| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
The RAW console does not need writes to be atomic, so relax
opal_put_chars to be able to do partial writes, and implement an
_atomic variant which does not take a spinlock. This API is used
in xmon, so the less locking that is used, the better chance there
is that a crash can be debugged.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
OPAL console writes do not have to synchronously flush firmware /
hardware buffers unless they are going through the udbg path.
Remove the unconditional flushing from opal_put_chars. Flush if
there was no space in the buffer as an optimisation (callers loop
waiting for success in that case). udbg flushing is moved to
udbg_opal_putc.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
opal_put_chars deals with partial writes because in OPALv1,
opal_console_write_buffer_space did not work correctly. That firmware
is not supported.
This reworks the opal_put_chars code to no longer deal with partial
writes by turning them into full writes. Partial write handling is still
supported in terms of what gets returned to the caller, but it may not
go to the console atomically. A warning message is printed in this
case.
This allows console flushing to be moved out of the opal_write_lock
spinlock. That could cause the lock to be held for long periods if the
console is busy (especially if it was being spammed by firmware),
which is dangerous because the lock is taken by xmon to debug the
system. Flushing outside the lock improves the situation a bit.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A new console flushing firmware API was introduced to replace event
polling loops, and implemented in opal-kmsg with affddff69c55e
("powerpc/powernv: Add a kmsg_dumper that flushes console output on
panic"), to flush the console in the panic path.
The OPAL console driver has other situations where interrupts are off
and it needs to flush the console synchronously. These still use a
polling loop.
So move the opal-kmsg flush code to opal_flush_console, and use the
new function in opal-kmsg and opal_put_chars.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reviewed-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use the more refined and tested event polling loop from opal_put_chars
as the fallback console flush in the opal-kmsg path. This loop is used
by the console driver today, whereas the opal-kmsg fallback is not
likely to have been used for years.
Use WARN_ONCE rather than a printk when the fallback is invoked to
prepare for moving the console flush into a common function.
Reviewed-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
| |
OPAL_CONSOLE_FLUSH is documented as being able to return OPAL_BUSY,
so implement the standard OPAL_BUSY handling for it.
Reviewed-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The OPAL console driver does not delay in case it gets OPAL_BUSY or
OPAL_BUSY_EVENT from firmware.
It can't yet be made to sleep because it is called under spinlock,
but it can be changed to the standard OPAL_BUSY loop form, and a
delay added to keep it from hitting the firmware too frequently.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The intention here is to consume and discard the remaining buffer
upon error. This works if there has not been a previous partial write.
If there has been, then total_len is no longer total number of bytes
to copy. total_len is always "bytes left to copy", so it should be
added to written bytes.
This code may not be exercised any more if partial writes will not be
hit, but this is a small bugfix before a larger change.
Reviewed-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
handler
Fixes: 8034f715f ("powernv/opal-dump: Convert to irq domain")
Converts all the return explicit number to a more proper IRQ_HANDLED,
which looks proper incase of interrupt handler returning case.
Here, It also removes error message like "nobody cared" which was
getting unveiled while returning -1 or 0 from handler.
Signed-off-by: Mukesh Ojha <mukesh02@linux.vnet.ibm.com>
Reviewed-by: Vasant Hegde <hegdevasant@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
| |
Moves the return value check of 'opal_dump_info' to a proper place which
was previously unnecessarily filling all the dump info even on failure.
Signed-off-by: Mukesh Ojha <mukesh02@linux.vnet.ibm.com>
Acked-by: Stewart Smith <stewart@linux.vnet.ibm.com>
Acked-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
| |
This patch adds error reporting to H_ENTER and H_READ hcalls. A
failure for both these hcalls are mostly fatal and it would be good to
log the failure reason.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
[mpe: Split out of larger patch]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
| |
Switch from printk to pr_fmt() / pr_xxx().
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
[mpe: Split out of larger patch]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The threshold at which it becomes more efficient to coalesce a range
of ATSDs into a single per-PID ATSD is currently not well understood
due to a lack of real-world work loads. This patch adds a debugfs
parameter allowing the threshold to be altered at runtime in order to
aid future development and refinement of the value.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add MODULE_LICENSE() to the chrp nvram.c driver to fix the build
warning message:
WARNING: modpost: missing MODULE_LICENSE() in arch/powerpc/platforms/chrp/nvram.o
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Merge in some commits we're sharing with the KVM tree.
