diff options
Diffstat (limited to 'drivers/crypto/mediatek/mtk-sha.c')
-rw-r--r-- | drivers/crypto/mediatek/mtk-sha.c | 1435 |
1 files changed, 1435 insertions, 0 deletions
diff --git a/drivers/crypto/mediatek/mtk-sha.c b/drivers/crypto/mediatek/mtk-sha.c new file mode 100644 index 000000000000..55e3805fba07 --- /dev/null +++ b/drivers/crypto/mediatek/mtk-sha.c @@ -0,0 +1,1435 @@ +/* + * Cryptographic API. + * + * Driver for EIP97 SHA1/SHA2(HMAC) acceleration. + * + * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Some ideas are from atmel-sha.c and omap-sham.c drivers. + */ + +#include <crypto/sha.h> +#include "mtk-platform.h" + +#define SHA_ALIGN_MSK (sizeof(u32) - 1) +#define SHA_QUEUE_SIZE 512 +#define SHA_TMP_BUF_SIZE 512 +#define SHA_BUF_SIZE ((u32)PAGE_SIZE) + +#define SHA_OP_UPDATE 1 +#define SHA_OP_FINAL 2 + +#define SHA_DATA_LEN_MSK cpu_to_le32(GENMASK(16, 0)) + +/* SHA command token */ +#define SHA_CT_SIZE 5 +#define SHA_CT_CTRL_HDR cpu_to_le32(0x02220000) +#define SHA_CMD0 cpu_to_le32(0x03020000) +#define SHA_CMD1 cpu_to_le32(0x21060000) +#define SHA_CMD2 cpu_to_le32(0xe0e63802) + +/* SHA transform information */ +#define SHA_TFM_HASH cpu_to_le32(0x2 << 0) +#define SHA_TFM_INNER_DIG cpu_to_le32(0x1 << 21) +#define SHA_TFM_SIZE(x) cpu_to_le32((x) << 8) +#define SHA_TFM_START cpu_to_le32(0x1 << 4) +#define SHA_TFM_CONTINUE cpu_to_le32(0x1 << 5) +#define SHA_TFM_HASH_STORE cpu_to_le32(0x1 << 19) +#define SHA_TFM_SHA1 cpu_to_le32(0x2 << 23) +#define SHA_TFM_SHA256 cpu_to_le32(0x3 << 23) +#define SHA_TFM_SHA224 cpu_to_le32(0x4 << 23) +#define SHA_TFM_SHA512 cpu_to_le32(0x5 << 23) +#define SHA_TFM_SHA384 cpu_to_le32(0x6 << 23) +#define SHA_TFM_DIGEST(x) cpu_to_le32(((x) & GENMASK(3, 0)) << 24) + +/* SHA flags */ +#define SHA_FLAGS_BUSY BIT(0) +#define SHA_FLAGS_FINAL BIT(1) +#define SHA_FLAGS_FINUP BIT(2) +#define SHA_FLAGS_SG BIT(3) +#define SHA_FLAGS_ALGO_MSK GENMASK(8, 4) +#define SHA_FLAGS_SHA1 BIT(4) +#define SHA_FLAGS_SHA224 BIT(5) +#define SHA_FLAGS_SHA256 BIT(6) +#define SHA_FLAGS_SHA384 BIT(7) +#define SHA_FLAGS_SHA512 BIT(8) +#define SHA_FLAGS_HMAC BIT(9) +#define SHA_FLAGS_PAD BIT(10) + +/** + * mtk_sha_ct is a set of hardware instructions(command token) + * that are used to control engine's processing flow of SHA, + * and it contains the first two words of transform state. + */ +struct mtk_sha_ct { + __le32 ctrl[2]; + __le32 cmd[3]; +}; + +/** + * mtk_sha_tfm is used to define SHA transform state + * and store result digest that produced by engine. + */ +struct mtk_sha_tfm { + __le32 ctrl[2]; + __le32 digest[SIZE_IN_WORDS(SHA512_DIGEST_SIZE)]; +}; + +/** + * mtk_sha_info consists of command token and transform state + * of SHA, its role is similar to mtk_aes_info. + */ +struct mtk_sha_info { + struct mtk_sha_ct ct; + struct mtk_sha_tfm tfm; +}; + +struct mtk_sha_reqctx { + struct mtk_sha_info info; + unsigned long flags; + unsigned long op; + + u64 digcnt; + bool start; + size_t bufcnt; + dma_addr_t dma_addr; + + __le32 ct_hdr; + u32 ct_size; + dma_addr_t ct_dma; + dma_addr_t tfm_dma; + + /* Walk state */ + struct scatterlist *sg; + u32 offset; /* Offset in current sg */ + u32 total; /* Total request */ + size_t ds; + size_t bs; + + u8 *buffer; +}; + +struct mtk_sha_hmac_ctx { + struct crypto_shash *shash; + u8 ipad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32)); + u8 opad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32)); +}; + +struct mtk_sha_ctx { + struct mtk_cryp *cryp; + unsigned long flags; + u8 id; + u8 buf[SHA_BUF_SIZE] __aligned(sizeof(u32)); + + struct mtk_sha_hmac_ctx base[0]; +}; + +struct mtk_sha_drv { + struct list_head dev_list; + /* Device list lock */ + spinlock_t lock; +}; + +static struct mtk_sha_drv mtk_sha = { + .dev_list = LIST_HEAD_INIT(mtk_sha.dev_list), + .lock = __SPIN_LOCK_UNLOCKED(mtk_sha.lock), +}; + +static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id, + struct ahash_request *req); + +static inline u32 mtk_sha_read(struct mtk_cryp *cryp, u32 offset) +{ + return readl_relaxed(cryp->base + offset); +} + +static inline void mtk_sha_write(struct mtk_cryp *cryp, + u32 offset, u32 value) +{ + writel_relaxed(value, cryp->base + offset); +} + +static struct mtk_cryp *mtk_sha_find_dev(struct mtk_sha_ctx *tctx) +{ + struct mtk_cryp *cryp = NULL; + struct mtk_cryp *tmp; + + spin_lock_bh(&mtk_sha.lock); + if (!tctx->cryp) { + list_for_each_entry(tmp, &mtk_sha.dev_list, sha_list) { + cryp = tmp; + break; + } + tctx->cryp = cryp; + } else { + cryp = tctx->cryp; + } + + /* + * Assign record id to tfm in round-robin fashion, and this + * will help tfm to bind to corresponding descriptor rings. + */ + tctx->id = cryp->rec; + cryp->rec = !cryp->rec; + + spin_unlock_bh(&mtk_sha.lock); + + return cryp; +} + +static int mtk_sha_append_sg(struct mtk_sha_reqctx *ctx) +{ + size_t count; + + while ((ctx->bufcnt < SHA_BUF_SIZE) && ctx->total) { + count = min(ctx->sg->length - ctx->offset, ctx->total); + count = min(count, SHA_BUF_SIZE - ctx->bufcnt); + + if (count <= 0) { + /* + * Check if count <= 0 because the buffer is full or + * because the sg length is 0. In the latest case, + * check if there is another sg in the list, a 0 length + * sg doesn't necessarily mean the end of the sg list. + */ + if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) { + ctx->sg = sg_next(ctx->sg); + continue; + } else { + break; + } + } + + scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg, + ctx->offset, count, 0); + + ctx->bufcnt += count; + ctx->offset += count; + ctx->total -= count; + + if (ctx->offset == ctx->sg->length) { + ctx->sg = sg_next(ctx->sg); + if (ctx->sg) + ctx->offset = 0; + else + ctx->total = 0; + } + } + + return 0; +} + +/* + * The purpose of this padding is to ensure that the padded message is a + * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512). + * The bit "1" is appended at the end of the message followed by + * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or + * 128 bits block (SHA384/SHA512) equals to the message length in bits + * is appended. + * + * For SHA1/SHA224/SHA256, padlen is calculated as followed: + * - if message length < 56 bytes then padlen = 56 - message length + * - else padlen = 64 + 56 - message length + * + * For SHA384/SHA512, padlen is calculated as followed: + * - if message length < 112 bytes then padlen = 112 - message length + * - else padlen = 128 + 112 - message length + */ +static void mtk_sha_fill_padding(struct mtk_sha_reqctx *ctx, u32 len) +{ + u32 index, padlen; + u64 bits[2]; + u64 size = ctx->digcnt; + + size += ctx->bufcnt; + size += len; + + bits[1] = cpu_to_be64(size << 3); + bits[0] = cpu_to_be64(size >> 61); + + if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) { + index = ctx->bufcnt & 0x7f; + padlen = (index < 112) ? (112 - index) : ((128 + 112) - index); + *(ctx->buffer + ctx->bufcnt) = 0x80; + memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1); + memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16); + ctx->bufcnt += padlen + 16; + ctx->flags |= SHA_FLAGS_PAD; + } else { + index = ctx->bufcnt & 0x3f; + padlen = (index < 56) ? (56 - index) : ((64 + 56) - index); + *(ctx->buffer + ctx->bufcnt) = 0x80; + memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1); + memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8); + ctx->bufcnt += padlen + 8; + ctx->flags |= SHA_FLAGS_PAD; + } +} + +/* Initialize basic transform information of SHA */ +static void mtk_sha_info_init(struct mtk_sha_reqctx *ctx) +{ + struct mtk_sha_ct *ct = &ctx->info.ct; + struct mtk_sha_tfm *tfm = &ctx->info.tfm; + + ctx->ct_hdr = SHA_CT_CTRL_HDR; + ctx->ct_size = SHA_CT_SIZE; + + tfm->ctrl[0] = SHA_TFM_HASH | SHA_TFM_INNER_DIG | + SHA_TFM_SIZE(SIZE_IN_WORDS(ctx->ds)); + + switch (ctx->flags & SHA_FLAGS_ALGO_MSK) { + case SHA_FLAGS_SHA1: + tfm->ctrl[0] |= SHA_TFM_SHA1; + break; + case SHA_FLAGS_SHA224: + tfm->ctrl[0] |= SHA_TFM_SHA224; + break; + case SHA_FLAGS_SHA256: + tfm->ctrl[0] |= SHA_TFM_SHA256; + break; + case SHA_FLAGS_SHA384: + tfm->ctrl[0] |= SHA_TFM_SHA384; + break; + case SHA_FLAGS_SHA512: + tfm->ctrl[0] |= SHA_TFM_SHA512; + break; + + default: + /* Should not happen... */ + return; + } + + tfm->ctrl[1] = SHA_TFM_HASH_STORE; + ct->ctrl[0] = tfm->ctrl[0] | SHA_TFM_CONTINUE | SHA_TFM_START; + ct->ctrl[1] = tfm->ctrl[1]; + + ct->cmd[0] = SHA_CMD0; + ct->cmd[1] = SHA_CMD1; + ct->cmd[2] = SHA_CMD2 | SHA_TFM_DIGEST(SIZE_IN_WORDS(ctx->ds)); +} + +/* + * Update input data length field of transform information and + * map it to DMA region. + */ +static int mtk_sha_info_update(struct mtk_cryp *cryp, + struct mtk_sha_rec *sha, + size_t len) +{ + struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req); + struct mtk_sha_info *info = &ctx->info; + struct mtk_sha_ct *ct = &info->ct; + + if (ctx->start) + ctx->start = false; + else + ct->ctrl[0] &= ~SHA_TFM_START; + + ctx->ct_hdr &= ~SHA_DATA_LEN_MSK; + ctx->ct_hdr |= cpu_to_le32(len); + ct->cmd[0] &= ~SHA_DATA_LEN_MSK; + ct->cmd[0] |= cpu_to_le32(len); + + ctx->digcnt += len; + + ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info), + DMA_BIDIRECTIONAL); + if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma))) { + dev_err(cryp->dev, "dma %zu bytes error\n", sizeof(*info)); + return -EINVAL; + } + ctx->tfm_dma = ctx->ct_dma + sizeof(*ct); + + return 0; +} + +/* + * Because of hardware limitation, we must pre-calculate the inner + * and outer digest that need to be processed firstly by engine, then + * apply the result digest to the input message. These complex hashing + * procedures limits HMAC performance, so we use fallback SW encoding. + */ +static int mtk_sha_finish_hmac(struct ahash_request *req) +{ + struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm); + struct mtk_sha_hmac_ctx *bctx = tctx->base; + struct mtk_sha_reqctx *ctx = ahash_request_ctx(req); + + SHASH_DESC_ON_STACK(shash, bctx->shash); + + shash->tfm = bctx->shash; + shash->flags = 0; /* not CRYPTO_TFM_REQ_MAY_SLEEP */ + + return crypto_shash_init(shash) ?: + crypto_shash_update(shash, bctx->opad, ctx->bs) ?: + crypto_shash_finup(shash, req->result, ctx->ds, req->result); +} + +/* Initialize request context */ +static int mtk_sha_init(struct ahash_request *req) +{ + struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); + struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm); + struct mtk_sha_reqctx *ctx = ahash_request_ctx(req); + + ctx->flags = 0; + ctx->ds = crypto_ahash_digestsize(tfm); + + switch (ctx->ds) { + case SHA1_DIGEST_SIZE: + ctx->flags |= SHA_FLAGS_SHA1; + ctx->bs = SHA1_BLOCK_SIZE; + break; + case SHA224_DIGEST_SIZE: + ctx->flags |= SHA_FLAGS_SHA224; + ctx->bs = SHA224_BLOCK_SIZE; + break; + case SHA256_DIGEST_SIZE: + ctx->flags |= SHA_FLAGS_SHA256; + ctx->bs = SHA256_BLOCK_SIZE; + break; + case SHA384_DIGEST_SIZE: + ctx->flags |= SHA_FLAGS_SHA384; + ctx->bs = SHA384_BLOCK_SIZE; + break; + case SHA512_DIGEST_SIZE: + ctx->flags |= SHA_FLAGS_SHA512; + ctx->bs = SHA512_BLOCK_SIZE; + break; + default: + return -EINVAL; + } + + ctx->bufcnt = 0; + ctx->digcnt = 0; + ctx->buffer = tctx->buf; + ctx->start = true; + + if (tctx->flags & SHA_FLAGS_HMAC) { + struct mtk_sha_hmac_ctx *bctx = tctx->base; + + memcpy(ctx->buffer, bctx->ipad, ctx->bs); + ctx->bufcnt = ctx->bs; + ctx->flags |= SHA_FLAGS_HMAC; + } + + return 0; +} + +static int mtk_sha_xmit(struct mtk_cryp *cryp, struct mtk_sha_rec *sha, + dma_addr_t addr, size_t len) +{ + struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req); + struct mtk_ring *ring = cryp->ring[sha->id]; + struct mtk_desc *cmd = ring->cmd_base + ring->cmd_pos; + struct mtk_desc *res = ring->res_base + ring->res_pos; + int err; + + err = mtk_sha_info_update(cryp, sha, len); + if (err) + return err; + + /* Fill in the command/result descriptors */ + res->hdr = MTK_DESC_FIRST | MTK_DESC_LAST | MTK_DESC_BUF_LEN(len); + res->buf = cpu_to_le32(cryp->tmp_dma); + + cmd->hdr = MTK_DESC_FIRST | MTK_DESC_LAST | MTK_DESC_BUF_LEN(len) | + MTK_DESC_CT_LEN(ctx->ct_size); + + cmd->buf = cpu_to_le32(addr); + cmd->ct = cpu_to_le32(ctx->ct_dma); + cmd->ct_hdr = ctx->ct_hdr; + cmd->tfm = cpu_to_le32(ctx->tfm_dma); + + if (++ring->cmd_pos == MTK_DESC_NUM) + ring->cmd_pos = 0; + + ring->res_pos = ring->cmd_pos; + /* + * Make sure that all changes to the DMA ring are done before we + * start engine. + */ + wmb(); + /* Start DMA transfer */ + mtk_sha_write(cryp, RDR_PREP_COUNT(sha->id), MTK_DESC_CNT(1)); + mtk_sha_write(cryp, CDR_PREP_COUNT(sha->id), MTK_DESC_CNT(1)); + + return -EINPROGRESS; +} + +static int mtk_sha_xmit2(struct mtk_cryp *cryp, + struct mtk_sha_rec *sha, + struct mtk_sha_reqctx *ctx, + size_t len1, size_t len2) +{ + struct mtk_ring *ring = cryp->ring[sha->id]; + struct mtk_desc *cmd = ring->cmd_base + ring->cmd_pos; + struct mtk_desc *res = ring->res_base + ring->res_pos; + int err; + + err = mtk_sha_info_update(cryp, sha, len1 + len2); + if (err) + return err; + + /* Fill in the command/result descriptors */ + res->hdr = MTK_DESC_BUF_LEN(len1) | MTK_DESC_FIRST; + res->buf = cpu_to_le32(cryp->tmp_dma); + + cmd->hdr = MTK_DESC_BUF_LEN(len1) | MTK_DESC_FIRST | + MTK_DESC_CT_LEN(ctx->ct_size); + cmd->buf = cpu_to_le32(sg_dma_address(ctx->sg)); + cmd->ct = cpu_to_le32(ctx->ct_dma); + cmd->ct_hdr = ctx->ct_hdr; + cmd->tfm = cpu_to_le32(ctx->tfm_dma); + + if (++ring->cmd_pos == MTK_DESC_NUM) + ring->cmd_pos = 0; + + ring->res_pos = ring->cmd_pos; + + cmd = ring->cmd_base + ring->cmd_pos; + res = ring->res_base + ring->res_pos; + + res->hdr = MTK_DESC_BUF_LEN(len2) | MTK_DESC_LAST; + res->buf = cpu_to_le32(cryp->tmp_dma); + + cmd->hdr = MTK_DESC_BUF_LEN(len2) | MTK_DESC_LAST; + cmd->buf = cpu_to_le32(ctx->dma_addr); + + if (++ring->cmd_pos == MTK_DESC_NUM) + ring->cmd_pos = 0; + + ring->res_pos = ring->cmd_pos; + + /* + * Make sure that all changes to the DMA ring are done before we + * start engine. + */ + wmb(); + /* Start DMA transfer */ + mtk_sha_write(cryp, RDR_PREP_COUNT(sha->id), MTK_DESC_CNT(2)); + mtk_sha_write(cryp, CDR_PREP_COUNT(sha->id), MTK_DESC_CNT(2)); + + return -EINPROGRESS; +} + +static int mtk_sha_dma_map(struct mtk_cryp *cryp, + struct mtk_sha_rec *sha, + struct mtk_sha_reqctx *ctx, + size_t count) +{ + ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer, + SHA_BUF_SIZE, DMA_TO_DEVICE); + if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) { + dev_err(cryp->dev, "dma map error\n"); + return -EINVAL; + } + + ctx->flags &= ~SHA_FLAGS_SG; + + return mtk_sha_xmit(cryp, sha, ctx->dma_addr, count); +} + +static int mtk_sha_update_slow(struct mtk_cryp *cryp, + struct mtk_sha_rec *sha) +{ + struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req); + size_t count; + u32 final; + + mtk_sha_append_sg(ctx); + + final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total; + + dev_dbg(cryp->dev, "slow: bufcnt: %zu\n", ctx->bufcnt); + + if (final) { + sha->flags |= SHA_FLAGS_FINAL; + mtk_sha_fill_padding(ctx, 0); + } + + if (final || (ctx->bufcnt == SHA_BUF_SIZE && ctx->total)) { + count = ctx->bufcnt; + ctx->bufcnt = 0; + + return mtk_sha_dma_map(cryp, sha, ctx, count); + } + return 0; +} + +static int mtk_sha_update_start(struct mtk_cryp *cryp, + struct mtk_sha_rec *sha) +{ + struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req); + u32 len, final, tail; + struct scatterlist *sg; + + if (!ctx->total) + return 0; + + if (ctx->bufcnt || ctx->offset) + return mtk_sha_update_slow(cryp, sha); + + sg = ctx->sg; + + if (!IS_ALIGNED(sg->offset, sizeof(u32))) + return mtk_sha_update_slow(cryp, sha); + + if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->bs)) + /* size is not ctx->bs aligned */ + return mtk_sha_update_slow(cryp, sha); + + len = min(ctx->total, sg->length); + + if (sg_is_last(sg)) { + if (!(ctx->flags & SHA_FLAGS_FINUP)) { + /* not last sg must be ctx->bs aligned */ + tail = len & (ctx->bs - 1); + len -= tail; + } + } + + ctx->total -= len; + ctx->offset = len; /* offset where to start slow */ + + final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total; + + /* Add padding */ + if (final) { + size_t count; + + tail = len & (ctx->bs - 1); + len -= tail; + ctx->total += tail; + ctx->offset = len; /* offset where to start slow */ + + sg = ctx->sg; + mtk_sha_append_sg(ctx); + mtk_sha_fill_padding(ctx, len); + + ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer, + SHA_BUF_SIZE, DMA_TO_DEVICE); + if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) { + dev_err(cryp->dev, "dma map bytes error\n"); + return -EINVAL; + } + + sha->flags |= SHA_FLAGS_FINAL; + count = ctx->bufcnt; + ctx->bufcnt = 0; + + if (len == 0) { + ctx->flags &= ~SHA_FLAGS_SG; + return mtk_sha_xmit(cryp, sha, ctx->dma_addr, count); + + } else { + ctx->sg = sg; + if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) { + dev_err(cryp->dev, "dma_map_sg error\n"); + return -EINVAL; + } + + ctx->flags |= SHA_FLAGS_SG; + return mtk_sha_xmit2(cryp, sha, ctx, len, count); + } + } + + if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) { + dev_err(cryp->dev, "dma_map_sg error\n"); + return -EINVAL; + } + + ctx->flags |= SHA_FLAGS_SG; + + return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg), len); +} + +static int mtk_sha_final_req(struct mtk_cryp *cryp, + struct mtk_sha_rec *sha) +{ + struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req); + size_t count; + + mtk_sha_fill_padding(ctx, 0); + + sha->flags |= SHA_FLAGS_FINAL; + count = ctx->bufcnt; + ctx->bufcnt = 0; + + return mtk_sha_dma_map(cryp, sha, ctx, count); +} + +/* Copy ready hash (+ finalize hmac) */ +static int mtk_sha_finish(struct ahash_request *req) +{ + struct mtk_sha_reqctx *ctx = ahash_request_ctx(req); + u32 *digest = ctx->info.tfm.digest; + u32 *result = (u32 *)req->result; + int i; + + /* Get the hash from the digest buffer */ + for (i = 0; i < SIZE_IN_WORDS(ctx->ds); i++) + result[i] = le32_to_cpu(digest[i]); + + if (ctx->flags & SHA_FLAGS_HMAC) + return mtk_sha_finish_hmac(req); + + return 0; +} + +static void mtk_sha_finish_req(struct mtk_cryp *cryp, + struct mtk_sha_rec *sha, + int err) +{ + if (likely(!err && (SHA_FLAGS_FINAL & sha->flags))) + err = mtk_sha_finish(sha->req); + + sha->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL); + + sha->req->base.complete(&sha->req->base, err); + + /* Handle new request */ + mtk_sha_handle_queue(cryp, sha->id - RING2, NULL); +} + +static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id, + struct ahash_request *req) +{ + struct mtk_sha_rec *sha = cryp->sha[id]; + struct crypto_async_request *async_req, *backlog; + struct mtk_sha_reqctx *ctx; + unsigned long flags; + int err = 0, ret = 0; + + spin_lock_irqsave(&sha->lock, flags); + if (req) + ret = ahash_enqueue_request(&sha->queue, req); + + if (SHA_FLAGS_BUSY & sha->flags) { + spin_unlock_irqrestore(&sha->lock, flags); + return ret; + } + + backlog = crypto_get_backlog(&sha->queue); + async_req = crypto_dequeue_request(&sha->queue); + if (async_req) + sha->flags |= SHA_FLAGS_BUSY; + spin_unlock_irqrestore(&sha->lock, flags); + + if (!async_req) + return ret; + + if (backlog) + backlog->complete(backlog, -EINPROGRESS); + + req = ahash_request_cast(async_req); + ctx = ahash_request_ctx(req); + + sha->req = req; + + mtk_sha_info_init(ctx); + + if (ctx->op == SHA_OP_UPDATE) { + err = mtk_sha_update_start(cryp, sha); + if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP)) + /* No final() after finup() */ + err = mtk_sha_final_req(cryp, sha); + } else if (ctx->op == SHA_OP_FINAL) { + err = mtk_sha_final_req(cryp, sha); + } + + if (unlikely(err != -EINPROGRESS)) + /* Task will not finish it, so do it here */ + mtk_sha_finish_req(cryp, sha, err); + + return ret; +} + +static int mtk_sha_enqueue(struct ahash_request *req, u32 op) +{ + struct mtk_sha_reqctx *ctx = ahash_request_ctx(req); + struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm); + + ctx->op = op; + + return mtk_sha_handle_queue(tctx->cryp, tctx->id, req); +} + +static void mtk_sha_unmap(struct mtk_cryp *cryp, struct mtk_sha_rec *sha) +{ + struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req); + + dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info), + DMA_BIDIRECTIONAL); + + if (ctx->flags & SHA_FLAGS_SG) { + dma_unmap_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE); + if (ctx->sg->length == ctx->offset) { + ctx->sg = sg_next(ctx->sg); + if (ctx->sg) + ctx->offset = 0; + } + if (ctx->flags & SHA_FLAGS_PAD) { + dma_unmap_single(cryp->dev, ctx->dma_addr, + SHA_BUF_SIZE, DMA_TO_DEVICE); + } + } else + dma_unmap_single(cryp->dev, ctx->dma_addr, + SHA_BUF_SIZE, DMA_TO_DEVICE); +} + +static void mtk_sha_complete(struct mtk_cryp *cryp, + struct mtk_sha_rec *sha) +{ + int err = 0; + + err = mtk_sha_update_start(cryp, sha); + if (err != -EINPROGRESS) + mtk_sha_finish_req(cryp, sha, err); +} + +static int mtk_sha_update(struct ahash_request *req) +{ + struct mtk_sha_reqctx *ctx = ahash_request_ctx(req); + + ctx->total = req->nbytes; + ctx->sg = req->src; + ctx->offset = 0; + + if ((ctx->bufcnt + ctx->total < SHA_BUF_SIZE) && + !(ctx->flags & SHA_FLAGS_FINUP)) + return mtk_sha_append_sg(ctx); + + return mtk_sha_enqueue(req, SHA_OP_UPDATE); +} + +static int mtk_sha_final(struct ahash_request *req) +{ + struct mtk_sha_reqctx *ctx = ahash_request_ctx(req); + + ctx->flags |= SHA_FLAGS_FINUP; + + if (ctx->flags & SHA_FLAGS_PAD) + return mtk_sha_finish(req); + + return mtk_sha_enqueue(req, SHA_OP_FINAL); +} + +static int mtk_sha_finup(struct ahash_request *req) +{ + struct mtk_sha_reqctx *ctx = ahash_request_ctx(req); + int err1, err2; + + ctx->flags |= SHA_FLAGS_FINUP; + + err1 = mtk_sha_update(req); + if (err1 == -EINPROGRESS || err1 == -EBUSY) + return err1; + /* + * final() has to be always called to cleanup resources + * even if update() failed + */ + err2 = mtk_sha_final(req); + + return err1 ?: err2; +} + +static int mtk_sha_digest(struct ahash_request *req) +{ + return mtk_sha_init(req) ?: mtk_sha_finup(req); +} + +static int mtk_sha_setkey(struct crypto_ahash *tfm, const u8 *key, + u32 keylen) +{ + struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm); + struct mtk_sha_hmac_ctx *bctx = tctx->base; + size_t bs = crypto_shash_blocksize(bctx->shash); + size_t ds = crypto_shash_digestsize(bctx->shash); + int err, i; + + SHASH_DESC_ON_STACK(shash, bctx->shash); + + shash->tfm = bctx->shash; + shash->flags = crypto_shash_get_flags(bctx->shash) & + CRYPTO_TFM_REQ_MAY_SLEEP; + + if (keylen > bs) { + err = crypto_shash_digest(shash, key, keylen, bctx->ipad); + if (err) + return err; + keylen = ds; + } else { + memcpy(bctx->ipad, key, keylen); + } + + memset(bctx->ipad + keylen, 0, bs - keylen); + memcpy(bctx->opad, bctx->ipad, bs); + + for (i = 0; i < bs; i++) { + bctx->ipad[i] ^= 0x36; + bctx->opad[i] ^= 0x5c; + } + + return 0; +} + +static int mtk_sha_export(struct ahash_request *req, void *out) +{ + const struct mtk_sha_reqctx *ctx = ahash_request_ctx(req); + + memcpy(out, ctx, sizeof(*ctx)); + return 0; +} + +static int mtk_sha_import(struct ahash_request *req, const void *in) +{ + struct mtk_sha_reqctx *ctx = ahash_request_ctx(req); + + memcpy(ctx, in, sizeof(*ctx)); + return 0; +} + +static int mtk_sha_cra_init_alg(struct crypto_tfm *tfm, + const char *alg_base) +{ + struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm); + struct mtk_cryp *cryp = NULL; + + cryp = mtk_sha_find_dev(tctx); + if (!cryp) + return -ENODEV; + + crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), + sizeof(struct mtk_sha_reqctx)); + + if (alg_base) { + struct mtk_sha_hmac_ctx *bctx = tctx->base; + + tctx->flags |= SHA_FLAGS_HMAC; + bctx->shash = crypto_alloc_shash(alg_base, 0, + CRYPTO_ALG_NEED_FALLBACK); + if (IS_ERR(bctx->shash)) { + pr_err("base driver %s could not be loaded.