summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kvm/book3s_pr.c
Commit message (Collapse)AuthorAgeFilesLines
* Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds2013-11-151-137/+361
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull KVM changes from Paolo Bonzini: "Here are the 3.13 KVM changes. There was a lot of work on the PPC side: the HV and emulation flavors can now coexist in a single kernel is probably the most interesting change from a user point of view. On the x86 side there are nested virtualization improvements and a few bugfixes. ARM got transparent huge page support, improved overcommit, and support for big endian guests. Finally, there is a new interface to connect KVM with VFIO. This helps with devices that use NoSnoop PCI transactions, letting the driver in the guest execute WBINVD instructions. This includes some nVidia cards on Windows, that fail to start without these patches and the corresponding userspace changes" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (146 commits) kvm, vmx: Fix lazy FPU on nested guest arm/arm64: KVM: PSCI: propagate caller endianness to the incoming vcpu arm/arm64: KVM: MMIO support for BE guest kvm, cpuid: Fix sparse warning kvm: Delete prototype for non-existent function kvm_check_iopl kvm: Delete prototype for non-existent function complete_pio hung_task: add method to reset detector pvclock: detect watchdog reset at pvclock read kvm: optimize out smp_mb after srcu_read_unlock srcu: API for barrier after srcu read unlock KVM: remove vm mmap method KVM: IOMMU: hva align mapping page size KVM: x86: trace cpuid emulation when called from emulator KVM: emulator: cleanup decode_register_operand() a bit KVM: emulator: check rex prefix inside decode_register() KVM: x86: fix emulation of "movzbl %bpl, %eax" kvm_host: typo fix KVM: x86: emulate SAHF instruction MAINTAINERS: add tree for kvm.git Documentation/kvm: add a 00-INDEX file ...
| * kvm: powerpc: book3s: drop is_hv_enabledAneesh Kumar K.V2013-10-171-1/+0
| | | | | | | | | | | | | | drop is_hv_enabled, because that should not be a callback property Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| * kvm: powerpc: book3s: Allow the HV and PR selection per virtual machineAneesh Kumar K.V2013-10-171-9/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | This moves the kvmppc_ops callbacks to be a per VM entity. This enables us to select HV and PR mode when creating a VM. We also allow both kvm-hv and kvm-pr kernel module to be loaded. To achieve this we move /dev/kvm ownership to kvm.ko module. Depending on which KVM mode we select during VM creation we take a reference count on respective module Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> [agraf: fix coding style] Signed-off-by: Alexander Graf <agraf@suse.de>
| * kvm: powerpc: book3s: Support building HV and PR KVM as moduleAneesh Kumar K.V2013-10-171-1/+4
| | | | | | | | | | | | Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> [agraf: squash in compile fix] Signed-off-by: Alexander Graf <agraf@suse.de>
| * kvm: powerpc: book3s: pr: move PR related tracepoints to a separate headerAneesh Kumar K.V2013-10-171-1/+3
| | | | | | | | | | | | | | | | | | This patch moves PR related tracepoints to a separate header. This enables in converting PR to a kernel module which will be done in later patches Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| * kvm: powerpc: book3s: Add is_hv_enabled to kvmppc_opsAneesh Kumar K.V2013-10-171-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This help us to identify whether we are running with hypervisor mode KVM enabled. The change is needed so that we can have both HV and PR kvm enabled in the same kernel. If both HV and PR KVM are included, interrupts come in to the HV version of the kvmppc_interrupt code, which then jumps to the PR handler, renamed to kvmppc_interrupt_pr, if the guest is a PR guest. Allowing both PR and HV in the same kernel required some changes to kvm_dev_ioctl_check_extension(), since the values returned now can't be selected with #ifdefs as much as previously. We look at is_hv_enabled to return the right value when checking for capabilities.For capabilities that are only provided by HV KVM, we return the HV value only if is_hv_enabled is true. For capabilities provided by PR KVM but not HV, we return the PR value only if is_hv_enabled is false. NOTE: in later patch we replace is_hv_enabled with a static inline function comparing kvm_ppc_ops Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| * kvm: powerpc: Add kvmppc_ops callbackAneesh Kumar K.V2013-10-171-69/+125
| | | | | | | | | | | | | | | | | | | | This patch add a new callback kvmppc_ops. This will help us in enabling both HV and PR KVM together in the same kernel. The actual change to enable them together is done in the later patch in the series. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> [agraf: squash in booke changes] Signed-off-by: Alexander Graf <agraf@suse.de>