I manually propagated the change from commit d3d4ffaae439
("powerpc/powernv/ioda2: Reduce upper limit for DMA window size") into
pci-ioda-tce.c.
Conflicts:
arch/powerpc/include/asm/cputable.h
arch/powerpc/platforms/powernv/pci-ioda.c
arch/powerpc/platforms/powernv/pci.h
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
At the moment we allocate the entire TCE table, twice (hardware part and
userspace translation cache). This normally works as we normally have
contigous memory and the guest will map entire RAM for 64bit DMA.
However if we have sparse RAM (one example is a memory device), then
we will allocate TCEs which will never be used as the guest only maps
actual memory for DMA. If it is a single level TCE table, there is nothing
we can really do but if it a multilevel table, we can skip allocating
TCEs we know we won't need.
This adds ability to allocate only first level, saving memory.
This changes iommu_table::free() to avoid allocating of an extra level;
iommu_table::set() will do this when needed.
This adds @alloc parameter to iommu_table::exchange() to tell the callback
if it can allocate an extra level; the flag is set to "false" for
the realmode KVM handlers of H_PUT_TCE hcalls and the callback returns
H_TOO_HARD.
This still requires the entire table to be counted in mm::locked_vm.
To be conservative, this only does on-demand allocation when
the usespace cache table is requested which is the case of VFIO.
The example math for a system replicating a powernv setup with NVLink2
in a guest:
16GB RAM mapped at 0x0
128GB GPU RAM window (16GB of actual RAM) mapped at 0x244000000000
the table to cover that all with 64K pages takes:
(((0x244000000000 + 0x2000000000) >> 16)*8)>>20 = 4556MB
If we allocate only necessary TCE levels, we will only need:
(((0x400000000 + 0x400000000) >> 16)*8)>>20 = 4MB (plus some for indirect
levels).
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This moves actual pages allocation to a separate function which is going
to be reused later in on-demand TCE allocation.
While we are at it, remove unnecessary level size round up as the caller
does this already.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We want to support sparse memory and therefore huge chunks of DMA windows
do not need to be mapped. If a DMA window big enough to require 2 or more
indirect levels, and a DMA window is used to map all RAM (which is
a default case for 64bit window), we can actually save some memory by
not allocation TCE for regions which we are not going to map anyway.
The hardware tables alreary support indirect levels but we also keep
host-physical-to-userspace translation array which is allocated by
vmalloc() and is a flat array which might use quite some memory.
This converts it_userspace from vmalloc'ed array to a multi level table.
As the format becomes platform dependend, this replaces the direct access
to it_usespace with a iommu_table_ops::useraddrptr hook which returns
a pointer to the userspace copy of a TCE; future extension will return
NULL if the level was not allocated.
This should not change non-KVM handling of TCE tables and it_userspace
will not be allocated for non-KVM tables.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Right now we have allocation code in pci-ioda.c and traversing code in
pci.c, let's keep them toghether. However both files are big enough
already so let's move this business to a new file.
While we at it, move the code which links IOMMU table groups to
IOMMU tables as it is not specific to any PNV PHB model.
These puts exported symbols from the new file together.
This fixes several warnings from checkpatch.pl like this:
"WARNING: Prefer 'unsigned int' to bare use of 'unsigned'".
As this is almost cut-n-paste, there should be no behavioral change.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This gets rid of a useless wrapper around
pnv_pci_ioda2_table_free_pages().
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
POWER9 DD1 was never a product. It is no longer supported by upstream
firmware, and it is not effectively supported in Linux due to lack of
testing.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>
[mpe: Remove arch_make_huge_pte() entirely]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Enable kernel XZ compression option on BOOK3S_32. Tested on G4
PowerBook.
Signed-off-by: Aaro Koskinen <aaro.koskinen@iki.fi>
[mpe: Use one select under the PPC symbol guarded by if PPC_BOOK3S]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The sketchy bypass uses 256M pages so add this page size as well.
This should cause no behavioral change but will be used later.
Fixes: 477afd6ea6 "powerpc/ioda: Use ibm,supported-tce-sizes for IOMMU page size mask"
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In the quest to remove all stack VLA usage from the kernel[1], this
switches to using a stack size large enough for the saved routine and
adds a sanity check making sure the routine doesn't overflow into the
0x600 exception handler.