\n", + alg_base); + + return PTR_ERR(bctx->shash); + } + } + return 0; +} + +static int mtk_sha_cra_init(struct crypto_tfm *tfm) +{ + return mtk_sha_cra_init_alg(tfm, NULL); +} + +static int mtk_sha_cra_sha1_init(struct crypto_tfm *tfm) +{ + return mtk_sha_cra_init_alg(tfm, "sha1"); +} + +static int mtk_sha_cra_sha224_init(struct crypto_tfm *tfm) +{ + return mtk_sha_cra_init_alg(tfm, "sha224"); +} + +static int mtk_sha_cra_sha256_init(struct crypto_tfm *tfm) +{ + return mtk_sha_cra_init_alg(tfm, "sha256"); +} + +static int mtk_sha_cra_sha384_init(struct crypto_tfm *tfm) +{ + return mtk_sha_cra_init_alg(tfm, "sha384"); +} + +static int mtk_sha_cra_sha512_init(struct crypto_tfm *tfm) +{ + return mtk_sha_cra_init_alg(tfm, "sha512"); +} + +static void mtk_sha_cra_exit(struct crypto_tfm *tfm) +{ + struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm); + + if (tctx->flags & SHA_FLAGS_HMAC) { + struct mtk_sha_hmac_ctx *bctx = tctx->base; + + crypto_free_shash(bctx->shash); + } +} + +static struct ahash_alg algs_sha1_sha224_sha256[] = { +{ + .init = mtk_sha_init, + .update = mtk_sha_update, + .final = mtk_sha_final, + .finup = mtk_sha_finup, + .digest = mtk_sha_digest, + .export = mtk_sha_export, + .import = mtk_sha_import, + .halg.digestsize = SHA1_DIGEST_SIZE, + .halg.statesize = sizeof(struct mtk_sha_reqctx), + .halg.base = { + .cra_name = "sha1", + .cra_driver_name = "mtk-sha1", + .cra_priority = 400, + .cra_flags = CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA1_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct mtk_sha_ctx), + .cra_alignmask = SHA_ALIGN_MSK, + .cra_module = THIS_MODULE, + .cra_init = mtk_sha_cra_init, + .cra_exit = mtk_sha_cra_exit, + } +}, +{ + .init = mtk_sha_init, + .update = mtk_sha_update, + .final = mtk_sha_final, + .finup = mtk_sha_finup, + .digest = mtk_sha_digest, + .export = mtk_sha_export, + .import = mtk_sha_import, + .halg.digestsize = SHA224_DIGEST_SIZE, + .halg.statesize = sizeof(struct mtk_sha_reqctx), + .halg.base = { + .cra_name = "sha224", + .cra_driver_name = "mtk-sha224", + .cra_priority = 400, + .cra_flags = CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA224_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct mtk_sha_ctx), + .cra_alignmask = SHA_ALIGN_MSK, + .cra_module = THIS_MODULE, + .cra_init = mtk_sha_cra_init, + .cra_exit = mtk_sha_cra_exit, + } +}, +{ + .init = mtk_sha_init, + .update = mtk_sha_update, + .final = mtk_sha_final, + .finup = mtk_sha_finup, + .digest = mtk_sha_digest, + .export = mtk_sha_export, + .import = mtk_sha_import, + .halg.digestsize = SHA256_DIGEST_SIZE, + .halg.statesize = sizeof(struct mtk_sha_reqctx), + .halg.base = { + .cra_name = "sha256", + .cra_driver_name = "mtk-sha256", + .cra_priority = 400, + .cra_flags = CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA256_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct mtk_sha_ctx), + .cra_alignmask = SHA_ALIGN_MSK, + .cra_module = THIS_MODULE, + .cra_init = mtk_sha_cra_init, + .cra_exit = mtk_sha_cra_exit, + } +}, +{ + .init = mtk_sha_init, + .update = mtk_sha_update, + .final = mtk_sha_final, + .finup = mtk_sha_finup, + .digest = mtk_sha_digest, + .export = mtk_sha_export, + .import = mtk_sha_import, + .setkey = mtk_sha_setkey, + .halg.digestsize = SHA1_DIGEST_SIZE, + .halg.statesize = sizeof(struct mtk_sha_reqctx), + .halg.base = { + .cra_name = "hmac(sha1)", + .cra_driver_name = "mtk-hmac-sha1", + .cra_priority = 400, + .cra_flags = CRYPTO_ALG_ASYNC | + CRYPTO_ALG_NEED_FALLBACK, + .cra_blocksize = SHA1_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct mtk_sha_ctx) + + sizeof(struct mtk_sha_hmac_ctx), + .cra_alignmask = SHA_ALIGN_MSK, + .cra_module = THIS_MODULE, + .cra_init = mtk_sha_cra_sha1_init, + .cra_exit = mtk_sha_cra_exit, + } +}, +{ + .init = mtk_sha_init, + .update = mtk_sha_update, + .final = mtk_sha_final, + .finup = mtk_sha_finup, + .digest = mtk_sha_digest, + .export = mtk_sha_export, + .import = mtk_sha_import, + .setkey = mtk_sha_setkey, + .halg.digestsize = SHA224_DIGEST_SIZE, + .halg.statesize = sizeof(struct mtk_sha_reqctx), + .halg.base = { + .cra_name = "hmac(sha224)", + .cra_driver_name = "mtk-hmac-sha224", + .cra_priority = 400, + .cra_flags = CRYPTO_ALG_ASYNC | + CRYPTO_ALG_NEED_FALLBACK, + .cra_blocksize = SHA224_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct mtk_sha_ctx) + + sizeof(struct mtk_sha_hmac_ctx), + .cra_alignmask = SHA_ALIGN_MSK, + .cra_module = THIS_MODULE, + .cra_init = mtk_sha_cra_sha224_init, + .cra_exit = mtk_sha_cra_exit, + } +}, +{ + .init = mtk_sha_init, + .update = mtk_sha_update, + .final = mtk_sha_final, + .finup = mtk_sha_finup, + .digest = mtk_sha_digest, + .export = mtk_sha_export, + .import = mtk_sha_import, + .setkey = mtk_sha_setkey, + .halg.digestsize = SHA256_DIGEST_SIZE, + .halg.statesize = sizeof(struct mtk_sha_reqctx), + .halg.base = { + .cra_name = "hmac(sha256)", + .cra_driver_name = "mtk-hmac-sha256", + .cra_priority = 400, + .cra_flags = CRYPTO_ALG_ASYNC | + CRYPTO_ALG_NEED_FALLBACK, + .cra_blocksize = SHA256_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct mtk_sha_ctx) + + sizeof(struct mtk_sha_hmac_ctx), + .cra_alignmask = SHA_ALIGN_MSK, + .cra_module = THIS_MODULE, + .cra_init = mtk_sha_cra_sha256_init, + .cra_exit = mtk_sha_cra_exit, + } +}, +}; + +static struct ahash_alg algs_sha384_sha512[] = { +{ + .init = mtk_sha_init, + .update = mtk_sha_update, + .final = mtk_sha_final, + .finup = mtk_sha_finup, + .digest = mtk_sha_digest, + .export = mtk_sha_export, + .import = mtk_sha_import, + .halg.digestsize = SHA384_DIGEST_SIZE, + .halg.statesize = sizeof(struct mtk_sha_reqctx), + .halg.base = { + .cra_name = "sha384", + .cra_driver_name = "mtk-sha384", + .cra_priority = 400, + .cra_flags = CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA384_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct mtk_sha_ctx), + .cra_alignmask = SHA_ALIGN_MSK, + .cra_module = THIS_MODULE, + .cra_init = mtk_sha_cra_init, + .cra_exit = mtk_sha_cra_exit, + } +}, +{ + .init = mtk_sha_init, + .update = mtk_sha_update, + .final = mtk_sha_final, + .finup = mtk_sha_finup, + .digest = mtk_sha_digest, + .export = mtk_sha_export, + .import = mtk_sha_import, + .halg.digestsize = SHA512_DIGEST_SIZE, + .halg.statesize = sizeof(struct mtk_sha_reqctx), + .halg.base = { + .cra_name = "sha512", + .cra_driver_name = "mtk-sha512", + .cra_priority = 400, + .cra_flags = CRYPTO_ALG_ASYNC, + .cra_blocksize = SHA512_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct mtk_sha_ctx), + .cra_alignmask = SHA_ALIGN_MSK, + .cra_module = THIS_MODULE, + .cra_init = mtk_sha_cra_init, + .cra_exit = mtk_sha_cra_exit, + } +}, +{ + .init = mtk_sha_init, + .update = mtk_sha_update, + .final = mtk_sha_final, + .finup = mtk_sha_finup, + .digest = mtk_sha_digest, + .export = mtk_sha_export, + .import = mtk_sha_import, + .setkey = mtk_sha_setkey, + .halg.digestsize = SHA384_DIGEST_SIZE, + .halg.statesize = sizeof(struct mtk_sha_reqctx), + .halg.base = { + .cra_name = "hmac(sha384)", + .cra_driver_name = "mtk-hmac-sha384", + .cra_priority = 400, + .cra_flags = CRYPTO_ALG_ASYNC | + CRYPTO_ALG_NEED_FALLBACK, + .cra_blocksize = SHA384_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct mtk_sha_ctx) + + sizeof(struct mtk_sha_hmac_ctx), + .cra_alignmask = SHA_ALIGN_MSK, + .cra_module = THIS_MODULE, + .cra_init = mtk_sha_cra_sha384_init, + .cra_exit = mtk_sha_cra_exit, + } +}, +{ + .init = mtk_sha_init, + .update = mtk_sha_update, + .final = mtk_sha_final, + .finup = mtk_sha_finup, + .digest = mtk_sha_digest, + .export = mtk_sha_export, + .import = mtk_sha_import, + .setkey = mtk_sha_setkey, + .halg.digestsize = SHA512_DIGEST_SIZE, + .halg.statesize = sizeof(struct mtk_sha_reqctx), + .halg.base = { + .cra_name = "hmac(sha512)", + .cra_driver_name = "mtk-hmac-sha512", + .cra_priority = 400, + .cra_flags = CRYPTO_ALG_ASYNC | + CRYPTO_ALG_NEED_FALLBACK, + .cra_blocksize = SHA512_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct mtk_sha_ctx) + + sizeof(struct mtk_sha_hmac_ctx), + .cra_alignmask = SHA_ALIGN_MSK, + .cra_module = THIS_MODULE, + .cra_init = mtk_sha_cra_sha512_init, + .cra_exit = mtk_sha_cra_exit, + } +}, +}; + +static void mtk_sha_task0(unsigned long data) +{ + struct mtk_cryp *cryp = (struct mtk_cryp *)data; + struct mtk_sha_rec *sha = cryp->sha[0]; + + mtk_sha_unmap(cryp, sha); + mtk_sha_complete(cryp, sha); +} + +static void mtk_sha_task1(unsigned long data) +{ + struct mtk_cryp *cryp = (struct mtk_cryp *)data; + struct mtk_sha_rec *sha = cryp->sha[1]; + + mtk_sha_unmap(cryp, sha); + mtk_sha_complete(cryp, sha); +} + +static irqreturn_t mtk_sha_ring2_irq(int irq, void *dev_id) +{ + struct mtk_cryp *cryp = (struct mtk_cryp *)dev_id; + struct mtk_sha_rec *sha = cryp->sha[0]; + u32 val = mtk_sha_read(cryp, RDR_STAT(RING2)); + + mtk_sha_write(cryp, RDR_STAT(RING2), val); + + if (likely((SHA_FLAGS_BUSY & sha->flags))) { + mtk_sha_write(cryp, RDR_PROC_COUNT(RING2), MTK_CNT_RST); + mtk_sha_write(cryp, RDR_THRESH(RING2), + MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE); + + tasklet_schedule(&sha->task); + } else { + dev_warn(cryp->dev, "AES interrupt when no active requests.