diff options
-rw-r--r-- | block/bfq-iosched.c | 497 |
1 files changed, 372 insertions, 125 deletions
diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c index 1edac72ab51d..61d880b90882 100644 --- a/block/bfq-iosched.c +++ b/block/bfq-iosched.c @@ -407,19 +407,37 @@ struct bfq_data { /* on-disk position of the last served request */ sector_t last_position; + /* time of last request completion (ns) */ + u64 last_completion; + + /* time of first rq dispatch in current observation interval (ns) */ + u64 first_dispatch; + /* time of last rq dispatch in current observation interval (ns) */ + u64 last_dispatch; + /* beginning of the last budget */ ktime_t last_budget_start; /* beginning of the last idle slice */ ktime_t last_idling_start; - /* number of samples used to calculate @peak_rate */ + + /* number of samples in current observation interval */ int peak_rate_samples; + /* num of samples of seq dispatches in current observation interval */ + u32 sequential_samples; + /* total num of sectors transferred in current observation interval */ + u64 tot_sectors_dispatched; + /* max rq size seen during current observation interval (sectors) */ + u32 last_rq_max_size; + /* time elapsed from first dispatch in current observ. interval (us) */ + u64 delta_from_first; /* - * Peak read/write rate, observed during the service of a - * budget [BFQ_RATE_SHIFT * sectors/usec]. The value is - * left-shifted by BFQ_RATE_SHIFT to increase precision in + * Current estimate of the device peak rate, measured in + * [BFQ_RATE_SHIFT * sectors/usec]. The left-shift by + * BFQ_RATE_SHIFT is performed to increase precision in * fixed-point calculations. */ - u64 peak_rate; + u32 peak_rate; + /* maximum budget allotted to a bfq_queue before rescheduling */ int bfq_max_budget; @@ -740,7 +758,7 @@ static const int bfq_timeout = HZ / 8; static struct kmem_cache *bfq_pool; -/* Below this threshold (in ms), we consider thinktime immediate. */ +/* Below this threshold (in ns), we consider thinktime immediate. */ #define BFQ_MIN_TT (2 * NSEC_PER_MSEC) /* hw_tag detection: parallel requests threshold and min samples needed. */ @@ -752,8 +770,12 @@ static struct kmem_cache *bfq_pool; #define BFQQ_CLOSE_THR (sector_t)(8 * 1024) #define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8) -/* Min samples used for peak rate estimation (for autotuning). */ -#define BFQ_PEAK_RATE_SAMPLES 32 +/* Min number of samples required to perform peak-rate update */ +#define BFQ_RATE_MIN_SAMPLES 32 +/* Min observation time interval required to perform a peak-rate update (ns) */ +#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC) +/* Target observation time interval for a peak-rate update (ns) */ +#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC /* Shift used for peak rate fixed precision calculations. */ #define BFQ_RATE_SHIFT 16 @@ -3837,15 +3859,20 @@ static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd, return NULL; } +static sector_t get_sdist(sector_t last_pos, struct request *rq) +{ + if (last_pos) + return abs(blk_rq_pos(rq) - last_pos); + + return 0; +} + #if 0 /* Still not clear if we can do without next two functions */ static void bfq_activate_request(struct request_queue *q, struct request *rq) { struct bfq_data *bfqd = q->elevator->elevator_data; bfqd->rq_in_driver++; - bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); - bfq_log(bfqd, "activate_request: new bfqd->last_position %llu", - (unsigned long long)bfqd->last_position); } static void bfq_deactivate_request(struct request_queue *q, struct request *rq) @@ -4124,6 +4151,227 @@ static void bfq_set_budget_timeout(struct bfq_data *bfqd) } /* + * In autotuning mode, max_budget is dynamically recomputed as the + * amount of sectors transferred in timeout at the estimated peak + * rate. This enables BFQ to utilize a full timeslice with a full + * budget, even if the in-service queue is served at peak rate. And + * this maximises throughput with sequential workloads. + */ +static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd) +{ + return (u64)bfqd->peak_rate * USEC_PER_MSEC * + jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT; +} + +static void bfq_reset_rate_computation(struct bfq_data *bfqd, + struct request *rq) +{ + if (rq != NULL) { /* new rq dispatch now, reset accordingly */ + bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns(); + bfqd->peak_rate_samples = 1; + bfqd->sequential_samples = 0; + bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size = + blk_rq_sectors(rq); + } else /* no new rq dispatched, just reset the number of samples */ + bfqd->peak_rate_samples = 0; /* full re-init on next disp. */ + + bfq_log(bfqd, + "reset_rate_computation at end, sample %u/%u tot_sects %llu", + bfqd->peak_rate_samples, bfqd->sequential_samples, + bfqd->tot_sectors_dispatched); +} + +static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq) +{ + u32 rate, weight, divisor; + + /* + * For the convergence property to hold (see comments on + * bfq_update_peak_rate()) and for the assessment to be + * reliable, a minimum number of samples must be present, and + * a minimum amount of time must have elapsed. If not so, do + * not compute new rate. Just reset parameters, to get ready + * for a new evaluation attempt. + */ + if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES || + bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL) + goto reset_computation; + + /* + * If a new request completion has occurred after last + * dispatch, then, to approximate the rate at which requests + * have been served by the device, it is more precise to + * extend the observation interval to the last completion. + */ + bfqd->delta_from_first = + max_t(u64, bfqd->delta_from_first, + bfqd->last_completion - bfqd->first_dispatch); + + /* + * Rate computed in sects/usec, and not sects/nsec, for + * precision issues. + */ + rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT, + div_u64(bfqd->delta_from_first, NSEC_PER_USEC)); + + /* + * Peak rate not updated if: + * - the percentage of sequential dispatches is below 3/4 of the + * total, and rate is below the current estimated peak rate + * - rate is unreasonably high (> 20M sectors/sec) + */ + if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 && + rate <= bfqd->peak_rate) || + rate > 20<<BFQ_RATE_SHIFT) + goto reset_computation; + + /* + * We have to update the peak rate, at last! To this purpose, + * we use a low-pass filter. We compute the smoothing constant + * of the filter as a function of the 'weight' of the new + * measured rate. + * + * As can be seen in next formulas, we define this weight as a + * quantity proportional to how sequential the workload is, + * and to how long the observation time interval is. + * + * The weight runs from 0 to 8. The maximum value of the + * weight, 8, yields the minimum value for the smoothing + * constant. At this minimum value for the smoothing constant, + * the measured rate contributes for half of the next value of + * the estimated peak rate. + * + * So, the first step is to compute the weight as a function + * of how sequential the workload is. Note that the weight + * cannot reach 9, because bfqd->sequential_samples cannot + * become equal to bfqd->peak_rate_samples, which, in its + * turn, holds true because bfqd->sequential_samples is not + * incremented for the first sample. + */ + weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples; + + /* + * Second step: further refine the weight as a function of the + * duration of the observation interval. + */ + weight = min_t(u32, 8, + div_u64(weight * bfqd->delta_from_first, + BFQ_RATE_REF_INTERVAL)); + + /* + * Divisor ranging from 10, for minimum weight, to 2, for + * maximum weight. + */ + divisor = 10 - weight; + + /* + * Finally, update peak rate: + * + * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor + */ + bfqd->peak_rate *= divisor-1; + bfqd->peak_rate /= divisor; + rate /= divisor; /* smoothing constant alpha = 1/divisor */ + + bfqd->peak_rate += rate; + if (bfqd->bfq_user_max_budget == 0) + bfqd->bfq_max_budget = + bfq_calc_max_budget(bfqd); + +reset_computation: + bfq_reset_rate_computation(bfqd, rq); +} + +/* + * Update the read/write peak rate (the main quantity used for + * auto-tuning, see update_thr_responsiveness_params()). + * + * It is not trivial to estimate the peak rate (correctly): because of + * the presence of sw and hw queues between the scheduler and the + * device components that finally serve I/O requests, it is hard to + * say exactly when a given dispatched request is served inside the + * device, and for how long. As a consequence, it is hard to know + * precisely at what rate a given set of requests is actually served + * by the device. + * + * On the opposite end, the dispatch time of any request is trivially + * available, and, from this piece of information, the "dispatch rate" + * of requests can be immediately computed. So, the idea in the next + * function is to use what is known, namely request dispatch times + * (plus, when useful, request completion times), to estimate what is + * unknown, namely in-device request service rate. + * + * The main issue is that, because of the above