11
| | | | | | | | | | Get rid of the afs_writeback record that kAFS is using to match keys with writes made by that key. Instead, keep a list of keys that have a file open for writing and/or sync'ing and iterate through those. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Trace the initiation and completion of client callsDavid Howells2017-11-131-12/+63
| | | | | | | | | | | | | | Add tracepoints to trace the initiation and completion of client calls within the kafs filesystem. The afs_make_vl_call tracepoint watches calls to the volume location database server. The afs_make_fs_call tracepoint watches calls to the file server. The afs_call_done tracepoint watches for call completion. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Overhaul volume and server record caching and fileserver rotationDavid Howells2017-11-131-141/+206
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Add an address list conceptDavid Howells2017-11-131-61/+60
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add an RCU replaceable address list structure to hold a list of server addresses. The list also holds the To this end: (1) A cell's VL server address list can be loaded directly via insmod or echo to /proc/fs/afs/cells or dynamically from a DNS query for AFSDB or SRV records. (2) Anyone wanting to use a cell's VL server address must wait until the cell record comes online and has tried to obtain some addresses. (3) An FS server's address list, for the moment, has a single entry that is the key to the server list. This will change in the future when a server is instead keyed on its UUID and the VL.GetAddrsU operation is used. (4) An 'address cursor' concept is introduced to handle iteration through the address list. This is passed to the afs_make_call() as, in the future, stuff (such as abort code) that doesn't outlast the call will be returned in it. In the future, we might want to annotate the list with information about how each address fares. We might then want to propagate such annotations over address list replacement. Whilst we're at it, we allow IPv6 addresses to be specified in colon-delimited lists by enclosing them in square brackets. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Overhaul permit cachingDavid Howells2017-11-131-3/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Overhaul permit caching in AFS by making it per-vnode and sharing permit lists where possible. When most of the fileserver operations are called, they return a status structure indicating the (revised) details of the vnode or vnodes involved in the operation. This includes the access mark derived from the ACL (named CallerAccess in the protocol definition file). This is cacheable and if the ACL changes, the server will tell us that it is breaking the callback promise, at which point we can discard the currently cached permits. With this patch, the afs_permits structure has, at the end, an array of { key, CallerAccess } elements, sorted by key pointer. This is then cached in a hash table so that it can be shared between vnodes with the same access permits. Permit lists can only be shared if they contain the exact same set of key->CallerAccess mappings. Note that that table is global rather than being per-net_ns. If the keys in a permit list cross net_ns boundaries, there is no problem sharing the cached permits, since the permits are just integer masks. Since permit lists pin keys, the permit cache also makes it easier for a future patch to find all occurrences of a key and remove them by means of setting the afs_permits::invalidated flag and then clearing the appropriate key pointer. In such an event, memory barriers will need adding. Lastly, the permit caching is skipped if the server has sent either a vnode-specific or an entire-server callback since the start of the operation. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Overhaul the callback handlingDavid Howells2017-11-131-93/+97
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Condense afs_call's reply{,2,3,4} into an arrayDavid Howells2017-11-131-68/+68
| | | | | | | Condense struct afs_call's reply anchor members - reply{,2,3,4} - into an array. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Consolidate abort_to_error translatorsDavid Howells2017-11-131-18/+0
| | | | | | | | | | The AFS abort code space is shared across all services, so there's no need for separate abort_to_error translators for each service. Consolidate them into a single function and remove the function pointers for them. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Keep and pass sockaddr_rxrpc addresses rather than in_addrDavid Howells2017-11-131-36/+0