[1] https://lkml.kernel.org/r/CA+55aFzCG-zNmZwX4A2FQpadafLfEzK6CC=qPXydAacU1RqZWA@mail.gmail.com
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Remove abandonned capi support for the Mellanox CX4.
This reverts commit 4361b03430d685610e5feea3ec7846e8b9ae795f.
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Remove abandonned capi support for the Mellanox CX4.
This reverts commit a2f67d5ee8d950caaa7a6144cf0bfb256500b73e.
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| | |
debugfs doesn't support mmap(), so this code is never used.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We use PHB in mode1 which uses bit 59 to select a correct DMA window.
However there is mode2 which uses bits 59:55 and allows up to 32 DMA
windows per a PE.
Even though documentation does not clearly specify that, it seems that
the actual hardware does not support bits 59:55 even in mode1, in other
words we can create a window as big as 1<<58 but DMA simply won't work.
This reduces the upper limit from 59 to 55 bits to let the userspace know
about the hardware limits.
Fixes: 7aafac11e3 "powerpc/powernv/ioda2: Gracefully fail if too many TCE levels requested"
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The workaround has been removed. What stays is just code to find the
memory hole so the BATs can be configured properly in the function below.
Fixes: 57deb8fea01f ("powerpc/wii: Don't rely on the reserved memory hack")
Signed-off-by: Jonathan Neuschäfer <j.neuschaefer@gmx.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Due to recent refactoring in EEH in:
commit b9fde58db7e5 ("powerpc/powernv: Rework EEH initialization on
powernv")
a misleading message was seen in the kernel message buffer:
[ 0.108431] EEH: PowerNV platform initialized
[ 0.589979] EEH: No capable adapters found
This happened due to the removal of the initialization delay for powernv
platform.
Even though the EEH infrastructure for the devices is eventually
initialized and still works just fine the eeh device probe step is
postponed in order to assure the PEs are created. Later
pnv_eeh_post_init does the probe devices job but at that point the
message was already shown right after eeh_init flow.
This patch introduces a new flag EEH_POSTPONED_PROBE to represent that
temporary state and avoid the message mentioned above and showing the
follow one instead:
[ 0.107724] EEH: PowerNV platform initialized
[ 4.844825] EEH: PCI Enhanced I/O Error Handling Enabled
Signed-off-by: Mauro S. M. Rodrigues <maurosr@linux.vnet.ibm.com>
Acked-by: Russell Currey <ruscur@russell.cc>
Tested-by:Venkat Rao B <vrbagal1@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As Mathieu pointed out, my conversion to time64_t was incorrect and
resulted in negative times to be read from the RTC. The problem is
that during the conversion from a byte array to a time64_t, the
'unsigned char' variable holding the top byte gets turned into a
negative signed 32-bit integer before being assigned to the 64-bit
variable for any times after 1972.
This changes the logic to cast to an unsigned 32-bit number first for
the Macintosh time and then convert that to the Unix time, which then
gives us a time in the documented 1904..2040 year range. I decided not
to use the longer 1970..2106 range that other drivers use, for
consistency with the literal interpretation of the register, but that
could be easily changed if we decide we want to support any Mac after
2040.
Just to be on the safe side, I'm also adding a WARN_ON that will
trigger if either the year 2040 has come and is observed by this
driver, or we run into an RTC that got set back to a pre-1970 date for
some reason (the two are indistinguishable).
For the RTC write functions, Andreas found another problem: both
pmu_request() and cuda_request() are varargs functions, so changing
the type of the arguments passed into them from 32 bit to 64 bit
breaks the API for the set_rtc_time functions. This changes it back to
32 bits.
The same code exists in arch/m68k/ and is patched in an identical way
now in a separate patch.
Fixes: 5bfd643583b2 ("powerpc: use time64_t in read_persistent_clock")
Reported-by: Mathieu Malaterre <malat@debian.org>
Reported-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Tested-by: Mathieu Malaterre <malat@debian.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:
kzalloc(a * b, gfp)
with:
kcalloc(a * b, gfp)
as well as handling cases of:
kzalloc(a * b * c, gfp)
with:
kzalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kzalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kzalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kzalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kzalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kzalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kzalloc
+ kcalloc
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kzalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kzalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kzalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kzalloc(sizeof(THING) * C2, ...)
|
kzalloc(sizeof(TYPE) * C2, ...)
|
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * E2
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:
kmalloc(a * b, gfp)
with:
kmalloc_array(a * b, gfp)
as well as handling cases of:
kmalloc(a * b * c, gfp)
with:
kmalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kmalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kmalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kmalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kmalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kmalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kmalloc
+ kmalloc_array
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kmalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kmalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kmalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kmalloc(sizeof(THING) * C2, ...)
|
kmalloc(sizeof(TYPE) * C2, ...)
|
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * E2
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- Support for split PMD page table lock on 64-bit Book3S (Power8/9).