| * KVM: PPC: Book3S PR: Reduce number of shadow PTEs invalidated by MMU notifiersPaul Mackerras2013-10-171-8/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, whenever any of the MMU notifier callbacks get called, we invalidate all the shadow PTEs. This is inefficient because it means that we typically then get a lot of DSIs and ISIs in the guest to fault the shadow PTEs back in. We do this even if the address range being notified doesn't correspond to guest memory. This commit adds code to scan the memslot array to find out what range(s) of guest physical addresses corresponds to the host virtual address range being affected. For each such range we flush only the shadow PTEs for the range, on all cpus. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| * KVM: PPC: Book3S PR: Better handling of host-side read-only pagesPaul Mackerras2013-10-171-5/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently we request write access to all pages that get mapped into the guest, even if the guest is only loading from the page. This reduces the effectiveness of KSM because it means that we unshare every page we access. Also, we always set the changed (C) bit in the guest HPTE if it allows writing, even for a guest load. This fixes both these problems. We pass an 'iswrite' flag to the mmu.xlate() functions and to kvmppc_mmu_map_page() to indicate whether the access is a load or a store. The mmu.xlate() functions now only set C for stores. kvmppc_gfn_to_pfn() now calls gfn_to_pfn_prot() instead of gfn_to_pfn() so that it can indicate whether we need write access to the page, and get back a 'writable' flag to indicate whether the page is writable or not. If that 'writable' flag is clear, we then make the host HPTE read-only even if the guest HPTE allowed writing. This means that we can get a protection fault when the guest writes to a page that it has mapped read-write but which is read-only on the host side (perhaps due to KSM having merged the page). Thus we now call kvmppc_handle_pagefault() for protection faults as well as HPTE not found faults. In kvmppc_handle_pagefault(), if the access was allowed by the guest HPTE and we thus need to install a new host HPTE, we then need to remove the old host HPTE if there is one. This is done with a new function, kvmppc_mmu_unmap_page(), which uses kvmppc_mmu_pte_vflush() to find and remove the old host HPTE. Since the memslot-related functions require the KVM SRCU read lock to be held, this adds srcu_read_lock/unlock pairs around the calls to kvmppc_handle_pagefault(). Finally, this changes kvmppc_mmu_book3s_32_xlate_pte() to not ignore guest HPTEs that don't permit access, and to return -EPERM for accesses that are not permitted by the page protections. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| * KVM: PPC: Book3S PR: Allocate kvm_vcpu structs from kvm_vcpu_cachePaul Mackerras2013-10-171-12/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This makes PR KVM allocate its kvm_vcpu structs from the kvm_vcpu_cache rather than having them embedded in the kvmppc_vcpu_book3s struct, which is allocated with vzalloc. The reason is to reduce the differences between PR and HV KVM in order to make is easier to have them coexist in one kernel binary. With this, the kvm_vcpu struct has a pointer to the kvmppc_vcpu_book3s struct. The pointer to the kvmppc_book3s_shadow_vcpu struct has moved from the kvmppc_vcpu_book3s struct to the kvm_vcpu struct, and is only present for 32-bit, since it is only used for 32-bit. Signed-off-by: Paul Mackerras <paulus@samba.org> [agraf: squash in compile fix from Aneesh] Signed-off-by: Alexander Graf <agraf@suse.de>
| * KVM: PPC: Book3S PR: Make HPT accesses and updates SMP-safePaul Mackerras2013-10-171-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds a per-VM mutex to provide mutual exclusion between vcpus for accesses to and updates of the guest hashed page table (HPT). This also makes the code use single-byte writes to the HPT entry when updating of the reference (R) and change (C) bits. The reason for doing this, rather than writing back the whole HPTE, is that on non-PAPR virtual machines, the guest OS might be writing to the HPTE concurrently, and writing back the whole HPTE might conflict with that. Also, real hardware does single-byte writes to update R and C. The new mutex is taken in kvmppc_mmu_book3s_64_xlate() when reading the HPT and updating R and/or C, and in the PAPR HPT update hcalls (H_ENTER, H_REMOVE, etc.). Having the mutex means that we don't need to use a hypervisor lock bit in the HPT update hcalls, and we don't need to be careful about the order in which the bytes of the HPTE are updated by those hcalls. The other change here is to make emulated TLB invalidations (tlbie) effective across all vcpus. To do this we call kvmppc_mmu_pte_vflush for all vcpus in kvmppc_ppc_book3s_64_tlbie(). For 32-bit, this makes the setting of the accessed and dirty bits use single-byte writes, and makes tlbie invalidate shadow HPTEs for all vcpus. With this, PR KVM can successfully run SMP guests. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| * KVM: PPC: Book3S PR: Use 64k host pages where possiblePaul Mackerras2013-10-171-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, PR KVM uses 4k pages for the host-side mappings of guest memory, regardless of the host page size. When the host page size is 64kB, we might as well use 64k host page mappings for guest mappings of 64kB and larger pages and for guest real-mode mappings. However, the magic page has to remain a 4k page. To implement this, we first add another flag bit to the guest VSID values we use, to indicate that this segment is one where host pages should be mapped using 64k pages. For segments with this bit set we set the bits in the shadow SLB entry to indicate a 64k base page size. When faulting in host HPTEs for this segment, we make them 64k HPTEs instead of 4k. We record the pagesize in struct hpte_cache for use when invalidating the HPTE. For now we restrict the segment containing the magic page (if any) to 4k pages. It should be possible to lift this restriction in future by ensuring that the magic 4k page is appropriately positioned within a host 64k page. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| * KVM: PPC: Book3S PR: Allow guest to use 64k pagesPaul Mackerras2013-10-171-6/+52