| | | | | | | | | | | Keep and pass sockaddr_rxrpc addresses around rather than keeping and passing in_addr addresses to allow for the use of IPv6 and non-standard port numbers in future. This also allows the port and service_id fields to be removed from the afs_call struct. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Lay the groundwork for supporting network namespacesDavid Howells2017-11-131-19/+37
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Populate and use client modification timeMarc Dionne2017-03-161-9/+9
| | | | | | | | | | | | | | | | | | | The inode timestamps should be set from the client time in the status received from the server, rather than the server time which is meant for internal server use. Set AFS_SET_MTIME and populate the mtime for operations that take an input status, such as file/dir creation and StoreData. If an input time is not provided the server will set the vnode times based on the current server time. In a situation where the server has some skew with the client, this could lead to the client seeing a timestamp in the future for a file that it just created or wrote. Signed-off-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Fix the maths in afs_fs_store_data()David Howells2017-03-161-1/+1
| | | | | | | | | | | | | | afs_fs_store_data() works out of the size of the write it's going to make, but it uses 32-bit unsigned subtraction in one place that gets automatically cast to loff_t. However, if to < offset, then the number goes negative, but as the result isn't signed, this doesn't get sign-extended to 64-bits when placed in a loff_t. Fix by casting the operands to loff_t. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Make struct afs_read::remain 64-bitDavid Howells2017-03-161-4/+4
| | | | | | | | | Make struct afs_read::remain 64-bit so that it can handle huge transfers if we ever request them or the server decides to give us a bit extra data (the other fields there are already 64-bit). Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Marc Dionne <marc.dionne@auristor.com>
* afs: Fix AFS read bugDavid Howells2017-03-161-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fix a bug in AFS read whereby the request page afs_read::index isn't incremented after calling ->page_done() if ->remain reaches 0, indicating that the data read is complete. Without this a NULL pointer exception happens when ->page_done() is called twice for the last page because the page clearing loop will call it also and afs_readpages_page_done() clears the current entry in the page list. BUG: unable to handle kernel NULL pointer dereference at (null) IP: afs_readpages_page_done+0x21/0xa4 [kafs] PGD 0 Oops: 0002 [#1] SMP Modules linked in: kafs(E) CPU: 2 PID: 3002 Comm: md5sum Tainted: G E 4.10.0-fscache #485 Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014 task: ffff8804017d86c0 task.stack: ffff8803fc1d8000 RIP: 0010:afs_readpages_page_done+0x21/0xa4 [kafs] RSP: 0018:ffff8803fc1db978 EFLAGS: 00010282 RAX: ffff880405d39af8 RBX: 0000000000000000 RCX: ffff880407d83ed4 RDX: 0000000000000000 RSI: ffff880405d39a00 RDI: ffff880405c6f400 RBP: ffff8803fc1db988 R08: 0000000000000000 R09: 0000000000000001 R10: ffff8803fc1db820 R11: ffff88040cf56000 R12: ffff8804088f1780 R13: ffff8804017d86c0 R14: ffff8804088f1780 R15: 0000000000003840 FS: 00007f8154469700(0000) GS:ffff88041fb00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 00000004016ec000 CR4: 00000000001406e0 Call Trace: afs_deliver_fs_fetch_data+0x5b9/0x60e [kafs] ? afs_make_call+0x316/0x4e8 [kafs] ? afs_make_call+0x359/0x4e8 [kafs] afs_deliver_to_call+0x173/0x2e8 [kafs] ? afs_make_call+0x316/0x4e8 [kafs] afs_make_call+0x37a/0x4e8 [kafs] ? wake_up_q+0x4f/0x4f ? __init_waitqueue_head+0x36/0x49 afs_fs_fetch_data+0x21c/0x227 [kafs] ? afs_fs_fetch_data+0x21c/0x227 [kafs] afs_vnode_fetch_data+0xf3/0x1d2 [kafs] afs_readpages+0x314/0x3fd [kafs] __do_page_cache_readahead+0x208/0x2c5 ondemand_readahead+0x3a2/0x3b7 ? ondemand_readahead+0x3a2/0x3b7 page_cache_async_readahead+0x5e/0x67 generic_file_read_iter+0x23b/0x70c ? __inode_security_revalidate+0x2f/0x62 __vfs_read+0xc4/0xe8 vfs_read+0xd1/0x15a SyS_read+0x4c/0x89 do_syscall_64+0x80/0x191 entry_SYSCALL64_slow_path+0x25/0x25 Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Marc Dionne <marc.dionne@auristor.com>
* afs: Prevent callback expiry timer overflowTina Ruchandani2017-03-161-1/+1
| | | | | | | | | | get_seconds() returns real wall-clock seconds. On 32-bit systems this value will overflow in year 2038 and beyond. This patch changes afs_vnode record to use ktime_get_real_seconds() instead, for the fields cb_expires and cb_expires_at. Signed-off-by: Tina Ruchandani <ruchandani.tina@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Handle a short write to an AFS pageDavid Howells2017-03-161-1/+3