- Add support for HAVE_RELIABLE_STACKTRACE, so we properly support
live patching again.
- Add support for patching barrier_nospec in copy_from_user() and
syscall entry.
- A couple of fixes for our data breakpoints on Book3S.
- A series from Nick optimising TLB/mm handling with the Radix MMU.
- Numerous small cleanups to squash sparse/gcc warnings from Mathieu
Malaterre.
- Several series optimising various parts of the 32-bit code from
Christophe Leroy.
- Removal of support for two old machines, "SBC834xE" and "C2K"
("GEFanuc,C2K"), which is why the diffstat has so many deletions.
And many other small improvements & fixes.
There's a few out-of-area changes. Some minor ftrace changes OK'ed by
Steve, and a fix to our powernv cpuidle driver. Then there's a series
touching mm, x86 and fs/proc/task_mmu.c, which cleans up some details
around pkey support. It was ack'ed/reviewed by Ingo & Dave and has
been in next for several weeks.
Thanks to: Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Al
Viro, Andrew Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Arnd
Bergmann, Balbir Singh, Cédric Le Goater, Christophe Leroy, Christophe
Lombard, Colin Ian King, Dave Hansen, Fabio Estevam, Finn Thain,
Frederic Barrat, Gautham R. Shenoy, Haren Myneni, Hari Bathini, Ingo
Molnar, Jonathan Neuschäfer, Josh Poimboeuf, Kamalesh Babulal,
Madhavan Srinivasan, Mahesh Salgaonkar, Mark Greer, Mathieu Malaterre,
Matthew Wilcox, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Nicolai Stange, Olof Johansson, Paul Gortmaker, Paul
Mackerras, Peter Rosin, Pridhiviraj Paidipeddi, Ram Pai, Rashmica
Gupta, Ravi Bangoria, Russell Currey, Sam Bobroff, Samuel
Mendoza-Jonas, Segher Boessenkool, Shilpasri G Bhat, Simon Guo,
Souptick Joarder, Stewart Smith, Thiago Jung Bauermann, Torsten Duwe,
Vaibhav Jain, Wei Yongjun, Wolfram Sang, Yisheng Xie, YueHaibing"
* tag 'powerpc-4.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (251 commits)
powerpc/64s/radix: Fix missing ptesync in flush_cache_vmap
cpuidle: powernv: Fix promotion from snooze if next state disabled
powerpc: fix build failure by disabling attribute-alias warning in pci_32
ocxl: Fix missing unlock on error in afu_ioctl_enable_p9_wait()
powerpc-opal: fix spelling mistake "Uniterrupted" -> "Uninterrupted"
powerpc: fix spelling mistake: "Usupported" -> "Unsupported"
powerpc/pkeys: Detach execute_only key on !PROT_EXEC
powerpc/powernv: copy/paste - Mask SO bit in CR
powerpc: Remove core support for Marvell mv64x60 hostbridges
powerpc/boot: Remove core support for Marvell mv64x60 hostbridges
powerpc/boot: Remove support for Marvell mv64x60 i2c controller
powerpc/boot: Remove support for Marvell MPSC serial controller
powerpc/embedded6xx: Remove C2K board support
powerpc/lib: optimise PPC32 memcmp
powerpc/lib: optimise 32 bits __clear_user()
powerpc/time: inline arch_vtime_task_switch()
powerpc/Makefile: set -mcpu=860 flag for the 8xx
powerpc: Implement csum_ipv6_magic in assembly
powerpc/32: Optimise __csum_partial()
powerpc/lib: Adjust .balign inside string functions for PPC32
...
|
| |
| |
| |
| |
| |
| |
| |
| | |
Trivial fix to spelling mistake in hmi_error_types text
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Stewart Smith <stewart@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| | |
Trivial fix to spelling mistake in bootx_printf message text
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
NX can set the 3rd bit in CR register for XER[SO] (Summary overflow)
which is not related to paste request. The current paste function
returns failure for a successful request when this bit is set. So mask
this bit and check the proper return status.