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds the code to interpret 64k HPTEs in the guest hashed page table (HPT), 64k SLB entries, and to tell the guest about 64k pages in kvm_vm_ioctl_get_smmu_info(). Guest 64k pages are still shadowed by 4k pages. This also adds another hash table to the four we have already in book3s_mmu_hpte.c to allow us to find all the PTEs that we have instantiated that match a given 64k guest page. The tlbie instruction changed starting with POWER6 to use a bit in the RB operand to indicate large page invalidations, and to use other RB bits to indicate the base and actual page sizes and the segment size. 64k pages came in slightly earlier, with POWER5++. We use one bit in vcpu->arch.hflags to indicate that the emulated cpu supports 64k pages, and another to indicate that it has the new tlbie definition. The KVM_PPC_GET_SMMU_INFO ioctl presents a bit of a problem, because the MMU capabilities depend on which CPU model we're emulating, but it is a VM ioctl not a VCPU ioctl and therefore doesn't get passed a VCPU fd. In addition, commonly-used userspace (QEMU) calls it before setting the PVR for any VCPU. Therefore, as a best effort we look at the first vcpu in the VM and return 64k pages or not depending on its capabilities. We also make the PVR default to the host PVR on recent CPUs that support 1TB segments (and therefore multiple page sizes as well) so that KVM_PPC_GET_SMMU_INFO will include 64k page and 1TB segment support on those CPUs. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| * KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpuPaul Mackerras2013-10-171-34/+88
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| * KVM: PPC: Book3S PR: Fix compilation without CONFIG_ALTIVECPaul Mackerras2013-10-171-0/+2
| | | | | | | | | | | | | | | | | | | | Commit 9d1ffdd8f3 ("KVM: PPC: Book3S PR: Don't corrupt guest state when kernel uses VMX") added a call to kvmppc_load_up_altivec() that isn't guarded by CONFIG_ALTIVEC, causing a link failure when building a kernel without CONFIG_ALTIVEC set. This adds an #ifdef to fix this. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
* | powerpc: Put FP/VSX and VR state into structuresPaul Mackerras2013-10-111-21/+15
|/ | | | | | | | | | | | | | | | | | | | | | | This creates new 'thread_fp_state' and 'thread_vr_state' structures to store FP/VSX state (including FPSCR) and Altivec/VSX state (including VSCR), and uses them in the thread_struct. In the thread_fp_state, the FPRs and VSRs are represented as u64 rather than double, since we rarely perform floating-point computations on the values, and this will enable the structures to be used in KVM code as well. Similarly FPSCR is now a u64 rather than a structure of two 32-bit values. This takes the offsets out of the macros such as SAVE_32FPRS, REST_32FPRS, etc. This enables the same macros to be used for normal and transactional state, enabling us to delete the transactional versions of the macros. This also removes the unused do_load_up_fpu and do_load_up_altivec, which were in fact buggy since they didn't create large enough stack frames to account for the fact that load_up_fpu and load_up_altivec are not designed to be called from C and assume that their caller's stack frame is an interrupt frame. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* KVM: PPC: Book3S PR: Make instruction fetch fallback work for system callsPaul Mackerras2013-08-281-1/+1
| | | | | | | | | | | | | | | | | | | It turns out that if we exit the guest due to a hcall instruction (sc 1), and the loading of the instruction in the guest exit path fails for any reason, the call to kvmppc_ld() in kvmppc_get_last_inst() fetches the instruction after the hcall instruction rather than the hcall itself. This in turn means that the instruction doesn't get recognized as an hcall in kvmppc_handle_exit_pr() but gets passed to the guest kernel as a sc instruction. That usually results in the guest kernel getting a return code of 38 (ENOSYS) from an hcall, which often triggers a BUG_ON() or other failure. This fixes the problem by adding a new variant of kvmppc_get_last_inst() called kvmppc_get_last_sc(), which fetches the instruction if necessary from pc - 4 rather than pc. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Book3S PR: Don't corrupt guest state when kernel uses VMXPaul Mackerras2013-08-281-4/+25