| | | | | | | | | | | | Handle the situation where afs_write_begin() is told to expect that a full-page write will be made, but this doesn't happen (EFAULT, CTRL-C, etc.), and so afs_write_end() sees a partial write took place. Currently, no attempt is to deal with the discrepency. Fix this by loading the gap from the server. Reported-by: Al Viro <viro@ZenIV.linux.org.uk> Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Handle better the server returning excess or short dataDavid Howells2017-03-161-14/+35
| | | | | | | | | | | | | | | | | | | | | | | | When an AFS server is given an FS.FetchData{,64} request to read data from a file, it is permitted by the protocol to return more or less than was requested. kafs currently relies on the latter behaviour in readpage{,s} to handle a partial page at the end of the file (we just ask for a whole page and clear space beyond the short read). However, we don't handle all cases. Add: (1) Handle excess data by discarding it rather than aborting. Note that we use a common static buffer to discard into so that the decryption algorithm advances the PCBC state. (2) Handle a short read that affects more than just the last page. Note that if a read comes up unexpectedly short of long, it's possible that the server's copy of the file changed - in which case the data version number will have been incremented and the callback will have been broken - in which case all the pages currently attached to the inode will be zapped anyway at some point. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Kill afs_wait_modeDavid Howells2017-01-091-40/+40
| | | | | | | | The afs_wait_mode struct isn't really necessary. Client calls only use one of a choice of two (synchronous or the asynchronous) and incoming calls don't use the wait at all. Replace with a boolean parameter. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: Make afs_fs_fetch_data() take a list of pagesDavid Howells2017-01-061-41/+76
| | | | | | | Make afs_fs_fetch_data() take a list of pages for bulk data transfer. This will allow afs_readpages() to be made more efficient. Signed-off-by: David Howells <dhowells@redhat.com>
* afs: unmapping the wrong bufferDan Carpenter2016-10-131-2/+2
| | | | | | | | | We switched from kmap_atomic() to kmap() so the kunmap() calls need to be updated to match. Fixes: d001648ec7cf ('rxrpc: Don't expose skbs to in-kernel users [ver #2]') Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com>
* rxrpc: Don't expose skbs to in-kernel users [ver #2]David Howells2016-09-011-86/+62
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* rxrpc: Fix races between skb free, ACK generation and replyingDavid Howells2016-08-061-149/+72
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Inside the kafs filesystem it is possible to occasionally have a call processed and terminated before we've had a chance to check whether we need to clean up the rx queue for that call because afs_send_simple_reply() ends the call when it is done, but this is done in a workqueue item that might happen to run to completion before afs_deliver_to_call() completes. Further, it is possible for rxrpc_kernel_send_data() to be called to send a reply before the last request-phase data skb is released. The rxrpc skb destructor is where the ACK processing is done and the call state is advanced upon release of the last skb. ACK generation is also deferred to a work item because it's possible that the skb destructor is not called in a context where kernel_sendmsg() can be invoked. To this end, the following changes are made: (1) kernel_rxrpc_data_consumed() is added. This should be called whenever an skb is emptied so as to crank the ACK and call states. This does not release the skb, however. kernel_rxrpc_free_skb() must now be called to achieve that. These together replace rxrpc_kernel_data_delivered(). (2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed(). This makes afs_deliver_to_call() easier to work as the skb can simply be discarded unconditionally here without trying to work out what the return value of the ->deliver() function means. The ->deliver() functions can, via afs_data_complete(), afs_transfer_reply() and afs_extract_data() mark that an skb has been consumed (thereby cranking the state) without the need to conditionally free the skb to make sure the state is correct on an incoming call for when the call processor tries to send the reply. (3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it has finished with a packet and