Fixes: 2392c8c8c045 ("powerpc/powernv/vas: Define copy/paste interfaces")
Cc: stable@vger.kernel.org # v4.14+
Signed-off-by: Haren Myneni <haren@us.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The C2K platform appears to be orphaned so remove code supporting it.
CC: Remi Machet <rmachet@nvidia.com>
Signed-off-by: Mark Greer <mgreer@animalcreek.com>
Acked-by: Remi Machet <remi@machet.us>
Signed-off-by: Mark Greer <mgreer@animalcreek.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| | |
The 885 familly processors don't have the Real Time Clock
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Check what firmware told us and enable/disable the barrier_nospec as
appropriate.
We err on the side of enabling the barrier, as it's no-op on older
systems, see the comment for more detail.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Since thread-imc internally use the core-imc hardware infrastructure
and is depended on it, having thread-imc in the kernel in the
absence of core-imc is trivial. Patch disables thread-imc, if
core-imc is not registered.
Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com>
Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When any of the IMC (In-Memory Collection counter) devices fail
to initialize, imc_common_mem_free() frees set of memory. In doing so,
pmu_ptr pointer is also freed. But pmu_ptr pointer is used in subsequent
function (imc_common_cpuhp_mem_free()) which is wrong. Patch here reorders
the code to avoid such access.
Also free the memory which is dynamically allocated during imc
initialization, wherever required.
Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com>
Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
to_tm() is now completely unused, the only reference being in the
_dump_time() helper that is also unused. This removes both, leaving
the rest of the powerpc RTC code y2038 safe to as far as the hardware
supports.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
update_persistent_clock() is deprecated because it suffers from overflow
in 2038 on 32-bit architectures. This changes powerpc to use the
update_persistent_clock64() replacement, and to pass down 64-bit
timestamps consistently.
This is now simpler, as we no longer have to worry about the offset
numbers in tm_year and tm_mon that are different between the Linux
conventions and RTAS.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Looking through the remaining users of the deprecated mktime()
function, I found the powerpc rtc handlers, which use it in
place of rtc_tm_to_time64().
To clean this up, I'm changing over the read_persistent_clock()
function to the read_persistent_clock64() variant, and change
all the platform specific handlers along with it.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Needed on Amiga X1000 with SB600.
Reported-by: Christian Zigotzky <chzigotzky@xenosoft.de>
Signed-off-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The function removes the process element from NPU cache.
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Using irq_work for processing OPAL event interrupts is not necessary.
irq_work is typically used to schedule work from NMI context, a
softirq may be more appropriate. However OPAL events are not
particularly performance or latency critical, so they can all be
invoked by kopald.
This patch removes the irq_work queueing, and instead wakes up
kopald when there is an event to be processed. kopald processes
interrupts individually, enabling irqs and calling cond_resched
between each one to minimise latencies.
Event handlers themselves should still use threaded handlers,
workqueues, etc. as necessary to avoid high interrupts-off latencies
within any single interrupt.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Although it is often possible to recover a CPU that was interrupted
from OPAL with a system reset NMI, it's undesirable to interrupt them
for a few reasons. Firstly because dump/debug code itself needs to
call firmware, so it could hang on a lock or possibly corrupt a
per-cpu data structure if it or another CPU was interrupted from
OPAL. Secondly, the kexec crash dump code will not return from
interrupt to unwind the OPAL call.
Call OPAL_QUIESCE with QUIESCE_HOLD before sending an NMI IPI to
another CPU, which wait for it to leave firmware (or time out) to
avoid this problem in normal conditions. Firmware bugs may still
result in a timeout and interrupting OPAL, but that is the best
option (stops the CPU, and possibly allows firmware to be debugged).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
For SPLPAR, lparcfg provides a sum of PURR registers for all CPUs.
Currently this is done by reading PURR in context switch and timer
interrupt, and storing that into a per-CPU variable. These are summed
to provide the value.
This does not work with all timer schemes (e.g., NO_HZ_FULL), and it
is sub-optimal for performance because it reads the PURR register on
every context switch, although that's been difficult to distinguish
from noise in the contxt_switch microbenchmark.
This patch implements the sum by calling a function on each CPU, to
read and add PURR values of each CPU.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|