facts, the rate at + * which a certain set of requests is dispatched over a certain time + * interval can vary greatly with respect to the rate at which the + * same requests are then served. But, since the size of any + * intermediate queue is limited, and the service scheme is lossless + * (no request is silently dropped), the following obvious convergence + * property holds: the number of requests dispatched MUST become + * closer and closer to the number of requests completed as the + * observation interval grows. This is the key property used in + * the next function to estimate the peak service rate as a function + * of the observed dispatch rate. The function assumes to be invoked + * on every request dispatch. + */ +static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq) +{ + u64 now_ns = ktime_get_ns(); + + if (bfqd->peak_rate_samples == 0) { /* first dispatch */ + bfq_log(bfqd, "update_peak_rate: goto reset, samples %d", + bfqd->peak_rate_samples); + bfq_reset_rate_computation(bfqd, rq); + goto update_last_values; /* will add one sample */ + } + + /* + * Device idle for very long: the observation interval lasting + * up to this dispatch cannot be a valid observation interval + * for computing a new peak rate (similarly to the late- + * completion event in bfq_completed_request()). Go to + * update_rate_and_reset to have the following three steps + * taken: + * - close the observation interval at the last (previous) + * request dispatch or completion + * - compute rate, if possible, for that observation interval + * - start a new observation interval with this dispatch + */ + if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC && + bfqd->rq_in_driver == 0) + goto update_rate_and_reset; + + /* Update sampling information */ + bfqd->peak_rate_samples++; + + if ((bfqd->rq_in_driver > 0 || + now_ns - bfqd->last_completion < BFQ_MIN_TT) + && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR) + bfqd->sequential_samples++; + + bfqd->tot_sectors_dispatched += blk_rq_sectors(rq); + + /* Reset max observed rq size every 32 dispatches */ + if (likely(bfqd->peak_rate_samples % 32)) + bfqd->last_rq_max_size = + max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size); + else + bfqd->last_rq_max_size = blk_rq_sectors(rq); + + bfqd->delta_from_first = now_ns - bfqd->first_dispatch; + + /* Target observation interval not yet reached, go on sampling */ + if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL) + goto update_last_values; + +update_rate_and_reset: + bfq_update_rate_reset(bfqd, rq); +update_last_values: + bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); + bfqd->last_dispatch = now_ns; +} + +/* * Remove request from internal lists. */ static void bfq_dispatch_remove(struct request_queue *q, struct request *rq) @@ -4143,6 +4391,7 @@ static void bfq_dispatch_remove(struct request_queue *q, struct request *rq) * happens to be taken into account. */ bfqq->dispatched++; + bfq_update_peak_rate(q->elevator->elevator_data, rq); bfq_remove_request(q, rq); } @@ -4323,110 +4572,92 @@ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd, bfqq->entity.budget); } -static unsigned long bfq_calc_max_budget(u64 peak_rate, u64 timeout) -{ - unsigned long max_budget; - - /* - * The max_budget calculated when autotuning is equal to the - * amount of sectors transferred in timeout at the estimated - * peak rate. To get this value, peak_rate is, first, - * multiplied by 1000, because timeout is measured in ms, - * while peak_rate is measured in sectors/usecs. Then the - * result of this multiplication is right-shifted by - * BFQ_RATE_SHIFT, because peak_rate is equal to the value of - * the peak rate left-shifted by BFQ_RATE_SHIFT. - */ - max_budget = (unsigned long)(peak_rate * 1000 * - timeout >> BFQ_RATE_SHIFT); - - return max_budget; -} - /* - * In addition to updating the peak rate, checks whether the process - * is "slow", and returns 1 if so. This slow flag is used, in addition - * to the budget timeout, to reduce the amount of service provided to - * seeky processes, and hence reduce their chances to lower the - * throughput. See the code for more details. + * Return true if the process associated with bfqq is "slow". The slow + * flag is used, in addition to the budget timeout, to reduce the + * amount of service provided to seeky processes, and thus reduce + * their chances to lower the throughput. More details in the comments + * on the function bfq_bfqq_expire(). + * + * An important observation is in order: as discussed in the comments + * on the function bfq_update_peak_rate(), with devices with