summaryrefslogtreecommitdiffstats
path: root/fs/cifs/smb1ops.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/cifs/smb1ops.c')
-rw-r--r--fs/cifs/smb1ops.c89
1 files changed, 89 insertions, 0 deletions
diff --git a/fs/cifs/smb1ops.c b/fs/cifs/smb1ops.c
index d9d615fbed3f..6dec38f5522d 100644
--- a/fs/cifs/smb1ops.c
+++ b/fs/cifs/smb1ops.c
@@ -125,6 +125,94 @@ cifs_get_credits_field(struct TCP_Server_Info *server)
return &server->credits;
}
+/*
+ * Find a free multiplex id (SMB mid). Otherwise there could be
+ * mid collisions which might cause problems, demultiplexing the
+ * wrong response to this request. Multiplex ids could collide if
+ * one of a series requests takes much longer than the others, or
+ * if a very large number of long lived requests (byte range
+ * locks or FindNotify requests) are pending. No more than
+ * 64K-1 requests can be outstanding at one time. If no
+ * mids are available, return zero. A future optimization
+ * could make the combination of mids and uid the key we use
+ * to demultiplex on (rather than mid alone).
+ * In addition to the above check, the cifs demultiplex
+ * code already used the command code as a secondary
+ * check of the frame and if signing is negotiated the
+ * response would be discarded if the mid were the same
+ * but the signature was wrong. Since the mid is not put in the
+ * pending queue until later (when it is about to be dispatched)
+ * we do have to limit the number of outstanding requests
+ * to somewhat less than 64K-1 although it is hard to imagine
+ * so many threads being in the vfs at one time.
+ */
+static __u64
+cifs_get_next_mid(struct TCP_Server_Info *server)
+{
+ __u64 mid = 0;
+ __u16 last_mid, cur_mid;
+ bool collision;
+
+ spin_lock(&GlobalMid_Lock);
+
+ /* mid is 16 bit only for CIFS/SMB */
+ cur_mid = (__u16)((server->CurrentMid) & 0xffff);
+ /* we do not want to loop forever */
+ last_mid = cur_mid;
+ cur_mid++;
+
+ /*
+ * This nested loop looks more expensive than it is.
+ * In practice the list of pending requests is short,
+ * fewer than 50, and the mids are likely to be unique
+ * on the first pass through the loop unless some request
+ * takes longer than the 64 thousand requests before it
+ * (and it would also have to have been a request that
+ * did not time out).
+ */
+ while (cur_mid != last_mid) {
+ struct mid_q_entry *mid_entry;
+ unsigned int num_mids;
+
+ collision = false;
+ if (cur_mid == 0)
+ cur_mid++;
+
+ num_mids = 0;
+ list_for_each_entry(mid_entry, &server->pending_mid_q, qhead) {
+ ++num_mids;
+ if (mid_entry->mid == cur_mid &&
+ mid_entry->mid_state == MID_REQUEST_SUBMITTED) {
+ /* This mid is in use, try a different one */
+ collision = true;
+ break;
+ }
+ }
+
+ /*
+ * if we have more than 32k mids in the list, then something
+ * is very wrong. Possibly a local user is trying to DoS the
+ * box by issuing long-running calls and SIGKILL'ing them. If
+ * we get to 2^16 mids then we're in big trouble as this
+ * function could loop forever.
+ *
+ * Go ahead and assign out the mid in this situation, but force
+ * an eventual reconnect to clean out the pending_mid_q.
+ */
+ if (num_mids > 32768)
+ server->tcpStatus = CifsNeedReconnect;
+
+ if (!collision) {
+ mid = (__u64)cur_mid;
+ server->CurrentMid = mid;
+ break;
+ }
+ cur_mid++;
+ }
+ spin_unlock(&GlobalMid_Lock);
+ return mid;
+}
+
struct smb_version_operations smb1_operations = {
.send_cancel = send_nt_cancel,
.compare_fids = cifs_compare_fids,
@@ -133,6 +221,7 @@ struct smb_version_operations smb1_operations = {
.add_credits = cifs_add_credits,
.set_credits = cifs_set_credits,
.get_credits_field = cifs_get_credits_field,
+ .get_next_mid = cifs_get_next_mid,
.read_data_offset = cifs_read_data_offset,
.read_data_length = cifs_read_data_length,
.map_error = map_smb_to_linux_error,
OpenPOWER on IntegriCloud