| | | | | | | | | | | | | | | | | | | | | | | | | | | Currently the code assumes that once we load up guest FP/VSX or VMX state into the CPU, it stays valid in the CPU registers until we explicitly flush it to the thread_struct. However, on POWER7, copy_page() and memcpy() can use VMX. These functions do flush the VMX state to the thread_struct before using VMX instructions, but if this happens while we have guest state in the VMX registers, and we then re-enter the guest, we don't reload the VMX state from the thread_struct, leading to guest corruption. This has been observed to cause guest processes to segfault. To fix this, we check before re-entering the guest that all of the bits corresponding to facilities owned by the guest, as expressed in vcpu->arch.guest_owned_ext, are set in current->thread.regs->msr. Any bits that have been cleared correspond to facilities that have been used by kernel code and thus flushed to the thread_struct, so for them we reload the state from the thread_struct. We also need to check current->thread.regs->msr before calling giveup_fpu() or giveup_altivec(), since if the relevant bit is clear, the state has already been flushed to the thread_struct and to flush it again would corrupt it. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Book3S PR: return appropriate error when allocation failsThadeu Lima de Souza Cascardo2013-08-281-2/+3
| | | | | | | | | err was overwritten by a previous function call, and checked to be 0. If the following page allocation fails, 0 is going to be returned instead of -ENOMEM. Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
* kvm/ppc: Call trace_hardirqs_on before entryScott Wood2013-07-111-2/+2
| | | | | | | | | | | | | Currently this is only being done on 64-bit. Rather than just move it out of the 64-bit ifdef, move it to kvm_lazy_ee_enable() so that it is consistent with lazy ee state, and so that we don't track more host code as interrupts-enabled than necessary. Rename kvm_lazy_ee_enable() to kvm_fix_ee_before_entry() to reflect that this function now has a role on 32-bit as well. Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Book3S PR: Allow guest to use 1TB segmentsPaul Mackerras2013-06-301-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | With this, the guest can use 1TB segments as well as 256MB segments. Since we now have the situation where a single emulated guest segment could correspond to multiple shadow segments (as the shadow segments are still 256MB segments), this adds a new kvmppc_mmu_flush_segment() to scan for all shadow segments that need to be removed. This restructures the guest HPT (hashed page table) lookup code to use the correct hashing and matching functions for HPTEs within a 1TB segment. We use the standard hpt_hash() function instead of open-coding the hash calculation, and we use HPTE_V_COMPARE() with an AVPN value that has the B (segment size) field included. The calculation of avpn is done a little earlier since it doesn't change in the loop starting at the do_second label. The computation in kvmppc_mmu_book3s_64_esid_to_vsid() changes so that it returns a 256MB VSID even if the guest SLB entry is a 1TB entry. This is because the users of this function are creating 256MB SLB entries. We set a new VSID_1T flag so that entries created from 1T segments don't collide with entries from 256MB segments. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
* Merge tag 'kvm-3.10-1' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds2013-05-051-4/+3
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull kvm updates from Gleb Natapov: "Highlights of the updates are: general: - new emulated device API - legacy device assignment is now optional - irqfd interface is more generic and can be shared between arches x86: - VMCS shadow support and other nested VMX improvements - APIC virtualization and Posted Interrupt hardware support - Optimize mmio spte zapping ppc: - BookE: in-kernel MPIC emulation with irqfd support - Book3S: in-kernel XICS emulation (incomplete) - Book3S: HV: migration fixes - BookE: more debug support preparation - BookE: e6500 support ARM: - reworking of Hyp idmaps s390: - ioeventfd for virtio-ccw And many other bug fixes, cleanups and improvements" * tag 'kvm-3.10-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits) kvm: Add compat_ioctl for device control API KVM: x86: Account for failing enable_irq_window for NMI window request KVM: PPC: Book3S: Add API for in-kernel XICS emulation kvm/ppc/mpic: fix missing unlock in set_base_addr() kvm/ppc: Hold srcu lock when calling kvm_io_bus_read/write kvm/ppc/mpic: remove users kvm/ppc/mpic: fix mmio region lists when multiple guests used kvm/ppc/mpic: remove default routes from documentation kvm: KVM_CAP_IOMMU only available with device assignment ARM: KVM: iterate over all CPUs for CPU compatibility check KVM: ARM: Fix spelling in error message ARM: KVM: define KVM_ARM_MAX_VCPUS unconditionally KVM: ARM: Fix API documentation for ONE_REG encoding ARM: KVM: promote vfp_host pointer to generic host cpu context ARM: KVM: add architecture specific hook for capabilities ARM: KVM: perform HYP initilization for hotplugged CPUs ARM: KVM: switch to a dual-step HYP init code ARM: KVM: rework HYP page table freeing ARM: KVM: enforce maximum size for identity mapped code ARM: KVM: move to a KVM provided HYP idmap ...