internal + * queues, it is hard if ever possible to know when and for how long + * an I/O request is processed by the device (apart from the trivial + * I/O pattern where a new request is dispatched only after the + * previous one has been completed). This makes it hard to evaluate + * the real rate at which the I/O requests of each bfq_queue are + * served. In fact, for an I/O scheduler like BFQ, serving a + * bfq_queue means just dispatching its requests during its service + * slot (i.e., until the budget of the queue is exhausted, or the + * queue remains idle, or, finally, a timeout fires). But, during the + * service slot of a bfq_queue, around 100 ms at most, the device may + * be even still processing requests of bfq_queues served in previous + * service slots. On the opposite end, the requests of the in-service + * bfq_queue may be completed after the service slot of the queue + * finishes. + * + * Anyway, unless more sophisticated solutions are used + * (where possible), the sum of the sizes of the requests dispatched + * during the service slot of a bfq_queue is probably the only + * approximation available for the service received by the bfq_queue + * during its service slot. And this sum is the quantity used in this + * function to evaluate the I/O speed of a process. */ -static bool bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq, - bool compensate) +static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq, + bool compensate, enum bfqq_expiration reason, + unsigned long *delta_ms) { - u64 bw, usecs, expected, timeout; - ktime_t delta; - int update = 0; + ktime_t delta_ktime; + u32 delta_usecs; + bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */ - if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq)) + if (!bfq_bfqq_sync(bfqq)) return false; if (compensate) - delta = bfqd->last_idling_start; + delta_ktime = bfqd->last_idling_start; else - delta = ktime_get(); - delta = ktime_sub(delta, bfqd->last_budget_start); - usecs = ktime_to_us(delta); + delta_ktime = ktime_get(); + delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start); + delta_usecs = ktime_to_us(delta_ktime); /* don't use too short time intervals */ - if (usecs < 1000) - return false; - - /* - * Calculate the bandwidth for the last slice. We use a 64 bit - * value to store the peak rate, in sectors per usec in fixed - * point math. We do so to have enough precision in the estimate - * and to avoid overflows. - */ - bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT; - do_div(bw, (unsigned long)usecs); + if (delta_usecs < 1000) { + if (blk_queue_nonrot(bfqd->queue)) + /* + * give same worst-case guarantees as idling + * for seeky + */ + *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC; + else /* charge at least one seek */ + *delta_ms = bfq_slice_idle / NSEC_PER_MSEC; + + return slow; + } - timeout = jiffies_to_msecs(bfqd->bfq_timeout); + *delta_ms = delta_usecs / USEC_PER_MSEC; /* - * Use only long (> 20ms) intervals to filter out spikes for - * the peak rate estimation. + * Use only long (> 20ms) intervals to filter out excessive + * spikes in service rate estimation. */ - if (usecs > 20000) { - if (bw > bfqd->peak_rate) { - bfqd->peak_rate = bw; - update = 1; - bfq_log(bfqd, "new peak_rate=%llu", bw); - } - - update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1; - - if (bfqd->peak_rate_samples < BFQ_PEAK_RATE_SAMPLES) - bfqd->peak_rate_samples++; - - if (bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES && - update && bfqd->bfq_user_max_budget == 0) { - bfqd->bfq_max_budget = - bfq_calc_max_budget(bfqd->peak_rate, - timeout); - bfq_log(bfqd, "new max_budget=%d", - bfqd->bfq_max_budget); - } + if (delta_usecs > 20000) { + /* + * Caveat for rotational devices: processes doing I/O + * in the slower disk zones tend to be slow(er) even + * if not seeky. In this respect, the estimated peak + * rate is likely to be an average over the disk + * surface. Accordingly, to not be too harsh with + * unlucky processes, a process is deemed slow only if + * its rate has been lower than half of the estimated + * peak rate. + */ + slow = bfqq->entity.service < bfqd->bfq_max_budget / 2; } - /* - * A process is considered ``slow'' (i.e., seeky, so that we - * cannot treat it fairly in the service domain, as it would - * slow down too much the other processes) if, when a slice - * ends for whatever reason, it has received service at a - * rate that would not be high enough to complete the budget - * before the budget timeout expiration. - */ - expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT; + bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow); - /* - * Caveat: processes doing IO in the slower disk zones will - * tend to be slow(er) even if not seeky. And the estimated - * peak rate will actually be an average over the disk - * surface. Hence, to not be too harsh with unlucky processes, - * we keep a budget/3 margin of safety before declaring a - * process slow. - */ - return expected > (4 * bfqq->entity.budget) / 3; + return slow; } /* @@ -4474,13 +4705,14 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd, enum bfqq_expiration reason) { bool slow; + unsigned long delta = 0; + struct bfq_entity *entity = &bfqq->entity; int ref; /* - * Update device peak rate for autotuning and check whether the - * process is slow (see bfq_update_peak_rate). + * Check whether the process is slow (see bfq_bfqq_is_slow). */ - slow = bfq_update_peak_rate(bfqd, bfqq, compensate); + slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta); /* * As above explained, 'punish' slow (i.e., seeky), timed-out @@ -4490,7 +4722,7 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd, bfq_bfqq_charge_full_budget(bfqq); if (reason == BFQQE_TOO_IDLE && - bfqq->entity.service <= 2 * bfqq->entity.budget / 10) + entity->service <= 2 * entity->budget / 10) bfq_clear_bfqq_IO_bound(bfqq); bfq_log_bfqq(bfqd, bfqq, @@ -5130,17 +5362,9 @@ static void bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq, struct request *rq) { - sector_t sdist = 0; - - if (bfqq->last_request_pos) { - if (bfqq->last_request_pos < blk_rq_pos(rq)) - sdist = blk_rq_pos(rq) - bfqq->last_request_pos; - else - sdist = bfqq->last_request_pos - blk_rq_pos(rq); - } - bfqq->seek_history <<= 1; - bfqq->seek_history |= sdist > BFQQ_SEEK_THR && + bfqq->seek_history |= + get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR && (!blk_queue_nonrot(bfqd->queue) || blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT); } @@ -5336,12 +5560,45 @@ static void bfq_update_hw_tag(struct bfq_data *bfqd) static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd) { + u64 now_ns; + u32 delta_us; + bfq_update_hw_tag(bfqd); bfqd->rq_in_driver--; bfqq->dispatched--; - bfqq->ttime.last_end_request = ktime_get_ns(); + now_ns = ktime_get_ns(); + + bfqq->ttime.last_end_request = now_ns; + + /* + * Using us instead of ns, to get a reasonable precision in + * computing rate in next check. + */ + delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC); + + /* + * If the request took rather long to complete, and, according + * to the maximum request size recorded, this completion latency + * implies that the request was certainly served at a very low + * rate (less than 1M sectors/sec), then the whole observation + * interval that lasts up to this time instant cannot be a + * valid time interval for computing a new peak rate. Invoke + * bfq_update_rate_reset to have the following three steps + * taken: + * - close the observation interval at the last (previous) + * request dispatch or completion + * - compute rate, if possible, for that observation interval + * - reset to zero samples, which will trigger a proper + * re-initialization of the observation interval on next + * dispatch + */ + if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC && + (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us < + 1UL<<(BFQ_RATE_SHIFT - 10)) + bfq_update_rate_reset(bfqd, NULL); + bfqd->last_completion = now_ns; /* * If this is the in-service queue, check if it needs to be expired, @@ -5799,16 +6056,6 @@ USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0, UINT_MAX); #undef USEC_STORE_FUNCTION -static unsigned long bfq_estimated_max_budget(struct bfq_data *bfqd) -{ - u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout); - - if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES) - return bfq_calc_max_budget(bfqd->peak_rate, timeout); - else - return bfq_default_max_budget; -} - static ssize_t bfq_max_budget_store(struct elevator_queue *e, const char *page, size_t count) { @@ -5817,7 +6064,7 @@ static ssize_t bfq_max_budget_store(struct elevator_queue *e, int ret = bfq_var_store(&__data, (page), count); if (__data == 0) - bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd); + bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); else { if (__data > INT_MAX) __data = INT_MAX; @@ -5847,7 +6094,7 @@ static ssize_t bfq_timeout_sync_store(struct elevator_queue *e, bfqd->bfq_timeout = msecs_to_jiffies(__data); if (bfqd->bfq_user_max_budget == 0) - bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd); + bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); return ret; } |