MSG_PEEK isn't set. (4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data(). Because of this, we no longer need to clear the destructor and put the call before we free the skb in cases where we don't want the ACK/call state to be cranked. (5) The ->deliver() call-type callbacks are made to return -EAGAIN rather than 0 if they expect more data (afs_extract_data() returns -EAGAIN to the delivery function already), and the caller is now responsible for producing an abort if that was the last packet. (6) There are many bits of unmarshalling code where: ret = afs_extract_data(call, skb, last, ...); switch (ret) { case 0: break; case -EAGAIN: return 0; default: return ret; } is to be found. As -EAGAIN can now be passed back to the caller, we now just return if ret < 0: ret = afs_extract_data(call, skb, last, ...); if (ret < 0) return ret; (7) Checks for trailing data and empty final data packets has been consolidated as afs_data_complete(). So: if (skb->len > 0) return -EBADMSG; if (!last) return 0; becomes: ret = afs_data_complete(call, skb, last); if (ret < 0) return ret; (8) afs_transfer_reply() now checks the amount of data it has against the amount of data desired and the amount of data in the skb and returns an error to induce an abort if we don't get exactly what we want. Without these changes, the following oops can occasionally be observed, particularly if some printks are inserted into the delivery path: general protection fault: 0000 [#1] SMP Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc] CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303 Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014 Workqueue: kafsd afs_async_workfn [kafs] task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000 RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1 RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002 RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710 RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0 Stack: 0000000000000006 000000000be04930 0000000000000000 ffff880400000000 ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446 ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38 Call Trace: [<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74 [<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1 [<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189 [<ffffffff810915f4>] lock_acquire+0x122/0x1b6 [<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61 [<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61 [<ffffffff814c928f>] skb_dequeue+0x18/0x61 [<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs] [<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs] [<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs] [<ffffffff81063a3a>] process_one_work+0x29d/0x57c [<ffffffff81064ac2>] worker_thread+0x24a/0x385 [<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0 [<ffffffff810696f5>] kthread+0xf3/0xfb [<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40 [<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* afs: Support interacting with multiple user namespacesEric W. Biederman2013-02-131-4/+10
| | | | | | | | | | | | | | | | | | | | | | Modify struct afs_file_status to store owner as a kuid_t and group as a kgid_t. In xdr_decode_AFSFetchStatus as owner is now a kuid_t and group is now a kgid_t don't use the EXTRACT macro. Instead perform the work of the extract macro explicitly. Read the value with ntohl and convert it to the appropriate type with make_kuid or make_kgid. Test if the value is different from what is stored in status and update changed. Update the value in status. In xdr_encode_AFS_StoreStatus call from_kuid or from_kgid as we are computing the on the wire encoding. Initialize uids with GLOBAL_ROOT_UID instead of 0. Initialize gids with GLOBAL_ROOT_GID instead of 0. Cc: David Howells <dhowells@redhat.com> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
* afs: remove the second argument of k[un]map_atomic()Cong Wang2012-03-201-4/+4
| | | | Signed-off-by: Cong Wang <amwang@redhat.com>
* filesystems: add set_nlink()Miklos Szeredi2011-11-021-1/+1
| | | | | | | | | Replace remaining direct i_nlink updates with a new set_nlink() updater function. Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Tested-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
* AFS: Use i_generation not i_version for the vnode uniquifierDavid Howells2011-06-161-1/+2
| | | | | | | | | Store the AFS vnode uniquifier in the i_generation field, not the i_version field of the inode struct. i_version can then be given the AFS data version number. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
OpenPOWER on IntegriCloud