| * KVM: PPC: Book3S: Add infrastructure to implement kernel-side RTAS callsMichael Ellerman2013-04-261-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For pseries machine emulation, in order to move the interrupt controller code to the kernel, we need to intercept some RTAS calls in the kernel itself. This adds an infrastructure to allow in-kernel handlers to be registered for RTAS services by name. A new ioctl, KVM_PPC_RTAS_DEFINE_TOKEN, then allows userspace to associate token values with those service names. Then, when the guest requests an RTAS service with one of those token values, it will be handled by the relevant in-kernel handler rather than being passed up to userspace as at present. Signed-off-by: Michael Ellerman <michael@ellerman.id.au> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org> [agraf: fix warning] Signed-off-by: Alexander Graf <agraf@suse.de>
| * KVM: extend EMULATE_EXIT_USER to support different exit reasonsBharat Bhushan2013-04-261-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | Currently the instruction emulator code returns EMULATE_EXIT_USER and common code initializes the "run->exit_reason = .." and "vcpu->arch.hcall_needed = .." with one fixed reason. But there can be different reasons when emulator need to exit to user space. To support that the "run->exit_reason = .." and "vcpu->arch.hcall_needed = .." initialization is moved a level up to emulator. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| * Rename EMULATE_DO_PAPR to EMULATE_EXIT_USERBharat Bhushan2013-04-261-1/+1
| | | | | | | | | | | | | | | | | | | | Instruction emulation return EMULATE_DO_PAPR when it requires exit to userspace on book3s. Similar return is required for booke. EMULATE_DO_PAPR reads out to be confusing so it is renamed to EMULATE_EXIT_USER. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| * KVM: set_memory_region: Refactor commit_memory_region()Takuya Yoshikawa2013-03-041-1/+1
| | | | | | | | | | | | | | | | | | | | This patch makes the parameter old a const pointer to the old memory slot and adds a new parameter named change to know the change being requested: the former is for removing extra copying and the latter is for cleaning up the code. Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
* | powerpc: remove cast for kmalloc/kzalloc return valueZhang Yanfei2013-03-181-1/+1
|/ | | | | | | | | | | remove cast for kmalloc/kzalloc return value. Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: Jiri Kosina <jkosina@suse.cz>
* Merge tag 'kvm-3.9-1' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds2013-02-241-0/+5
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull KVM updates from Marcelo Tosatti: "KVM updates for the 3.9 merge window, including x86 real mode emulation fixes, stronger memory slot interface restrictions, mmu_lock spinlock hold time reduction, improved handling of large page faults on shadow, initial APICv HW acceleration support, s390 channel IO based virtio, amongst others" * tag 'kvm-3.9-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (143 commits) Revert "KVM: MMU: lazily drop large spte" x86: pvclock kvm: align allocation size to page size KVM: nVMX: Remove redundant get_vmcs12 from nested_vmx_exit_handled_msr x86 emulator: fix parity calculation for AAD instruction KVM: PPC: BookE: Handle alignment interrupts booke: Added DBCR4 SPR number KVM: PPC: booke: Allow multiple exception types KVM: PPC: booke: use vcpu reference from thread_struct KVM: Remove user_alloc from struct kvm_memory_slot KVM: VMX: disable apicv by default KVM: s390: Fix handling of iscs. KVM: MMU: cleanup __direct_map KVM: MMU: remove pt_access in mmu_set_spte KVM: MMU: cleanup mapping-level KVM: MMU: lazily drop large spte KVM: VMX: cleanup vmx_set_cr0(). KVM: VMX: add missing exit names to VMX_EXIT_REASONS array KVM: VMX: disable SMEP feature when guest is in non-paging mode KVM: Remove duplicate text in api.txt Revert "KVM: MMU: split kvm_mmu_free_page" ...