\n"); + } + return IRQ_HANDLED; +} + +static irqreturn_t mtk_sha_ring3_irq(int irq, void *dev_id) +{ + struct mtk_cryp *cryp = (struct mtk_cryp *)dev_id; + struct mtk_sha_rec *sha = cryp->sha[1]; + u32 val = mtk_sha_read(cryp, RDR_STAT(RING3)); + + mtk_sha_write(cryp, RDR_STAT(RING3), val); + + if (likely((SHA_FLAGS_BUSY & sha->flags))) { + mtk_sha_write(cryp, RDR_PROC_COUNT(RING3), MTK_CNT_RST); + mtk_sha_write(cryp, RDR_THRESH(RING3), + MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE); + + tasklet_schedule(&sha->task); + } else { + dev_warn(cryp->dev, "AES interrupt when no active requests.\n"); + } + return IRQ_HANDLED; +} + +/* + * The purpose of two SHA records is used to get extra performance. + * It is similar to mtk_aes_record_init(). + */ +static int mtk_sha_record_init(struct mtk_cryp *cryp) +{ + struct mtk_sha_rec **sha = cryp->sha; + int i, err = -ENOMEM; + + for (i = 0; i < MTK_REC_NUM; i++) { + sha[i] = kzalloc(sizeof(**sha), GFP_KERNEL); + if (!sha[i]) + goto err_cleanup; + + sha[i]->id = i + RING2; + + spin_lock_init(&sha[i]->lock); + crypto_init_queue(&sha[i]->queue, SHA_QUEUE_SIZE); + } + + tasklet_init(&sha[0]->task, mtk_sha_task0, (unsigned long)cryp); + tasklet_init(&sha[1]->task, mtk_sha_task1, (unsigned long)cryp); + + cryp->rec = 1; + + return 0; + +err_cleanup: + for (; i--; ) + kfree(sha[i]); + return err; +} + +static void mtk_sha_record_free(struct mtk_cryp *cryp) +{ + int i; + + for (i = 0; i < MTK_REC_NUM; i++) { + tasklet_kill(&cryp->sha[i]->task); + kfree(cryp->sha[i]); + } +} + +static void mtk_sha_unregister_algs(void) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++) + crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]); + + for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++) + crypto_unregister_ahash(&algs_sha384_sha512[i]); +} + +static int mtk_sha_register_algs(void) +{ + int err, i; + + for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++) { + err = crypto_register_ahash(&algs_sha1_sha224_sha256[i]); + if (err) + goto err_sha_224_256_algs; + } + + for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++) { + err = crypto_register_ahash(&algs_sha384_sha512[i]); + if (err) + goto err_sha_384_512_algs; + } + + return 0; + +err_sha_384_512_algs: + for (; i--; ) + crypto_unregister_ahash(&algs_sha384_sha512[i]); + i = ARRAY_SIZE(algs_sha1_sha224_sha256); +err_sha_224_256_algs: + for (; i--; ) + crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]); + + return err; +} + +int mtk_hash_alg_register(struct mtk_cryp *cryp) +{ + int err; + + INIT_LIST_HEAD(&cryp->sha_list); + + /* Initialize two hash records */ + err = mtk_sha_record_init(cryp); + if (err) + goto err_record; + + /* Ring2 is use by SHA record0 */ + err = devm_request_irq(cryp->dev, cryp->irq[RING2], + mtk_sha_ring2_irq, IRQF_TRIGGER_LOW, + "mtk-sha", cryp); + if (err) { + dev_err(cryp->dev, "unable to request sha irq0.\n"); + goto err_res; + } + + /* Ring3 is use by SHA record1 */ + err = devm_request_irq(cryp->dev, cryp->irq[RING3], + mtk_sha_ring3_irq, IRQF_TRIGGER_LOW, + "mtk-sha", cryp); + if (err) { + dev_err(cryp->dev, "unable to request sha irq1.\n"); + goto err_res; + } + + /* Enable ring2 and ring3 interrupt for hash */ + mtk_sha_write(cryp, AIC_ENABLE_SET(RING2), MTK_IRQ_RDR2); + mtk_sha_write(cryp, AIC_ENABLE_SET(RING3), MTK_IRQ_RDR3); + + cryp->tmp = dma_alloc_coherent(cryp->dev, SHA_TMP_BUF_SIZE, + &cryp->tmp_dma, GFP_KERNEL); + if (!cryp->tmp) { + dev_err(cryp->dev, "unable to allocate tmp buffer.\n"); + err = -EINVAL; + goto err_res; + } + + spin_lock(&mtk_sha.lock); + list_add_tail(&cryp->sha_list, &mtk_sha.dev_list); + spin_unlock(&mtk_sha.lock); + + err = mtk_sha_register_algs(); + if (err) + goto err_algs; + + return 0; + +err_algs: + spin_lock(&mtk_sha.lock); + list_del(&cryp->sha_list); + spin_unlock(&mtk_sha.lock); + dma_free_coherent(cryp->dev, SHA_TMP_BUF_SIZE, + cryp->tmp, cryp->tmp_dma); +err_res: + mtk_sha_record_free(cryp); +err_record: + + dev_err(cryp->dev, "mtk-sha initialization failed.\n"); + return err; +} + +void mtk_hash_alg_release(struct mtk_cryp *cryp) +{ + spin_lock(&mtk_sha.lock); + list_del(&cryp->sha_list); + spin_unlock(&mtk_sha.lock); + + mtk_sha_unregister_algs(); + dma_free_coherent(cryp->dev, SHA_TMP_BUF_SIZE, + cryp->tmp, cryp->tmp_dma); + mtk_sha_record_free(cryp); +} |