| * KVM: PPC: Book3S: PR: Enable alternative instruction for SC 1Alexander Graf2013-01-101-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | When running on top of pHyp, the hypercall instruction "sc 1" goes straight into pHyp without trapping in supervisor mode. So if we want to support PAPR guest in this configuration we need to add a second way of accessing PAPR hypercalls, preferably with the exact same semantics except for the instruction. So let's overlay an officially reserved instruction and emulate PAPR hypercalls whenever we hit that one. Signed-off-by: Alexander Graf <agraf@suse.de>
* | powerpc/kvm/book3s_pr: Fix compilation on 32-bit machinesPaul Mackerras2013-02-151-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit a413f474a0 ("powerpc: Disable relocation on exceptions whenever PR KVM is active") added calls to pSeries_disable_reloc_on_exc() and pSeries_enable_reloc_on_exc() to book3s_pr.c, and added declarations of those functions to <asm/hvcall.h>, but didn't add an include of <asm/hvcall.h> to book3s_pr.c. 64-bit kernels seem to get hvcall.h included via some other path, but 32-bit kernels fail to compile with: arch/powerpc/kvm/book3s_pr.c: In function ‘kvmppc_core_init_vm’: arch/powerpc/kvm/book3s_pr.c:1300:4: error: implicit declaration of function ‘pSeries_disable_reloc_on_exc’ [-Werror=implicit-function-declaration] arch/powerpc/kvm/book3s_pr.c: In function ‘kvmppc_core_destroy_vm’: arch/powerpc/kvm/book3s_pr.c:1316:4: error: implicit declaration of function ‘pSeries_enable_reloc_on_exc’ [-Werror=implicit-function-declaration] cc1: all warnings being treated as errors make[2]: *** [arch/powerpc/kvm/book3s_pr.o] Error 1 make[1]: *** [arch/powerpc/kvm] Error 2 make: *** [sub-make] Error 2 This fixes it by adding an include of hvcall.h. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* | powerpc: Disable relocation on exceptions whenever PR KVM is activeIan Munsie2013-01-101-0/+18
|/ | | | | | | | | | | | | | | | | | | | | | For PR KVM we allow userspace to map 0xc000000000000000. Because transitioning from userspace to the guest kernel may use the relocated exception vectors we have to disable relocation on exceptions whenever PR KVM is active as we cannot trust that address. This issue does not apply to HV KVM, since changing from a guest to the hypervisor will never use the relocated exception vectors. Currently the hypervisor interface only allows us to toggle relocation on exceptions on a partition wide scope, so we need to globally disable relocation on exceptions when the first PR KVM instance is started and only re-enable them when all PR KVM instances have been destroyed. It's a bit heavy handed, but until the hypervisor gives us a lightweight way to toggle relocation on exceptions on a single thread it's only real option. Signed-off-by: Ian Munsie <imunsie@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* KVM: PPC: Book3S PR: MSR_DE doesn't exist on Book 3SPaul Mackerras2012-12-061-1/+1
| | | | | | | | | | | The mask of MSR bits that get transferred from the guest MSR to the shadow MSR included MSR_DE. In fact that bit only exists on Book 3E processors, and it is assigned the same bit used for MSR_BE on Book 3S processors. Since we already had MSR_BE in the mask, this just removes MSR_DE. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Book3S PR: Fix VSX handlingPaul Mackerras2012-12-061-51/+61
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This fixes various issues in how we were handling the VSX registers that exist on POWER7 machines. First, we were running off the end of the current->thread.fpr[] array. Ultimately this was because the vcpu->arch.vsr[] array is sized to be able to store both the FP registers and the extra VSX registers (i.e. 64 entries), but PR KVM only uses it for the extra VSX registers (i.e. 32 entries). Secondly, calling load_up_vsx() from C code is a really bad idea, because it jumps to fast_exception_return at the end, rather than returning with a blr instruction. This was causing it to jump off to a random location with random register contents, since it was using the largely uninitialized stack frame created by kvmppc_load_up_vsx. In fact, it isn't necessary to call either __giveup_vsx or load_up_vsx, since giveup_fpu and load_up_fpu handle the extra VSX registers as well as the standard FP registers on machines with VSX. Also, since VSX instructions can access the VMX registers and the FP registers as well as the extra VSX registers, we have to load up the FP and VMX registers before we can turn on the MSR_VSX bit for the guest. Conversely, if we save away any of the VSX or FP registers, we have to turn off MSR_VSX for the guest. To handle all this, it is more convenient for a single call to kvmppc_giveup_ext() to handle all the state saving that needs to be done, so we make it take a set of MSR bits rather than just one, and the switch statement becomes a series of if statements. Similarly kvmppc_handle_ext needs to be able to load up more than one set of registers. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Book3S: Get/set guest FP regs using the GET/SET_ONE_REG interfacePaul Mackerras2012-10-051-0/+26
| | | | | | | | | | | | | | | | | | | | | | This enables userspace to get and set all the guest floating-point state using the KVM_[GS]ET_ONE_REG ioctls. The floating-point state includes all of the traditional floating-point registers and the FPSCR (floating point status/control register), all the VMX/Altivec vector registers and the VSCR (vector status/control register), and on POWER7, the vector-scalar registers (note that each FP register is the high-order half of the corresponding VSR). Most of these are implemented in common Book 3S code, except for VSX on POWER7. Because HV and PR differ in how they store the FP and VSX registers on POWER7, the code for these cases is not common. On POWER7, the FP registers are the upper halves of the VSX registers vsr0 - vsr31. PR KVM stores vsr0 - vsr31 in two halves, with the upper halves in the arch.fpr[] array and the lower halves in the arch.vsr[] array, whereas HV KVM on POWER7 stores the whole VSX register in arch.vsr[]. Signed-off-by: Paul Mackerras <paulus@samba.org> [agraf: fix whitespace, vsx compilation] Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Book3S: Get/set guest SPRs using the GET/SET_ONE_REG interfacePaul Mackerras2012-10-051-12/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This enables userspace to get and set various SPRs (special-purpose registers) using the KVM_[GS]ET_ONE_REG ioctls. With this, userspace can get and set all the SPRs that are part of the guest state, either through the KVM_[GS]ET_REGS ioctls, the KVM_[GS]ET_SREGS ioctls, or the KVM_[GS]ET_ONE_REG ioctls. The SPRs that are added here are: - DABR: Data address breakpoint register - DSCR: Data stream control register - PURR: Processor utilization of resources register - SPURR: Scaled PURR - DAR: Data address register - DSISR: Data storage interrupt status register - AMR: Authority mask register - UAMOR: User authority mask override register - MMCR0, MMCR1, MMCRA: Performance monitor unit control registers - PMC1..PMC8: Performance monitor unit counter registers In order to reduce code duplication between PR and HV KVM code, this moves the kvm_vcpu_ioctl_[gs]et_one_reg functions into book3s.c and centralizes the copying between user and kernel space there. The registers that are handled differently between PR and HV, and those that exist only in one flavor, are handled in kvmppc_[gs]et_one_reg() functions that are specific to each flavor. Signed-off-by: Paul Mackerras <paulus@samba.org> [agraf: minimal style fixes] Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Book3S HV: Fix updates of vcpu->cpuPaul Mackerras2012-10-051-1/+2
| | | | | | | | | | | | | | | | | | | | This removes the powerpc "generic" updates of vcpu->cpu in load and put, and moves them to the various backends. The reason is that "HV" KVM does its own sauce with that field and the generic updates might corrupt it. The field contains the CPU# of the -first- HW CPU of the core always for all the VCPU threads of a core (the one that's online from a host Linux perspective). However, the preempt notifiers are going to be called on the threads VCPUs when they are running (due to them sleeping on our private waitqueue) causing unload to be called, potentially clobbering the value. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Book3S HV: Handle memory slot deletion and modification correctlyPaul Mackerras2012-10-051-1/+6
| | | | | | | | | | | | | | | | | | | | | | | This adds an implementation of kvm_arch_flush_shadow_memslot for Book3S HV, and arranges for kvmppc_core_commit_memory_region to flush the dirty log when modifying an existing slot. With this, we can handle deletion and modification of memory slots. kvm_arch_flush_shadow_memslot calls kvmppc_core_flush_memslot, which on Book3S HV now traverses the reverse map chains to remove any HPT (hashed page table) entries referring to pages in the memslot. This gets called by generic code whenever deleting a memslot or changing the guest physical address for a memslot. We flush the dirty log in kvmppc_core_commit_memory_region for consistency with what x86 does. We only need to flush when an existing memslot is being modified, because for a new memslot the rmap array (which stores the dirty bits) is all zero, meaning that every page is considered clean already, and when deleting a memslot we obviously don't care about the dirty bits any more. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Move kvm->arch.slot_phys into memslot.archPaul Mackerras2012-10-051-0/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | Now that we have an architecture-specific field in the kvm_memory_slot structure, we can use it to store the array of page physical addresses that we need for Book3S HV KVM on PPC970 processors. This reduces the size of struct kvm_arch for Book3S HV, and also reduces the size of struct kvm_arch_memory_slot for other PPC KVM variants since the fields in it are now only compiled in for Book3S HV. This necessitates making the kvm_arch_create_memslot and kvm_arch_free_memslot operations specific to each PPC KVM variant. That in turn means that we now don't allocate the rmap arrays on Book3S PR and Book E. Since we now unpin pages and free the slot_phys array in kvmppc_core_free_memslot, we no longer need to do it in kvmppc_core_destroy_vm, since the generic code takes care to free all the memslots when destroying a VM. We now need the new memslot to be passed in to kvmppc_core_prepare_memory_region, since we need to initialize its arch.slot_phys member on Book3S HV. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Add return value to core_check_requestsAlexander Graf2012-10-051-1/+5
| | | | | | | Requests may want to tell us that we need to go back into host state, so add a return value for the checks. Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Add return value in prepare_to_enterAlexander Graf2012-10-051-6/+6
| | | | | | | | Our prepare_to_enter helper wants to be able to return in more circumstances to the host than only when an interrupt is pending. Broaden the interface a bit and move even more generic code to the generic helper. Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Move kvm_guest_enter call into generic codeAlexander Graf2012-10-051-2/+0
| | | | | | | We need to call kvm_guest_enter in booke and book3s, so move its call to generic code. Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Book3S: PR: Rework irq disablingAlexander Graf2012-10-051-14/+7
| | | | | | | | | | | | | | | | | | | Today, we disable preemption while inside guest context, because we need to expose to the world that we are not in a preemptible context. However, during that time we already have interrupts disabled, which would indicate that we are in a non-preemptible context. The reason the checks for irqs_disabled() fail for us though is that we manually control hard IRQs and ignore all the lazy EE framework. Let's stop doing that. Instead, let's always use lazy EE to indicate when we want to disable IRQs, but do a special final switch that gets us into EE disabled, but soft enabled state. That way when we get back out of guest state, we are immediately ready to process interrupts. This simplifies the code drastically and reduces the time that we appear as preempt disabled. Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Consistentify vcpu exit pathAlexander Graf2012-10-051-2/+6
| | | | | | | | | | When getting out of __vcpu_run, let's be consistent about the state we return in. We want to always * have IRQs enabled * have called kvm_guest_exit before Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Book3S: PR: Indicate we're out of guest modeAlexander Graf2012-10-051-0/+1
| | | | | | | | When going out of guest mode, indicate that we are in vcpu->mode. That way requests from other CPUs don't needlessly need to kick us to process them, because it'll just happen next time we enter the guest. Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Exit guest context while handling exitAlexander Graf2012-10-051-0/+2
| | | | | | | The x86 implementation of KVM accounts for host time while processing guest exits. Do the same for us. Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Book3S: PR: Only do resched check once per exitAlexander Graf2012-10-051-1/+1
| | | | | | | | Now that we use our generic exit helper, we can safely drop our previous kvm_resched that we used to trigger at the beginning of the exit handler function. Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Book3s: PR: Add (dumb) MMU Notifier supportAlexander Graf2012-10-051-0/+47
| | | | | | | | Now that we have very simple MMU Notifier support for e500 in place, also add the same simple support to book3s. It gets us one step closer to actual fast support. Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: Use same kvmppc_prepare_to_enter code for booke and book3s_prAlexander Graf2012-10-051-16/+6
| | | | | | | We need to do the same things when preparing to enter a guest for booke and book3s_pr cores. Fold the generic code into a generic function that both call. Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: PPC: PR: Use generic tracepoint for guest exitAlexander Graf2012-10-051-1/+1
| | | | | | | We want to have tracing information on guest exits for booke as well as book3s. Since most information is identical, use a common trace point. Signed-off-by: Alexander Graf <agraf@suse.de>
* KVM: do not release the error pageXiao Guangrong2012-08-061-3/+1
| | | | | | | | | | After commit a2766325cf9f9, the error page is replaced by the error code, it need not be released anymore [ The patch has been compiling tested for powerpc ] Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Signed-off-by: Avi Kivity <avi@redhat.com>
OpenPOWER on IntegriCloud